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Abstract The three common themes that underlie the induc-
tion and perpetuation of autoimmunity are genetic predisposi-
tion, environmental factors, and immune regulation.
Environmental factors have gained much attention for their
role in triggering autoimmunity, with increasing evidence of
their influence as demonstrated by epidemiological studies,
laboratory research, and animal studies. Environmental fac-
tors known to trigger and perpetuate autoimmunity include
infections, gut microbiota, as well as physical and environ-
mental agents. To address these issues, we will review major
potential mechanisms that underlie autoimmunity including
molecular mimicry, epitope spreading, bystander activation,
polyclonal activation of B and T cells, infections, and
autoinflammatory activation of innate immunity. The associ-
ation of the gut microbiota on autoimmunity will be particu-
larly highlighted by their interaction with pharmaceutical
agents that may lead to organ-specific autoimmunity.
Nonetheless, and we will emphasize this point, the precise
mechanism of environmental influence on disease pathogen-
esis remains elusive.
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Abbreviations
AIDs Autoinflammatory diseases
AIH Autoimmune hepatitis

APCs Antigen-presenting cells
ASGPR Asialo glycoprotein receptor
DIA Drug-induced autoimmunity
EBV Epstein-Barr Virus
HAV Hepatitis A virus
HCV Hepatitis C Virus
HLA Human leukocyte antigen
IFN Interferon
IUL Interleukin
LSE Systemic lupus erythematosus
NLRs Nucleotide-binding oligomerization domain-like

receptors
NLRC4 NLR family CARD domain-containing protein 4
Oss Organic solvents
PAMPs Pathogen-associated molecular patterns
PBC Primary biliary cirrhosis
PDC Pyruvate dehydrogenase complex
PRRs Pattern recognition receptor
RA Rheumatoid arthritis
TACE TNF-a-converting enzyme
TLRs Toll-like receptors
TNF Tumor necrosis factor

Introduction

Autoimmune disease can occur in any site, but the three com-
mon themes that underlie induction and perpetuation include:
genetic predisposition, environmental factors, and immune
regulation (1–4) (Fig. 1). Current data suggests that environ-
mental factors, i.e., infections, gut microbiota, toxic
chemicals, and dietary components have up to a 70 % contri-
bution to loss of tolerance (5, 6). The number of peer-reviewed
papers in PubMed identified with Bautoimmune disease^ in-
creased from 8890 in 1997 to 67,229 in 2015. Clearly, knowl-
edge on the interaction between environmental factors and the
architecture of the immune system is critical is critical to
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unveil the mechanisms of autoimmunity and future design of
treatment modalities. In this review, we will describe current
perspectives on environment and autoimmune diseases.
Specific examples on selected autoimmune diseases are in-
cluded to illustrate the significance of environmental agents
on the development of autoimmunity. Many of these princi-
ples are illustrated in the methods by which autoimmune dis-
eases are classified (7–11). Finally, wewill discuss lessons, we
learned in our recent studies on the role of environmental
etiology on primary biliary cirrhosis (PBC), a prototypic
organ-specific autoimmune disease.

Infections

An autoimmune disease may be induced or triggered by in-
fectious agents including viruses, bacteria, fungi, and parasites
(12). The levels of evidence are determined using three
criteria, in particular: (i) epidemiological studies, (ii) laborato-
ry studies, and (iii) experimental models (13). Examples of
virus-induced autoimmune diseases are shown in Table 1
(14–27). Autoimmune diseases which have been reported to
be triggered by viruses include rheumatoid arthritis (RA), thy-
roid diseases, primary biliary cirrhosis (PBC), type I diabetes,
and autoimmune hepatitis (AIH). Interestingly, hepatitis A
virus (HAV) has been reported to be associated to a fulminant
type I diabetes in a 38-year-old man who suffered acute hep-
atitis A before the onset of diabetes (16). In this case, pancre-
atic involvement was attributed to an immune response, rather

than to a direct cytotoxic effect of HAV. Moreover, additional
cases of AIH have been reported to be triggered by HAV (25,
26). Another possible trigger for AIH is the Epstein-Barr virus
(EBV); some cases of AIH have been described in strict tem-
poral sequence after an acute EBVinfection (25). In two cases,
a defect in suppressor/inducer T cells controlling the response
to the asialoglycoprotein receptor (ASGPR) had been identi-
fied prior to the viral infection, and anti-ASGPR antibodies

Fig. 1 Three common themes
that underlie induction and
perpetuation of autoimmune
diseases

Table 1 Examples of virus-induced autoimmune diseases

Virus Disease

Parvovirus RA (18)

Thyroid disease (21)

Epstein-Barr virus RA (23)

Thyroid disease (200)

AIH (25)

HCV Thyroid disease (15)

Mumps Thyroid disease (22)

Rubella Thyroid disease (27)

Coxsackie virus Thyroid disease (14)

HTLV-1 Thyroid disease (17)

Herpes virus type 7 Thyroiditis (19)

Beta retrovirus PBC (20)

HAV Type I diabetes (16)

AIH (25, 26)

RA rheumatoid arthritis, AIH autoimmune hepatitis, PBC primary biliary
cirrhosis
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persisted and increased after the viral illness (26). Examples of
bacteria-induced autoimmune disease are shown in Table 2
(28–44). An early report on the presence of an immunological
response toCandida albicans in the synovial fluid and periph-
eral blood lymphocytes suggests that even fungi may induce
autoimmune disease (45). However, in many cases, it is not a
single infection but rather the Bburden of infections^ from
childhood that is responsible for the induction of autoimmu-
nity (46). The mechanisms and cell types responsible for the
onset and progression of these multifactorial diseases remain
unclear. Both autoimmune pathogenic and protective immune
responses require the cooperative function of the innate, hu-
moral, and cellular arms of the immune system. Thus, B and T
lymphocytes and innate antigen-presenting cells (APCs) all
contribute to these responses.

Infectious agents are known to trigger an autoimmune dis-
ease through several mechanisms: (1) molecular mimicry, (2)
epitope spreading, (3) bystander activation and stimulation of
pattern recognition receptors, (4) viral persistence and poly-
clonal activation of B cells, (5) autoinflammatory activation of
innate immunity.

Molecular Mimicry

Molecular mimicry, a mechanism by which infections can
induce autoimmunity, occurs when foreign antigens share se-
quence or structural similarities with self-antigens (47). This is
due to the fact that immune responses can be directed against

peptides with similar charge distribution and overall shape
(48). Immune response to microbial antigens could then result
in activation of T cells that are cross-reactive with self-anti-
gens. For example, molecular mimicry and cross-reactivity
involving Escherichia coli and human subunit E2 epitopes
of the pyruvate dehydrogenase complex (PDC) have been
considered to trigger of the initiation of E. coli-associated
anti-mitochondrial immune response in PBC (49–52).
Strong evidence regarding CD4-T cell cross-recognition of
E. coli and human mitochondrial autoantigens has been ob-
tained over the past 20 years (53–56), further supporting the
concept of molecular mimicry as the driving force of the im-
munological breakdown characteristic of PBC.

Epitope Spreading

Epitope spreading consists of the development of autoimmune
responses to endogenous epitopes secondary to the release of
self-antigens during a chronic autoimmune or inflammatory
response (57). Epitope spreading can result from a change in
protein structure, i.e., changing of an amino acid residue from
arginine to citrulline. This may result in an immune reaction
not only against the original protein or in its citrullinated form
but also against other citrullinated proteins; this is a character-
istic of rheumatoid arthritis. Systemic lupus erythematosus
(SLE), multiple sclerosis, pemphigus bullous, pemphigoid,
and other autoimmune diseases are all influenced by intermo-
lecular and intramolecular B cell epitope spreading. Endocytic
processing, antigen presentation, and somatic hypermutation
are just some of the molecular mechanisms that assist in driv-
ing epitope spreading and broadening the immune response in
autoimmune diseases (58). An example is type I diabetes in
which autoimmunity first may be triggered against the B9–23
region of insulin (59), and progression to overt disease is
mediated by epitope spreading to an array of beta cell
antigens.

Epitope spreading is a crucial point for therapeutic strate-
gies. Due to the unknown biological pathways and changes in
antigen specificity, it is difficult to design drugs directed at
epitope spreading. Instead, historically, the use of several
drugs to control and inhibit both B and T cell activities has
been the most commonly used approach to autoimmune dis-
eases (60–62).

Bystander Activation and Stimulation of Pattern
Recognition Receptors

Bystander activation occurs when microbial infection stimu-
lates toll-like receptors (TLRs) and other pattern recognition
receptors on antigen-presenting cells (APCs), leading to the
production of pro-inflammatory mediators, which in turn may
lead to tissue damage (63). The release of both tissue antigens
and bacterial antigens could result in autoreactive T cells and

Table 2 Examples of bacteria-induced autoimmune disease

Bacterium Disease

Porphiromonas gingivalis RA (28)

Segmented filamentous bacteria RA (29)

Yersinia enterocolitica RA (30)

Thyroid disease 21

Salmonella typhi RA (32)

Shigella flexneri RA (33)

Proteus mirabilis RA24

Campylobacter jejuni RA (35)

Klebsiella pneumoniae RA (36)

Clostridium difficile RA (37)

Staphylococcus aureus RA (38)

Streptococcus pyogenes RA (39)

Leptospira pomona RA (40)

Chlamydia RA (41)

Mycoplasma arthritidis RA32

Mycobacterium tuberculosis RA (42)

Borrelia burgdorferi RA (43)

E. coli PBC (44, 213)

RA rheumatoid arthritis, PBC primary biliary cirrhosis
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bacterial-specific T cells in the process called bystander acti-
vation, a process contributing to autoimmunity. Additionally,
virally infected APCs and concomitantly released mediators
activate autoreactive Th1 or Th17 cells in a bystander manner
(64). It has been shown that gut-derived antigens stimulate
liver cells and result in a distinctive immune response via
TLRs. TLRs are expressed on Kupffer cells, dendritic cells,
hepatic stellate cells, endothelial cells, and hepatocytes. The
cross-talk between gut-derived antigens and TLRs on immune
cells trigger a distinctive set of mechanisms to induce immu-
nity, contributing to various acute and chronic liver diseases
including liver cirrhosis and hepatocellular carcinoma (65).

Viral Persistence and Polyclonal Activation of B Cells

Prolonged infection with a virus, such as EBV, can lead to
constant activation and proliferation of T cells, resulting in
the production of monoclonal and polyclonal antibodies as
well as immune complexes, leading to loss of tolerance (48).
Patients with several autoimmune diseases have a high prev-
alence of anti-hepatitis C virus (HCV) serum antibodies sug-
gesting a pervasive role for HCV in tolerance breakdown (66).

Autoinflammatory Activation of Innate Immunity

Autoinflammatory diseases (AIDs) and autoimmune diseases
are characterized by an aberrant chronic activation of the im-
mune system, leading to tissue inflammation and damage. In
AIDs, the innate immune system is directly responsible for
tissue inflammation, while in autoimmune diseases, the adap-
tive immunity becomes the main effector of the inflammatory
process (67). The immune system is constituted by immune
sensors, i.e., soluble and cellular receptors and effector mech-
anisms, including different cell types. The sensors of innate
immunity are named pattern recognition receptors (PRRs).
They bind to highly conserved structures of pathogen-
associated molecular patterns (PAMPs) or damaged cells
(67) and include three classes of receptors: TLRs,
nucleotide-binding oligomerization domain-like receptors
(NLRs), and retinoic acid-inducible gene-I-like receptors
(68). Activation of NLRs and NLR family CARD domain-
containing protein 4 (NLRC4) leads to the formation of large
protein complexes termed inflammasomes. Inflammasomes
play a role in the defense against pathogens through activation
of pro-caspase-1 and cleavage of the pro-forms of interleukin
(IL)-1β and IL-18 to their respective active forms (68). A
dysregulation of an inflammasome complex, in some cases,
may lead to the development of autoimmune responses (69).
Infections can trigger autoinflammatory processes in geneti-
cally predisposed individuals by various mechanisms, includ-
ing induction of innate immune responses through binding to
TLRs and activation of the intracellular inflammasome sys-
tem. The effector cells of innate immunity include

macrophages, dendritic cells, and other APCs. Moreover, vac-
cinations in genetically susceptible hosts have been found to
trigger autoimmune diseases or AIDs in different animal
models and to induce autoimmune/autoinflammatory symp-
toms in humans (70).

The Gut Microbiota

There is growing evidence that the commensal bacteria in the
gastrointestinal tract (the gut microbiota) influence the devel-
opment of autoimmunity (71, 72). This evidence has been
reinforced by studies in neonatal subjects. This is illustrated
by a study (73) of microbiomes of 33 HLA-matched infants
from monthly samples collected from birth until 3 years of
age. Study participants were selected on the basis of having
HLA risk alleles associated with type 1 diabetes mellitus (73).
Of the 33 infants, 11 seroconverted to serum autoantibody
positivity during the course of the study, and 4 of them devel-
oped type 1 diabetes. The taxonomic composition of the
microbiomes varied widely within the same individual; more
importantly, unique changes to the microbiomes were shared
among the individuals who developed autoantibodies, includ-
ing an increase in pathobionts and a decrease in bacteria that
produce short-chain fatty acids (73).

Gut microbiota can be influenced by several factors: the
motility of the gastrointestinal tract and the intake of pharma-
ceutical medications, including antibiotics, nonsteroidal anti-
inflammatory drugs, smoking, and alcohol. These factors can
lead to inappropriate gut-brain axis signaling and associated
consequences for central nervous system function and ulti-
mately resulting in disease (71). Most interestingly, a recent
study showed that an oral bacteria-derived lipopeptide, lipid
654, which is produced by commensal bacteria, is present at
significantly lower levels in the serum of patients with multi-
ple sclerosis compared to levels observed in the serum sam-
ples of both healthy individuals and patients with Alzheimer’s
disease (74). This result identified for the first time a potential
mechanism relating gastrointestinal and oral commensal
microbiome to a human systemic autoimmune disease.

Several experimental models of autoimmune diseases as-
sociated to gut microbiota have been developed, particularly
focusing on inflammatory arthritis (75). Naïve RA patients
carry high levels of Prevotella copri, a Gram-negative anaer-
obe relevant in many inflammatory and autoimmune condi-
tions (75). However, the gut microbiome interacts not only
with the host but also with other organisms and
environmental factors. Indeed, exogenous viruses and the
virome, the genomes of all viruses that inhabit a host,
interact with the gut microbiota (76, 77) and live within com-
mensal bacteria. Furthermore, the microbiota and immune
systems interact: malnutrition affects the innate and adaptive
immune systems as well as the microbiota (78). The
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microbiota acts as a barrier to enteropathogen infection; this
barrier function may be disrupted by malnutrition or perturba-
tions in immune system function (79). Finally, there is clear
and increasing evidence that changes in the microbiota are
associated with autoimmune diseases involving the gastroin-
testinal mucosa that lies in close contact with luminal contents
as exemplified by celiac disease and also autoimmunity
targeted toward distant sites, such as type 1 diabetes and RA
(80–83). Clearly, much work remains to be done (84).

Environmental Agents

Both physical and chemical environmental agents, because of
their ubiquitous nature, have been the subject of active inves-
tigations. Of particular significance, change in lifestyle that
have led to an increase in exposure to environmental
chemicals over several decades has been considered as a pu-
tative reason for the increase in autoimmune diseases.

Ultraviolet Light

Exposure to ultraviolet light (UV) light is a factor associated
with SLE (85). UV-B induces apoptosis of keratinocytes and
other dermal cells, thus releasing self molecules and pro-
inflammatory cytokines, triggering systemic inflammation
(86). Despite experimental studies showing a significant im-
munomodulatory role for UV radiation (87, 88), strong epide-
miologic data regarding its role in triggering SLE is lacking.

Vitamin D Deficiency

1,25-dihydroxyvitamin D (1,25 OH2 vit D) is a steroid hor-
mone derived from vitaminDwhich plays an important role in
maintaining an adequate levels of serum calcium and phos-
phorus. Recent findings that several human tissues and cells
express the vitamin D receptor (VDR) and 1α-hydroxylase
have led to growing interest in extra-skeletal functions of vi-
tamin D (89). Vitamin D plays an essential role in a variety of
acute and chronic illness, including autoimmune diseases (90,
91), and several genetic studies have demonstrated an associ-
ation between thyroid autoimmunity susceptibility and gene
polymorphisms of numerous proteins and enzymes associated
with vitamin D function and the vitamin D receptor (92). It
should be stressed, however, much of the data is still contro-
versial (93–103). One of the reasons of this controversy is
study design, particularly inadequate sample sizes (89).

Smoking, Silica, Tropospheric Pollutants,
and Solvent/Pesticides

A variety of chemicals have been associated with autoim-
mune diseases (104–130), including cigarette smoking,

silica, and tropospheric pollutants (Table 3) (131).
However, the precise mechanisms how chemicals can cause
autoimmunity are still unknown and can vary greatly de-
pending on the nature of the physiological interaction and
exposure. SLE represents a paradigm for understanding
how environmental agents convert normal antigen-specific
Bhelper^ T cells into autoreactive, cytotoxic, pro-
inflammatory T cells causing lupus in animal models and
similar changes in humans (132). An expert panel work-
shop of the National Institutes of Environmental Health
Sciences demonstrated that an autoimmune response fol-
lowing exposure to environmental factors is dependent up-
on genetic background of the host and can vary widely
among species and strains (133).

Accumulating data have implicated that exposure to in-
dustrial solvents is associated to the development of autoim-
munity (134, 135). Industrials solvents can be classified into
two categories: organic and inorganic. Organic solvents
(Oss) contain carbon and can be broken down into
aliphatic-chain compounds, such as n-hexane, and aromatic
compounds, such as benzene or xylene. Common uses for
OSs include dry cleaning (e.g., tetrachloroethylene), paint
thinner (e.g., toluene, turpentine), nail polish removers, glue
solvents (acetone, methyl acetate, ethyl acetate), spot re-
movers (e.g., hexane, petrol ethers), detergents (citrus
turpenes), and perfumes (ethanol) (136). A systematic re-
view and meta-analysis including 33 articles found that ex-
posure to OSs is associated with systemic sclerosis, primary
systemic vasculitis, and multiple sclerosis individually and
also to several autoimmune diseases evaluated when taken
together as a single trait (137).

Table 3 Studies of chemicals in autoimmune diseases based on levels
of evidence

Chemical Level of evidence (refs.)

Cigarette smoking

RA A (104–106); B (109, 114, 118, 119, 123)

SLE C (107, 116)

A (110, 124); B (111, 130)

Silica

RA A (117, 121, 127); B (120, 128, 129, 214)

SLE A (108, 122, 126); B (112, 113, 186, 215, 216);

C (217)

Tropospheric pollutants

RA A (218); B (219)

SLE A (220)

Solvent/pesticides

SLE B (186, 216, 221–223)

A: randomized controlled trial/meta-analysis/cohort studies; B: well-
designed control study/non-randomized clinical trial/case reports; C:
consensus/expert opinion

Clinic Rev Allerg Immunol (2016) 50:287–300 291



Alcohol

Alcohol has been investigated for its potential role in trigger-
ing autoimmunity in several diseases with conflicting results.
Interestingly, there are a number of studies suggesting a pro-
tective role in at least two autoimmune diseases: SLE and RA.
The first report with a statistically significant inverse associa-
tion and dose-response relationship between alcohol con-
sumption and SLE came from the UK (138). Two further
studies in Japan (139) and Sweden (140) corroborated these
results. However, this association was only seen in light and
moderate drinkers and not in heavy drinkers (140). Other
studies, including two case-control studies and a prospective
cohort analysis, failed to find any association between alcohol
consumption and SLE susceptibility (141–143). These incon-
sistent findings have been explained on the basis of selection
bias and different patterns of alcohol consumption (144).
Nevertheless, in a meta-analysis assessing the relationship be-
tween alcohol and SLE risk in patients treated for less than
10 years (including six case-control studies and one cohort
study), Wang et al. found a significant protective effect of
alcohol (145).

A beneficial effect of alcohol has also been found for pa-
tients with RA associated with antibodies to citrullinated pro-
tein antigen in a meta-analysis comprising six case-control
studies (3564 cases, 8477 controls, and three cohort studies
(444 RA cases, 84,421 individuals) (146)).

Psoriasis seems to be the only common autoimmune dis-
ease for which excess alcohol is a risk factor for its onset
(147). This finding has been shown in population studies
(148, 149). Moreover, an epidemiological study based on
the Finnish nationwide Hospital Discharge Register and
Cause of Death over a 22-year period demonstrated that the
cause of death in women was due to liver disease and in men
was due to both liver disease and alcohol-related psoriasis
(150). Alcohol and its metabolites have been shown in exper-
imental studies in vivo to increase critical markers involved in
systemic immunoregulation in active psoriasis such as tumor
necrosis factor (TNF)-α-converting enzyme (TACE) and
TNF-receptor type 1 (151). In theory, alcohol may have a
potential risk in triggering autoimmunity in the liver since it
involves a complex array of derangements in cellular signal-
ing of hepatic parenchymal and non-parenchymal cells as well
as cells of the immune system. Chronic ethanol renders
Kupffer cells hyperresponsive to endotoxins, which results
in production of cytokines and TNFα via a TLR 4-
dependent pathway, leading to inflammation and hepatic ne-
crosis (152).

Drugs

To date more than 100 drugs spanning over ten drug categories
have been associated with drug-induced autoimmunity (153).

In general, there are two ways to classify these reactions: (i)
drug-induced autoimmunity (DIA), an immune-related drug
reaction temporally related to continuous drug exposure, which
resolves after withdrawal of the offending drug and (ii) autoim-
mune disease triggered by a drug and perpetuating over time.
The difficulty in distinguishing the two conditions is rooted in
the understanding of the pathophysiologic mechanisms of drug
reactions and the chronological criteria in a long period obser-
vation after the drug withdrawal. Two drugs are considered as a
paradigm for DIA: procainamide and hydralazine. The inci-
dence of procainamide-induced lupus was approximately
20 % during the first year of therapy (154), and the incidence
of hydralazine-induced lupus was approximately 5–8 % (155).
Procainamide, an antiarrhythmic agent, can induce lupus-like
disease in susceptible individuals by inhibiting cellular DNA
methylation (156). Hydralazine, an antihypertensive agent as
well as an anti-heart failure agent, when used in combination
with nitrates, reduces DNA methylation and protein levels in T
cells by deactivating the ERK pathway (157). Interestingly, the
new biological drugs especially the inhibitors of TNFα
(etanercept, infliximab, adalimumab, certolizumab pegol,
golibumab) have been associated with DIA. Biological
modulators have been developed for a number of autoimmune
diseases including Crohn’s disease, rheumatoid arthritis,
Sjogren’s syndrome, and multiple sclerosis (158, 159). In con-
trast to lupus-like syndrome induced by hydralazine and pro-
cainamide, the occurrences of anti-dsDNA antibodies and
hypocomplementemia are more common in anti-TNF-induced
lupus, although the mechanism is not fully understood (160).

Autoimmune hepatitis (AIH) is an example of an autoim-
mune disease, which can be triggered by a number of drugs
(161, 162). Table 4 includes examples of drugs and toxins
implicated in DIA-like hepatitis (163). Minocycline and
nitrofurantoin are such examples. Minocycline, an antibiotic
commonly used for acne, can induce AIH within 2 years after
starting drug (range 3 days–6 years) with the typical hallmarks
of autoimmunity (non-organ-specific autoantibodies,
hypogammaglobulinemia, and characteristic histologic
changes (lymphoplasmacytic inflammation and necrosis)
(164, 165)). Nitrofurantoin, an antibiotic used in the treatment
of urinary tract infections can cause an acute hepatocellular
reaction, which can progress in chronic hepatitis in one third
of cases with the classical histological changes of AIH (166,
167). The clinical characteristics at presentation of both DIA-
like hepatitis and classical AIH are similar; however, there is a
higher prevalence of cirrhosis in classical AIH compared to
DIA-like hepatitis, but it primarily differs by the absence of
relapse after corticosteroid withdrawal (163).

Hormones

Sex hormones, particularly estrogens, have been shown to
play a role in autoimmunity through supporting survival of
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autoreactive T cells and influencing cytokine profile in the
natural killer T cells (168, 169). A marked beneficial effect
of pregnancy has been observed in RA, whereas several other
rheumatic diseases such as ankylosing spondylitis and SLE
demonstrated either no protective effect or an aggravation of
symptoms during pregnancy (170). Differences emerging in
regard to modulation of disease symptoms during pregnancy
appear to be related to response to hormones, cytokine
profile and immune responses, and downstream interactions
of molecular pathways associated with inflammation (170).
Patients with some autoimmune diseases such as PBC or sys-
temic sclerosis have significantly higher numbers of pregnan-
cies compared to controls (171–173). Interestingly, there is an
increased susceptibility of RA in the first-year postpartum
(174, 175), suggesting also a possible effect of fetal
microchimerism.

Progesterone, an immunomodulatory sex steroid, is also
important in autoimmune diseases. For example, SLE is asso-
ciated with early menarche where there is an increased expo-
sure to endogenous sex steroids, and exogenous sex steroids
(contraceptive pill or hormone replace therapy) are associated
with an approximately 1.5- to 3.0-fold increased risk of SLE
(176). Data from animal studies also support a role of proges-
terone and estrogens in SLEmodels (177, 178). Sex hormones
can potentially modulate the expression of autoimmunity,
with androgens suppressing and estrogens accelerating
disease.

In the collagen-induced arthritis model, pretreatment with
progesterone had little effect on joint swelling or serum TNFα
and prostaglandin E2 but appeared to reduce the beneficial
effect of estrogen treatment on these parameters (179, 180).
Interestingly, neither progesterone nor estrogen treatment al-
tered anti-collagen autoantibody responses, suggesting that
hormones were not modulating autoimmunity but rather act-
ing primarily at the level of joint inflammation (181). Finally,
sex hormones, particularly estrogens, can be found in a variety
of foods (182). Examples include daidzein in soybeans, genis-
tein in vegetables, zearalenone in corn, or 17β-estradiol in
poultry meat. Moreover, estrogen-mimicking chemicals are
found in many household items such as detergents, surfac-
tants, and plastics (182). Several estrogen-containing pesti-
cides (methoxychlor, chlordane, hexachlorbenzene,
pentachlorphenol, aldicarb) may act as triggers for autoim-
mune diseases.

Personal Care Products and Cosmetics

Personal care products such as shampoo, hair dyes, and cos-
metics contain natural and synthetic chemicals. The interest in
hair dyes and other hair products in induction of autoimmuni-
ty is based on similarities of some constituents of these prod-
ucts (acrylamides) to medications involved in drug-induced
lupus. However, hair dyes failed to demonstrate an association
with the development of SLE in two case-control studies (139,
183) and in a cohort study (184) (Table 5). Nail polish
emerged as a risk factor for PBC and for SLE (185, 186). In
a study by Gershwin et al. (185), 1032 patients with PBC and
1041 controls matched for sex, age, race, and geographical
location were administered a modified version of the US

Table 4 Drugs associated to DIA-like hepatitis (from Czaja A,
modified, ref. (163))

Drugs proposed for
DIA-like hepatitis:
definite association

Drugs proposed for DIA-
like hepatitis: probable or
possible association

Toxins proposed for
DIA-like hepatitis:
possible association

Dihydralazine Atorvastatin Black cohosh

Halothane Clometacin Dai-saiko-to

Methyldopa Diclofenac Germander

Minocycline Infliximab Hydroxycut

Nitrofurantoin Isoniazid Ma huang

Oxiphenisatin Propylthiouracil Trichloroethylene

Tienilic acid Adalimumab

Benzarone

Cephalexin

Fenofibrate

Indometacin

Imatinib

Meloxicam

Methylphenidate

Papaverine

Pemoline

Phenprocoumon

Prometrium

Rovusastin

Terbinafine

Table 5 Case-control study in populations with autoimmune diseases exposed to cosmetics; refs. (139, 181–183, 185)

Autoimmune disease Cosmetic Author Country Type of study Association

SLE Hair day Petri, 1992 USA Case-control No

SLE Hair day Bengtsson, 2002 Sweden Case-control No

PBC Nail polish Gershwin, 2005 USA Case-control Yes

SLE Nail polish Cooper GS Canada Case-control Yes

SLE Lipstick Wang J, 2008 USA Case-control Yes
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National Health and Nutrition Examination Study question-
naire including 180 questions and 300 subquestions regarding
demographics, lifestyle, personal and familial medical history,
and reproductive and occupational history. Family history of
PBC, history of urinary tract infections, past smoking, use of
hormone replacement therapies, and frequent use of nail pol-
ish emerged as risk factors significantly associated with PBC.
Although the odds ratio for increased frequency of nail polish
use was not impressive, this finding is intriguing in view of the
xenobiotic hypothesis proposed for the development PBC
with specific halogenated compounds that could increase the
immunogenicity of mitochondrial proteins and induce AMA
in animal models (187, 188). A study by Cooper et al. (186)
was conducted in Canada using 258 cases with SLE and 263
controls matched for sex, age, and area of residence.
Relatively strong, but imprecise associations were observed
in people who worked with paints, dyes or film developing,
and work that included applying nail polish or nail
applications.

Interestingly, lipstick contains some components which
have been associated to autoimmune phenomena: eosin,
phthalate, and 2-octynoic acid. Eosin is a red dye implicated
in both photosensitivity and lupus flares (189). Phthalate can
induce anti-DNA antibody responses and SLE-like syndrome
in an experimental model (190–192). 2-Octynoic acid is a
xenobiotic that can modify the immunodominant E2 compo-
nent of pyruvate dehydrogenase complex (PDC-E2) and in-
duce AMA responses in PBC (193). A more recent work
extending from our 2-octynoic acid data suggests that a broad
class of electrophilic drugs including acetaminophen and oth-
er commonly used nonsteroidal anti-inflammatory drugs may
contribute to xenobiotic-induced mimicry and loss of toler-
ance to PDC-E2 seen in PBC (194–196).

Pristane and Naturally Occurring Hydrocarbons

Tetramethylpentadecane is a naturally occurring hydrocarbon
oil commonly known as pristane which is found in small
quantities in many plants and thought to be derived primarily
from the metabolism of phytol, a ubiquitous ester of chloro-
phyll (197). Relatively high levels are also found in various
marine organisms, including algae and zooplanktonic cope-
pods, and pristane is strongly concentrated in the livers of
sharks (197). Pristane occurs also in crude oils and is a com-
mon constituent of mineral oil, a byproduct of the fractional
distillation of petroleum containing straight- and branched-
chain paraffinic, naphthenic, and aromatic hydrocarbons.
Medicinal (pharmaceutical or food grade) mineral oils, which
are free of aromatic and unsaturated compounds, are used as
laxatives, protective coatings for food, and cosmetics (198).
For instance, canned sardines contain up to 370 mg/kg and
white bread up to 550 mg/kg of mineral oil (197). Pristane-
induced lupus is a murine model of SLE. Renal disease and

autoantibody production depend on signaling through the in-
terferon (IFN)-I receptor (198). The major source of IFN-I is
immature monocytes bearing high levels of the surface marker
Ly6C. Interferon production is mediated exclusively by sig-
naling through TLR7 and the adapter protein MyD88. It is
likely that endogenous TLR7 ligands such as components of
small nuclear ribonucleoprotein complexes are involved in
triggering disease (199).

The PBC Lesson

There is extensive literature on primary biliary cirrhosis, in-
cluding animal models, that illustrate the importance of genet-
ics and environment, and indeed, PBC is considered the model
autoimmune disease {Beuers, 2015 #336; Chang, 2015 #337;
Floreani, 2015 #334; Katsumi, 2015 #338; Kurth, 2014 #331;
Lleo, 2014 #332; Sun, 2015 #335; Wang, 2015 #339; Ando,
2013 #342; Deng, 2013 #340; Floreani, 2015 #333; Tanaka,
2014 #329; Wang, 2015 #328; Lleo, 2013 #343; Leung, 2013
#344; Hudspeth, 2013 #345; Kawata, 2013 #346; Ridgway,
2014 #347; (173)}.

Epidemiological studies support the hypothesis that envi-
ronmental factors play a role in the etiology and pathogenesis
of PBC in genetically susceptible individuals (185).
Numerous microbial agents, mainly bacteria, but also viruses,
parasites, and fungi, have been investigated as possible agents
involved in PBC (200), but most studies have failed to dem-
onstrate a clear association of a microbial agent with disease
and report only circumstantial evidence that could not be in-
dependently recapitulated. Indeed, most studies supporting
the role of infectious agents in the pathogenesis of PBC are
based on the linear or conformational mimicry between mi-
crobial proteins and human mitochondrial antigens
(201–203). Notwithstanding a substantial shared sequence ho-
mology, in a fewer cases, a cross reactivity by 2OADC-
specific autoantibodies and/or T cells has been also demon-
strated (56). This is the case for Escherichia coli,
Novosphingobium aromaticivorans, Salmonella minnesota,
Pseudomonas aeruginosa, Haemophilus influenzae, Yersinia
enterocolitica, Streptococcus intermedius, Lactobacillus
delbrueckii, Paracoccus denitrificans, Mycoplasm,
Mycobacterium gordonae , Borrel ia burgdorferi ,
Trypanosoma, and Ascaridia galli (200). Moreover, microbial
antigens or DNA have been found in liver specimens, gall-
bladder bile, and fecal samples of patients with PBC as for
N. aromaticivorans, Propionibacterium acnes, and the
Epstein-Barr virus (200).

PBC is also the first autoimmune cholangitis studied with
different spatial analysis since cluster distribution has been
observed (204). A 3-year study was conducted in the city of
Sheffield (1977–1979), and a closer inspection demonstrated
an apparent clustering of cases with a suspected relationship
with one water reservoir (205). Nevertheless, analysis of the
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water showed no significant relevant differences between the
reservoir serving areas with a high prevalence of PBC and
other reservoirs. Twenty-five years later, a spatial clustering
was observed in the North-East England (206). A further
study in the same region was performed during a defined
period (1987–2003) (207). Space-time clustering was ob-
served when excess of cases of a disease were found within
limited geographical areas at limited period of time. This find-
ing is suggestive of the involvement of one or more environ-
mental components in the cause of a disease. When a more
rigorous statistical method was applied, clustering was most
marked for cases diagnosed within 1–4months of one another,
suggesting that transient environmental agents may play a role
in the cause of PBC (204). The finding of a seasonal variation
in the diagnosis of PBC provides evidence for the involve-
ment of a seasonally varying environmental agent in the eti-
ology of PBC (208). Seasonal variation in PBC is consistent
with the involvement of at least one transient environmental
agent in etiology: examples of such factors that may be impli-
cated include infections, air pollution, and diet (208). Another
interesting study evaluating the relationship between environ-
mental factors and PBC was published in 2006 (209). This
study suggested that the number of PBC patients requiring
transplantation was increased near superfund toxic waste sites
in New York state (210). Additionally, a statistical significant
PBC patient cluster, including both patients not listed for
transplantation or listed for transplantation, was identified in
Staten Island near a superfund waste site contaminated with
volatile aromatic hydrocarbons and trichloroethylene. This
has led to suggest that inhalation of volatile organic com-
pounds (e.g., benzene) and particle-bound chlorinated hydro-
carbons released into the air from these sites is a plausible
method of exposure. Although specific environmental com-
pounds causing PBC have not been clearly identified, xeno-
biotics are now emerging as compounds that could possibly
narrow the gap between environmental exposure and patho-
genesis (125). The working hypothesis is that modifications of
the lipoylated major mitochondrial autoantigen could trigger
the production of autoantibodies (193, 211, 212).

Conclusions

Several indirect lines of evidence support the role of environ-
mental factors in triggering autoimmunity in genetically
predisposed individuals. No single factor has been identified
as prominent. Greater understanding of how different environ-
mental exposures results in different disease phenotypes and
varying degrees of severity will help identify the mechanisms
and checkpoints that control development of autoimmunity
and autoimmune disease (6). In addition, it should be noted
that genome-wide association studies have proven extremely
disappointing and have not pointed to any Bsmoking guns^.

Indeed, such work has only further highlighted the role of
environment and, in particular, specific epigenetic events that
may contribute to loss of tolerance.
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