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Abstract Systemic lupus erythematosus (SLE) is a chronic
relapsing–remitting autoimmune disease affecting several or-
gans. Although the management of lupus patients has im-
proved in the last years, several aspects still remain challeng-
ing. More sensitive and specific biomarkers for an early diag-
nosis as well as for monitoring disease activity and tissue
damage are needed. Genome-wide association and gene map-
ping studies have supported the genetic background for SLE
susceptibility. However, the relatively modest risk association
and the studies in twins have suggested a role for environmen-
tal and epigenetic factors, as well as genetic–epigenetic inter-
action. Accordingly, there is evidence that differences in DNA
methylation, histone modifications, and miRNA profiling can
be found in lupus patients versus normal subjects. Moreover,
impaired DNA methylation on the inactive X-chromosome
was suggested to explain, at least in part, the female preva-
lence of the disease. Epigenetic markers may be help in ful-
filling the unmet needs for SLE by offering new diagnostic
tools, new biomarkers for monitoring disease activity, or to
better characterize patients with a silent clinical disease but
with an active serology. Anti-DNA, anti-phospholipid, and
anti-Ro/SSA autoantibodies are thought to be pathogenic for
glomerulonephritis, recurrent thrombosis and miscarriages,
and neonatal lupus, respectively. However, tissue damage oc-
curs occasionally or, in some patients, only in spite of the

persistent presence of the antibodies. Preliminary studies sug-
gest that epigenetic mechanisms may explain why the damage
takes place in some patients only or at a given time.
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Introduction

Systemic lupus erythematosus (SLE) is the prototype of the
systemic autoimmune diseases characterized by protean clin-
ical manifestations affecting almost any organ of our body. It
is a chronic disorder with a gender prevalence displaying a
relapsing–remitting course.

The heterogeneity of the manifestations can be, at least in
part, related to the several pathogenic mechanisms that are
taking place at different moments during the course of the
disease. It is widely accepted that a genetic background plays
a role in affecting both the innate and the adaptive immunity.
However, the disease complexity within individuals and the
heterogeneity among individuals, even genetically identical
individuals, speak in favor of a stochastic execution of the
inherited program as well as of the importance for environ-
mental variables. End tissue damage is eventually supported
by mechanisms that play an additional role at the local level
(Fig. 1) [1–3].

Clinical and translational research has advanced the thera-
peutic approach, resulting into better patient outcomes. Five-
year survival in patients with SLE has improved from 50 % in
the 1950s to over 90 % currently. However, the prompt rec-
ognition of the disease is still an issue and the mortality re-
mains high compared with the general population. Moreover,

* Pier Luigi Meroni
pierluigi.meroni@unimi.it

1 Istituto Auxologico Italiano, Milan, Italy
2 Division of Rheumatology, Istituto G. Pini, Piazza C. Ferrari, 1,

20122 Milan, Italy
3 Department of Clinical Sciences and Health Community, University

of Milan, Milan, Italy

Clinic Rev Allerg Immunol (2016) 50:367–376
DOI 10.1007/s12016-015-8497-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s12016-015-8497-4&domain=pdf


tissue damage due to both the disease and the treatments tends
to accumulate over time, making the management of lupus
patients a challenging issue for physicians.

Epigenetic modulation is emerging as an important mech-
anism to understand how the susceptibility genes for SLEmay
interact with environmental factors to cause a full-blown dis-
ease. We will review the most recent advances in SLE epige-
netic in order to discuss whether such new information may
help us in addressing the unmet needs in our patients.

Genetics of SLE

The predisposition to develop SLE has been confirmed in
genome-wide association (GWAS) studies performed in vari-
ous ethnic populations since 2008. In particular, the disease is
associated with inheritance of MHC class II and class III loci
[1–4]. Two haplotypes of the MHC class II HLA-DRB1
(DRB1*1501 and DRB1*0301) display the strongest associ-
ation with lupus. GWA studies reported additional genes and
single nucleotide polymorphisms (SNPs) in the MHC class III
locus that have been linked to SLE. These include early com-
plement components, the MutShomolg 5 (MSHH5), super
viralicidic activity 2-like (SKIV2L), integrin alpha (ITGAM,
CD11b), integrin beta chain beta2 (ITGB2, CD18), and Fc γ
receptor (FcγR) genes [5, 6].

Further, non-HLA genes have been associated to SLE;
most of them encode gene products that are theoretically in-
volved in disease pathogenesis. Additional candidates are lo-
cated within non-coding regions and regulate gene expression

via transcriptional and post-transcriptional mechanisms
(Table 1).

Epigenetics in SLE

GWAS and gene mapping studies have identified more than
50 loci associated with SLE susceptibility. However, each
locus displays a relatively modest risk association when con-
sidered individually. The odds ratio (OR) is no greater than
2.8, and the cumulative effect size of these loci accounts for a
small fraction of disease heritability (Table 1). Exceptions to
low penetrance for susceptibility SLE loci have been reported
for genes encoding for early complement components, partic-
ularly C1q, and for the TREX1 gene that encodes for nucle-
ases pivotal in degrading cytosolic DNA. Mutations in C1q
and TREX1 are rare, but both display a strong risk for lupus
(OR=10 and 25, respectively) [2, 3].

Moreover, the rate of concordance in monozygotic twins is
up to 40 %, suggesting that environmental and epigenetic
factors, as well as genetic–epigenetic interaction, play a criti-
cal role in the susceptibility for SLE.

Epigenetic processes refer to heritable modifications that
regulate gene expression and affect cellular functions without
any change in the genomic sequence. DNA methylation, his-
tone modification, and altered miRNA profiling are widely
accepted as the key epigenetic mechanisms playing a role in
SLE. Table 2 reports the main evidence for these epigenetic
mechanisms in the development of the lupus disease,
supporting their role in determining the susceptibility to the
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disease. While differences in DNA methylation [7–15], his-
tone modifications [19–21], and miRNA profiling [22–26]
were found between SLE patients and normal subjects, the
specificity of these findings, i.e., in comparison with non-
lupus systemic autoimmune diseases, has not been addressed
in a systematic way. Accordingly, their value, as diagnostic
tools, is still matter of evaluation.

There is a link between genetic and epigenetic factors
in the pathogenesis of lupus as shown by the associa-
tion of susceptibility genes and epigenetic mechanisms
in supporting the development of the disease [39]. In
conclusion, epigenetic and genetic–epigenetic interaction
may account for lupus susceptibility in a significant
way. Indeed, there have been multiple observations
which suggest an essential role of epigenetic changes
in DNA on the effector mechanisms that lead to tissue
pathology in lupus [27, 40, 41].

The different epigenetic mechanisms may interact
with each other [28]. For example, the transcription fac-
tor cAMP-responsive element modulator (CREM)α
downregulates IL-2 expression in lupus T cells through
both histone deacetylation and CpG-DNA methylation
[42]. Comparable interaction was also reported for some
miRNAs which ta rge t DNA methyl t ransfe rases
(DNMT)1 directly or indirectly through the modulation
of ERK signalling [29, 30].

SLE is a typical female disease with peak disease prev-
alence between menarche and menopause. There is evi-
dence that estrogen increases the risk of SLE in genetical-
ly susceptible women by increasing type 1 interferon

(IFN) production and survival of auto-reactive B lympho-
cytes. On the other hand, progesterone seems to counter-
act these effects, suggesting that the balance between es-
trogen and progesterone may account for the female prev-
alence and for the disease flares during pregnancy and
chronic estrogen exposure. However, oral contraceptives
containing low-dose estrogen, progesterone, or both and
hormone replacement therapy in older patients with
milder disease did not show a significant increase in dis-
ease flares. These findings suggest that sex hormones can
explain the female predominance only in part, indicating
that other gender-associated differences contribute to the
high female predominance [43, 44]. Epigenetic modifica-
tions have been reported to explain the female prevalence
for SLE. Lupus patients display impaired DNA methyla-
tion on the inactive X-chromosome; as a consequence,
reactivation of genes typically suppressed on the inactive
X-chromosomes of female lupus patients was suggested
to contribute to the female predominance of SLE [45].
Further evidence for the role of the naturally inactivated
sex chromosome in SLE susceptibility comes from the
observation that SLE is much more frequent in
Klinfelter’s syndrome, a condition in which, phenotypi-
cally, male individuals possess an additional X-
chromosome [46].

All together, these findings may explain the susceptibility
for developing lupus and for the female prevalence of the
disease. Whether epigenetic modifications can be also helpful
in characterizing the disease activity or the risk for specific
organ damage will be discussed in the next sections.

Table 1 Most of the loci
associated with SLE
susceptibility are encoding
products related to mechanisms
playing a role in the disease
pathogenesis

Pathway Odds ratio Risk

Type I IFN signalling 1.1–2.3 Increased IFN pathway activation

NFkB signalling 1.1–2.3 Increased NFkB activation/decreased inhibition

B & T cell signalling 1.1–2.3 BCR / BANK1 / BLK / increased IL-10

PMN and Mo function 1.2

IC clearance 1.2–2.5 Decreased IC clearance

NADPH dependent-ROS pathway 1.2–2.8 Decreased NAPDH/ROS production

Others <1.4

Table 2 Main epigenetic mechanisms in SLE

Mechanism Evidence References

DNA methylation - DNA hypo methylation in SLE CD4+ T cells [7, 8]

- UV- and drug-induced DNA hypo methylation [9–12]

- DNA hypo methylation correlates with disease activity [13–18]

Histone modifications including methylation
and acetylation/de acetylation

- Global H3/H4 hypo acetylation in SLE CD4 + T cells [19]

- Abnormal histone acetylation close to IL-17 locus [20, 21]

miRNA regulation - Abnormal miRNA profile in PBMC, in CD4+ T cells,
in plasma and kidney from SLE patients

[22–38]
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Unmet Needs in SLE

The management of lupus patients improved dramatically
over the last 10 years as supported by the reduction of the
mortality rate at 5 years from 50 % in the 1950s to 90 %
nowadays. Both the advance in the knowledge of the patho-
genesis as well as the better use of old drugs and the use of
new ones contributed to such a progress. However, several
aspects of SLE still remain challenging. Diagnosis is usually
delayed by the fact that clinical manifestations at the presen-
tation of the disease are highly heterogeneous and not specific.
This is a critical issue since it is well known that a prompt
diagnosis may allow treating the disease in a more efficient
way with lower doses of drugs and much less potential side
effects. Once established, the disease should be carefully mon-
itored in order to tune the therapy in the most efficient and safe
manner. However, disease monitoring remains difficult due to
the low sensitivity of current disease activity markers. Hence,
both the early diagnosis and the disease monitoring require
biomarkers much more sensitive and specific than the current
ones. The management of refractory renal, cutaneous, and
neuropsychiatric disease remains unsatisfactory since end-
stage renal failure, scarring cutaneous lesions, and neurologi-
cal damage represent unsolved complications in a significant
proportion of patients. Tissue damage due to disease patho-
genic mechanisms and to treatment, especially corticosteroid-
associated damage, tends to accumulate over time. In this
regard, cardiovascular disease secondary to accelerated ath-
erosclerosis has emerged as an important contributor to the
morbidity and mortality in longstanding disease. The
prolonged use of corticosteroids and/or an uncontrolled active
disease (with systemic inflammation) both play a role in ac-
celerated atherosclerosis and tissue damage. The control of the
disease is still not optimal in spite of the successes recently
obtained. This suggests that the available therapeutic tools
reached their maximal effect and that new drugs should be
evaluated. Unfortunately, clinical trials display several diffi-
culties in reaching the established end-points because of the
heterogeneity of the disease, the limitation of the outcome
measures, and the lack of a uniform control group [47].
Table 3 reports the list of the unmet needs in SLE.

Potential Usefulness of Epigenetics to Fulfil Unmet
Need in SLE

New Diagnostic and Prognostic Biomarkers

A biomarker is defined as a characteristic that is objectively
measured and evaluated as an indicator of normal biologic
processes, pathogenic processes, or pharmacologic responses
to a therapeutic intervention [48].

SLE is a very heterogeneous disease with different clinical
subtypes depending on a given organ involvement (i.e., kid-
ney or CNS damage) or the presence of peculiar risk factors
such as specific autoantibodies. This is the case of anti-P ri-
bosomal autoantibodies for CNS involvement or anti-C1q au-
toantibodies for an active renal disease or anti-phospholipid
antibodies (aPL) for recurrent thrombosis and miscarriages.
However, the sensitivity and specificity of the commonest
autoantibody biomarkers for lupus subtypes are not strong
enough with the only exception for aPL. Indeed, there is a
general agreement that a persistent medium/high titer of aPL
positivities for more than two diagnostic assays (anti-
cardiolipin, anti-beta2 glycoprotein I, and lupus anticoagu-
lant) are really predictive for the clinical manifestations of
the anti-phospholipid syndrome (APS) and justify a more ag-
gressive primary prophylaxis.

The Issue of Serologically Active Clinically Quiescent
Patients

Anti-double stranded (ds)DNA antibodies are recognized as
highly specific diagnostic marker for SLE and are also includ-
ed among the classification criteria of the American College of
Rheumatology. Fluctuations of anti-dsDNA antibody titers
have been reported to correlate with disease activity and par-
ticularly with glomerulonephritis supporting their pathogenic
role. Serum complement consumption has been regarded as an
additional parameter for disease activity, according to the pro-
posed role of complement activation by immune complexes in
the pathogenesis of lupus. However, there is recent evidence
that they are not specific and sensitive enough to confirm the
clinical suspect of an increase in disease activity. For example,
there is a small but consistent group of patients who evolve to
persistent serological activity, as supported by elevated anti-
dsDNA antibody levels and/or hypocomplementemia despite
clinical quiescence: the so-called serologically active clinical-
ly quiescent (SACQ) patients. A reciprocal group of patients
clinically active but serologically quiescent was also described
[49, 50]. These two groups altogether represent a challenge for
the conventional theory of lupus as an immune complex-

Table 3 Unmet needs in systemic lupus erythematosus

• Specific and sensitive tools for early diagnosis

• Sensitive biomarkers specific for lupus subtypes and for disease activity

• Management of refractory disease:
Nephritis
Neuropsychiatric SLE
skin lupus

• Prevention of accelerated atherosclerosis

• Corticosteroid-associated organ damage

• Quality of life in lupus patients

• Targeted therapy
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mediated disease. Moreover, they also raise the issue of how
to address these patients from a clinical and therapeutic point
of view since the traditional biomarkers used to monitor the
disease go missing.

New Epigenetic Biomarkers

Looking for new diagnostic/prognostic markers for lupus, epi-
genetic marks have been recently suggested as possible can-
didate tools for the diagnosis of the disease as well as for
monitoring its evolution and/or its response to therapy. This
is true not only of SLE, but also in other autoimmune diseases
[51–55].

Differences in DNA methylation and expression changes
in genes relevant to SLE pathogenesis have been reported in
monozygotic twins discordant for lupus [16], raising the issue
whether the degree of DNA methylation may be a potential
biomarker for disease activity. Although no relationship was
found between DNAmethylation and clinical activity or dam-
age indexes in the twins, few studies in small series of SLE
patients reported an inverse relationship between global DNA
methylation, DNMT1 levels, and Systemic Lupus
Erythematosus Disease Activity Score (SLEDAI) score [17,
18]. The suggestion that DNAmethylation may correlate with
disease activity is intriguing, but much sounder data with larg-
er series and with groups more homogenous in the concomi-
tant treatment are necessary to confirm the finding and to rule
out any drug interference.

There is growing evidence that aberrant expression of dis-
tinct groups of both immune cell-derived and circulating
miRNAs can be found in lupus patients in comparison with
healthy controls. It is not possible to identify a distinct profile
pattern of deregulated miRNAs in SLE likely because of the
heterogeneity of the inclusion criteria as well as the detection
techniques in the different studies. However, most of the data
are consistent with miRNA abnormalities that may target
components of a common pathogenic pathway such as the
type I IFN cascade [1]. Since deregulated type I IFN-
inducible gene expression pattern—IFN signature—is associ-
ated with disease activity, miRNA profiling could represent a
potential useful biomarker for monitoring the disease.
Accordingly, low miR-146 and high IFN expression correlat-
ed with disease activity but very few studies addressed the
correlation with specific scoring systems [31]. In addition,
some studies reported an association between both cellular
and soluble miRNA profiles and levels of anti-dsDNA anti-
bodies in animalmodels or renal involvement in lupus patients
[22, 32–38].

The studies reported in the present review clearly support
the association of lupus with epigenetic variations; however,
the question whether they represent the cause of the disease or
simply the effect of the ongoing autoimmune response or of
the treatment is still open. Inhibiting T cell ERK pathway

signalling in an animal model results in decreased DNMT1
expression, overexpression of methylation sensitive genes
similar to lupus patients, development of anti-dsDNA anti-
bodies, and IFN signature. Such a finding is the strongest
argument for a causal role of DNA methylation in lupus, to
date [8]. On the other hand, the wide modification of the
miRNA profile in cells activated by pro-inflammatory cyto-
kines speaks in favor of epigenetic modifications induced by
the inflammation triggered by the autoimmune response [56].
At the same time, we do not know whether the chronic use of
anti-inflammatory and immunosuppressive drugs may be re-
sponsible for any epigenetic modification.

Can Epigenetic Mechanisms Explain the Onset of Tissue
Damage?

Glomerulonephritis is one of the most important complica-
tions in the course of SLE and a risk for end stage renal
disease; it requires aggressive treatment to achieve remission
and relapses are frequent, putting the patients at risk for drug
side effects [57]. Autoantibodies to components of chromatin,
which include dsDNA, histones, and nucleosomes, are gener-
ally thought to play a key role in kidney damage. According to
one model, autoantibodies cross-react with intrinsic glomeru-
lar structures such as components of membranes, matrices,
or exposed non-chromatin ligands released from cells.
Antibody-binding triggers inflammation and eventually
induces tissue damage. Another model suggests glomer-
ular deposition of autoantibodies in complex with chro-
matin, thereby inducing classic immune complex-
mediated tissue damage [58].

Only a limited proportion of lupus patients develop renal
damage, in spite of the presence of theoretically pathogenic
anti-chromatin/DNA autoantibodies for a long time. In the
same manner, anti-DNA antibodies are produced much before
the glomerulonephritis can be detected in animal models [2,
3]. Hence, it has been suggested that further local kidney fac-
tors may play a role in addition to the three key pathways
related to the autoimmune response to chromatin auto-anti-
gen: defective clearance of apoptotic cells, engagement of
toll-like receptors, type I IFN, NFkB signalling, and T and B
dysfunctions [2, 3]. It has been recently reported that APOL1
G1/G2 alleles strongly impact the risk of lupus nephritis end-
stage renal disease (ESRD) as well as the time of progression
to ESRD in African-Americans, suggesting that APOL1 is
associated with renal susceptibility to damage [59, 60]. The
hypothesis that APOL1 may influence the end-organ damage
is supported by the clinical observation that kidneys from
diseased donors with two APOL1 nephropathy alleles fail
more rapidly than those from diseased donors with 0 or 1 risk
allele [61]. Moreover, data from murine congenic dissection
and reconstitution studies do suggest that genes from multiple
functional categories would act in concert to promote lupus
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nephritis. In particular, genes that regulate functions in the end-
organs, such as the kidneys, lead to fully developed SLE [3].

In this regard, a possible role for renal DNaseI enzyme
activity has been recently hypothesized to explain the progres-
sion of murine lupus nephritis. DNaseI is required for chro-
matin breakdown during apoptosis as well as necrosis; accord-
ingly, a loss of this enzyme activity may lead to accumulation
of apoptotic chromatin fragments in glomeruli. As a conse-
quence, the amount of anti-chromatin antibodies/chromatin
complexes increases and exceeds the threshold for triggering
a local inflammatory response.

The reduced chromatin fragmentation has been suggested
to display biological consequences beyond the classic im-
mune complex-mediated damage since it appears to affect also
responses of the innate immunity. In fact, TLR7-9 and Clec4e
have been found upregulated in BW mice at the same time
when chromatin–IgG complex deposition in the glomerular
basement membrane (GBM) and loss of DNasI activity are
demonstrated [62]. TLR7-9 is involved in the processing of
DNA–protein complexes while incomplete clearance and deg-
radation of apoptotic material may transform it into necrotic
cell debris which contains SAP130, the ligand for the
inflammation-related receptor Clec4e [58]. The signalling
triggered by SAP130-Clec4e may promote pro-inflammatory
cytokine production and upregulation of metalloproteases that
altogether can facilitate the chromatin fragment–IgG complex
deposition in both the mesangial matrix and the GBM. A
comparable correlation between loss of DNasI and progres-
sion of glomerulonephritis has been found in human kidneys
[63–65].

Looking for possible mechanisms responsible for the
DNaseI gene expression, the same authors suggested the role
of transcriptional interference [66] as well as the role of an
abnormal miRNA profile. These mechanisms may affect
DNaseI production through gene silencing independently or
even in combination. In line with such hypothesis, differ-
ent miRNA profiles were found in kidney of lupus-
prone mice with glomerulonephritis as well as in biop-
sies of lupus patients [35, 67, 68].

Since the levels of DNaseI in the urine seems to reflect its
modulation in the tissues, it is useful to speculate that both
DNaseI dosage and/or specific miRNA profiles may represent
possible new tools to predict the evolution of kidney damage
in lupus patients.

The mechanisms reported above do not exclude additional
pathogenic pathways affecting the kidney and unrelated to
anti-chromatin antibody response [2].

aPL and APS as Additional Targets for Epigenetic
Biomarkers

aPL are widely accepted as a strong risk biomarker for recur-
rent thrombotic events and miscarriages in SLE patients. The

risk for such manifestations is proportional to the autoanti-
body levels since medium/high aPL titers and more than one
positivity in the diagnostic assays have been reported as the
most predictive factors for developing APS [69].

The presence of aPL is required for developing the syn-
drome, but the antibodies alone are not sufficient. For exam-
ple, thrombotic events can occur only occasionally and the
need of a second Bhit^was suggested to explain this condition.
In other words, the antibody (first hit) induces a thrombophilic
condition but clotting takes place in the presence of another
thrombophilic condition (second hit) [70]. Inflammatory stim-
uli of different origin have been identified as candidate second
hits. There is growing evidence that they act by increasing the
presence of the main autoantigen target for aPL (i.e., beta2
glycoprotein I –β2GPI) in the vascular tissues, at least in part,
by upregulating the expression of the cell membrane receptors
for β2GPI [71, 72]. Once upregulated, β2GPI can be recog-
nized by aPL in amounts large enough to activate complement
that eventually causes clot formation [70]. It is widely accept-
ed that β2GPI-dependent aPL activate the cells involved in
the coagulation cascade (i.e., endothelium, circulating mono-
cytes, and platelets) by recognizing the molecule present on
their cell membrane. The antibody binding induces a pro-
inflammatory and pro-coagulant phenotype that plays a major
role in APS thrombosis [70, 73].

Although the Btwo hit hypothesis^ represents a convincing
explanation, it is still unclear what are the true mechanisms
beyond the fact that clotting takes place only occasionally in
spite of the persistent presence of most of the pathogenic
players and the frequent occurrence of inflammatory stimuli
potentially able to trigger the APS cascade. For example, up to
40 % of SLE patients are persistently positive for aPL, even at
high titre; however, less than one third of them actually dis-
play the clinical events. A similar group of aPL-positive
asymptomatic carriers can also be found in subjects with no
any underlying autoimmune disease and followed for a long
period of time [74].

It has been suggested that epigenetic mechanisms may take
place by lowering the threshold for the coagulation cascade.
For example, miR-19b and miR-20a were reported to down-
regulate tissue factor (TF) expression on peripheral mono-
cytes; in particular, miR-20a was found to bind TF mRNA,
suggesting a direct regulating effect. TF is the starting com-
ponent of the extrinsic coagulation cascade, and there is evi-
dence for its involvement in APS pathogenesis because of its
upregulated expression in circulating monocytes from patients
[70, 73]. Levels of miR-19b andmiR-20awere both decreased
in monocytes from APS patients, and their expression was
inversely correlated with the expression of TF on the cell
membrane. This finding indicates for the first time that an
epigenetic mechanism may take place in regulating one of
the thrombophilic pathways thought to play a role in APS
pathogenesis. Unfortunately, a comparable decreased
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expression of miR-19b and miR-20a was also found in mono-
cytes from SLE aPL-negative patients, indicating that the phe-
nomenon is not specific for APS only [74]. Nevertheless, the
study paves the way for exploring new epigenetic biomarkers
predictive for a stronger thrombophilic state. In this regard,
in vitro experiments showed that inhibition of miR-20a in the
monocyte lineage THP-1 cells provokes a 50 % increase in
their pro-coagulant activity after lipopolysaccharide (LPS)
stimulation [74]. Since LPS is known to represent a good
model of a Bsecond hit^ in APS models and to modulate a
large expression of miRNAs in a NFκB-dependent manner
[75], it is possible to speculate that an infectious stimulus
may affect TF expression in monocytes through changes in
their miRNA profiles. We can hypothesize that a similar
mechanism can also take place in endothelial cells, the other
cell type in which aPL have been demonstrated to upregulate
TF expression [72]. Hence, abnormalities in miRNA profiles
related to the thrombophilic phenotype of cells involved in the
coagulation cascade could represent a further tool to better
stratify the whole thrombophilic risk of aPL positive patients.

Neonatal Lupus as a Target for Epigenetic Biomarkers

Neonatal lupus (NL) refers to a clinical spectrum of cutane-
ous, cardiac, and systemic abnormalities observed in new born
infants from mothers positive for autoantibodies against Ro/
SSA, La/SSB, and, less commonly, U1-ribonucleoprotein
(U1-RNP). The most common presentation is a non-scarring,
non-atrophic skin lesion resembling sub-acute cutaneous lu-
pus erythematosus. The lesions may develop at birth or even
later during the first weeks of life. Cardiac, hematological,
hepatobiliary, central nervous, and pulmonary systems may
also be involved. It occurs in about 1 to 2 % of babies born
to mothers with autoimmune disease, primarily SLE and
Sjögren’s syndrome, and antibodies to Ro/SSA and/or La/
SSB. However, many cases can occur in children of mothers
positive for the same autoantibodies, but with no signs of
lupus or other autoimmune disease at the time of the baby’s
birth; about one half of these mothers develop autoimmune
disease (more commonly Sjögren syndrome than SLE) [76].
The most serious complication of NL is complete heart block
(CHB) and about 10% have an associated cardiomyopathy at
the initial diagnosis or develop it later [77].

NL is a prototype example of a passively transferred auto-
immune disease due to the trans-placental passage of anti-
RoSSA and anti-La/SSB. However, the pathogenesis of the
disease probably involves more than simple transplacental
passage of antibodies since only few babies born from
mothers positive for the autoantibodies are affected, and there
is discordance of the disease even in monozygotic twins [77].
Hence, maternal antibodies to Ro/SSA and/or La/SSB, al-
though a powerful risk factor for CHB, are not the only

determinant of the development of NL, and further mecha-
nisms have been investigated.

Studies on epitope specificity of anti-Ro autoantibodies
showed that antibodies recognizing the peptide aa200-239 of
Ro 52 (p200) were pathogenic in experimental models and
more predictive for the risk to develop the syndrome.
However, the reactivity to p200 has been found dominant
but not uniform in women whose children have CHB. Since
exposure to this antibody specificity was observed with a sim-
ilar frequency in children without CHB born to mothers with
anti-Ro 52, additional factors were suggested to be necessary
for the disease expression [78, 79]. For example, evidence
from animal models suggests that antibodies targeting L-
type calcium channels may also contribute to the development
of cardiac-NL [80].

Heart block develops in only a minority of subsequent
pregnancies, despite the persistence of maternal antibodies,
suggesting that fetal factors are playing a role. The influence
of specific HLA alleles and a polymorphism in the promoter
region of the gene for TNF-alpha (−308A, associated with
higher TNF-alpha production) was reported in some series
[81–83]. However, studies performed in twins did not confirm
the association with TNF-alpha polymorphisms, and no dif-
ference in TNF-alpha secretion was demonstrated in their pe-
ripheral blood mononuclear cells. In addition, a pro-fibrotic
TGF beta1 genotype was detected in the twin with CHB and
not in the healthy twin in one series but not in another one
[84]. This finding is in line with the hypothesis that a pro-
fibrotic response to damaged tissues by cardiac macrophages
can play a role in favoring the appearance of CHB [85].

Maternal–fetal microchimerism may also contribute to
CHB in NL. In fact, an increased number of female, presum-
ably maternal, cells were found in the myocardium in all four
of the males with heart block and in two of four controls [86].
Some of the maternal cells in the myocardium expressed dif-
ferentiation markers of myoctes, while others had surface
markers of hematopoietic cells. It has been suggested that
these cells may act as a target for an allogenic response as well
as effector cells triggering an inflammation and eventually a
tissue damage in cooperation with anti-Ro/SSA antibodies
[86]. This finding was only partially confirmed in twins’ stud-
ies suggesting that such a hypothesis cannot explain all the
cases [87].

Finally, the polymorphisms of the FcγRIIA and IIIB
were also investigated in the same twins looking for a
possible association with CHB. Unfortunately, the data
were not conclusive [88].

In conclusion, the reason(s) why the same antibodies can
be able to induce NL in few babies only is still a matter of
research. The hypothesis that individual fetal factors may be
responsible for the disease even in monozygotic twins is quite
suggestive for a role of epigenetic mechanisms. Whether epi-
genetic events may affect the expression of the right
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myocardial auto-antigen in a given patient or whether the ab-
normal presence of female cells in males may favor the effect
of unsuppressed genes in the X chromosome, all may repre-
sent topics for future epigenetic studies.
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