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Abstract Sarcoidosis is a systemic inflammatory disorder
characterised by tissue infiltration by mononuclear phago-
cytes and lymphocytes with associated non-caseating granu-
loma formation. Originally described as a disorder of the skin,
sarcoidosis can involve any organ with wide-ranging clinical
manifestations and disease course. Recent studies have pro-
vided new insights into the mechanisms involved in disease
pathobiology, and we now know that sarcoidosis has a clear
genetic basis largely involving human leukocyte antigen
(HLA) genes. In contrast to Mendelian-monogenic disor-
ders—which are generally due to specific and relatively rare
mutations often leading to a single amino acid change in an
encoded protein—sarcoidosis results from genetic variations
relatively common in the general population and involving
multiple genes, each contributing an effect of varying magni-
tude. However, an individual may have the necessary genetic
profile and yet the disease will not develop unless an environ-
mental or infectious factor is encountered. Genetics appears
also to contribute to the huge variability in clinical phenotype
and disease behaviour. Moreover, it has been established that
sarcoidosis granulomatous inflammation is a highly polarized
T helper 1 immune response that starts with an antigenic
stimulus followed by Tcell activation via a classic HLA class
II-mediated pathway. A complex network of lymphocytes,

macrophages, and cytokines is pivotal in the orchestration and
evolution of the granulomatous process. Despite these ad-
vances, the aetiology of sarcoidosis remains elusive and its
pathogenesis incompletely understood. As such, there is an
urgent need for a better understanding of disease pathogenesis,
which hopefully will translate into the development of truly
effective therapies.
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Introduction

The existence of a genetic predisposition to sarcoidosis is
supported by several lines of evidence: (1) monozygotic twins
are more often concordant for the disease than dizygotic twins
[1, 2]; (2) familial clustering of the disease occurs in approx-
imately 5–16 % of patients [3]; and (3) there are striking dif-
ferences in disease prevalence and clinical manifestations
across different geographic areas and racial groups [4].
Linkage, candidate gene, and genome-wide association stud-
ies have identified a number of susceptibility loci with the
human leukocyte antigen (HLA) class II alleles representing
the main contributor to disease susceptibility across patients of
different ethnicity [5]. Sarcoidosis is not a single-gene disease;
instead, a multitude of genes are believed to be involved, each
contributing an effect of varying magnitude. Genetics is also
likely to contribute to the wide variety of clinical manifesta-
tions and prognosis observed in this disease (Fig. 1). In this
regard, some believe that sarcoidosis is a Bfamily^ of different
disorders, including among the others Löfgren’s syndrome,
chronic/progressive lung disease, and granulomatous uve-
itis, each with potentially distinct genetic associations
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[6]. Chronic beryllium disease could also be considered
as a subset of the broad grouping Bsarcoidosis^ and
almost certainly was historically [7].

Antigen-Driven T Cell Response—the Trimolecular
Complex

In order to elicit a granulomatous response, the sarcoid
antigen/s must be processed by antigen presenting cells
(APCs) (e.g. macrophages and dendritic cells), and a peptide
fragment presented in the context of major histocompatibility
complex (MHC) class II molecules, usually HLA-DR or
HLA-DQ [8–10]. HLA molecules bind antigenic peptides
within a groove composed of two α-helices and a floor of
antiparallel β-strands to form a complex that is recognized
by α/β+ T cell receptor (TCR)-expressing T cells [11]. The
antigen-binding properties of the MHC class II peptide-
binding groove are determined by polymorphic amino acid
residues that form pockets interacting with the antigenic pep-
tide side chains. Contrary to class I molecules (HLA-A, HLA-
B, and HLA-C), which present endogenous peptides of 8–10
amino acid length to CD8+ T cells, HLA class II molecules
(HLA-DP, HLA-DQ, and HLA-DR) bind longer exogenous
peptides (their peptide-binding groove is open-ended) for rec-
ognition by CD4+ T cells [12–14]. These peptides, which are
largely derived from polypeptides that have been phagocy-
tized or internalized by endocytosis by APCs, are loaded onto
HLA class II molecules for display on the cell surface
[15–17]. The MHC molecule/peptide/TCR (the Btrimolecular
complex^) [9] interaction provides the first activation signal
for the antigen-specific T cells. When co-stimulatory

molecules, such as CD80 and CD86, provide a second signal,
T cells are ready to orchestrate the immune response that cul-
minates with granuloma formation [9, 18]. Indeed, lung T
cells in sarcoidosis show numerous signs of (recent) activa-
tion, including reduced surface density of the CD3/TCR com-
plex [19], IL-2 gene expression [20], spontaneous release of
cytokines (e.g. interferon-γ [IFN-γ] and IL-2) [21, 22], as
well as cell surface expression of HLA-DR and very late
activation antigen-1 (VLA-1) [23].

The TCRs contain highly specific antigen recognition sites.
The huge TCR variety for specific antigens derives from re-
arrangement of germ line variable (V), diversity (D), junction-
al (J) and constant (C) region elements of the TCR genes (αβ
and γδ). Thus, antigen-specific responses result in the expan-
sion of a limited number of T cells bearing specific TCRs
(clonal or oligoclonal expansions). The expansion of T cells
exhibiting a restricted repertoire of TCRαβ or γδ genes in the
lung, blood and skin of sarcoidosis patients strongly suggests
that a limited number of peptides are responsible for the se-
lection and expansion of these particular T cells [24–29]. The
most striking example of selective TCR usage in sarcoidosis
was described by Grunewald and colleagues, who demon-
strated a preferential accumulation of CD4+ Tcells expressing
the TCR AV2S3 gene segment in the lung of Scandinavian
patients carrying the HLA-DRB1*0301 (DR-17) allele [25,
27, 30]. A preferential AV2S3 gene usage by CD4+ T cells
has also been observed in sarcoidosis patients carrying the
HLA-DRB3*0101 (i.e. DR52a) allele [25, 30]. The HLA-
DRB1*0301 and HLA-DRB3*0101 alleles share identical
amino acid sequences in the regions responsible for antigen
binding and probably allow presentation of similar antigenic
peptides and expansion of the same T cell population. The
lung-accumulated AV2S3+ T cells show a higher degree of
activation and differentiation than other bronchoalveolar la-
vage (BAL)-derived CD4+ T cells [31–33]. Of note, selective
stimulation of AV2S3+ T cells has been correlated with sar-
coidosis of acute onset and short duration, suggesting for these
cells a protective role against the putative sarcoid antigen/s
[34]. Investigations on the messenger RNA (mRNA) as well
as protein level demonstrated that the AV2S3+ T cells have a
very low expression of the T regulatory cell transcription fac-
tor forkhead box P3 (FoxP3), indicating that they are effector
rather than regulatory cells [32, 33, 35]. This is confirmed by
the demonstration that they produce T helper (Th) 1 cytokines
[32]. Thus, they may act to eliminate a specific antigen, lead-
ing to disease resolution. After clinical recovery, the number
of CD4+AV2S3+ cells in the BAL of sarcoidosis patients tends
to normalise [36]. While the majority of studies have demon-
strated overexpression of α/β TCR genes [37], an increased
number ofγ/δ+ TCRT lymphocytes has also been observed in
the blood and BAL from patients with sarcoidosis [38]. The γ/
δ TCR is potentially relevant to sarcoidosis as γ/δ+ T cells
from normal individuals respond to mycobacterial heat shock

Fig. 1 Proposed model for the development of sarcoidosis. A variety of
genetic variants may confer susceptibility to sarcoidosis, but the disease
develops only in the context of a relevant exposure. Susceptibility genes
contribute an effect of varying magnitude, depending on the function of
their gene product and gene-gene interactions. The relevance of
environmental exposures is likely to be influenced by their duration,
intensity, timing or context. A similar model might also apply to disease
phenotype

20 Clinic Rev Allerg Immunol (2015) 49:19–35



proteins, and mycobacterial products are thought to play a role
in at least a subset of sarcoidosis cases [39]. In addition, Vδ1+

T cells are clonally expanded in pulmonary sarcoidosis con-
sistent with the concept that the disease results from persistent,
specific antigenic (exogenous and/or self) stimulation that in-
duce a cell-mediated immune response [29].

The Early Years

Because of the highly polymorphic nature of the HLA genes
and the requirement for HLA molecules in the presentation of
antigens to T cells, the search for HLA associations with sar-
coidosis has been the focus of several studies. Hedfors and
Möller initially reported an increased frequency of HL-A7
(now HLA-B7) in sarcoidosis patients (n=50) compared to
controls (n=100) [40]. This was in contrast to Kueppers and
colleagues, who analysed 132 patients and 600 controls but
found no significant associations between HL-A antigens and
sarcoidosis [41]. However, a couple of years later, HLA-B7
was found to associate with sarcoidosis, this time in a South
Carolina Black population (28 patients vs 80 controls) [42].
HLA-B7 is now known to belong to a haplotype common in
Caucasians, i.e. HLA-A*0301: B*0702: Cw*0701:
DRB1*1501: DQA1*0102: DQB1*0602, which has at least
in part been found to associate with a more chronic form of
sarcoidosis [43]. In 1981, Smith and colleagues identified a
link between carriage of HLA-B8 and spontaneous resolution
and suggested that inherited factors relating to the immune
system may influence the clinical phenotype of sarcoidosis
[44]. This concept was further substantiated in a study by
Hedfors and Lindström, who HLA-typed 19 sarcoidosis pa-
tients with an acute onset, bilateral hilar lymphadenopathy,
ankle joint arthritis, and (in seven of them) also erythema
nodosum (this combination of signs and symptoms is com-
monly referred to as Löfgren’s syndrome; Fig. 2). The authors
found a strong association with HLA-B8/DR3 and concluded
that such a strong association might be explained by an
Bimmunogenetically determined handling of a postulated eti-
ological antigen^ [45]. Gardner and colleagues identified an
association between B8/Cw7/DR3 and good prognosis in
Caucasian but not black West Indian patients [46]. Krause
and co-workers studied 42 sarcoidosis patients with arthritis
and 134 ethnically matched controls and found a strong asso-
ciation with HLA-DR3 [47]. The authors proposed that genet-
ic factors must be considered together with a postulated trig-
gering antigen in sarcoidosis [47].

Modern Times

Although the HLA allele distribution significantly differs
across ethnic populations, subsequent studies, using more

specific tools for HLA analysis and more rigorous disease
definitions, have shown that certain HLA class II alleles asso-
ciate with disease protection/risk across different populations.
Specifically, HLA-DRB1*01 and DRB1*04 protect against
disease in several Caucasian populations, while DRB1*03,
DRB1*11, DRB1*12, DRB1*14 and DRB1*15 are risk fac-
tors for sarcoidosis [5, 7].

A number of studies have also confirmed the HLA-B8/
DR3 association with Löfgren’s syndrome (LS) [48]. In addi-
tion to displaying distinct clinical manifestations, patients with
LS can be further characterized according to the carriage of
DRB1*03. Among LS patients in Sweden (where two thirds
of them carry the DRB1*03 allele), disease resolution (de-
fined as disease duration <2 years) was reported to occur in
95 % of DRB1*03+ patients, but only in 49 % of DRB1*03−

[49]. Interestingly, a clustering of disease onset in January,
April and May has been observed in DRB1*03+ but not
DRB1*03− patients, suggesting a key role for season-
specific antigens in the development of LS. The mechanisms
through which DRB1*03 influence disease behaviour in LS is
unknown. However, DRB1*03+ patients display a less pro-
nounced Th1-type immune response with reduced levels of
IFN-γ and tumor necrosis factor (TNF)-α [50], yet they may
be able to mount a more effective and specific immune re-
sponse against the postulated antigen/s [32]. Such an effica-
cious immune response includes lung accumulation of Th
cells with expression of a specific TCR (AV2S3) [27] and
production of several Th1 cytokines when stimulated with a
specific mycobacterial antigen (mKatG) [32].

HLA-B8/DR3 is known to be part of the so-called 8.1
ancestral haplotype (HLA A*0101: B*0801: Cw*0701:
DRB1*0301: DQA1*0501: DQB1*0201) which is quite
common in Caucasians. Besides HLA, this haplotype includes
or is linked to a large number of non-HLA genes of critical
importance for the immune system. Sarcoidosis associations
with class I genes were originally considered to be caused by
linkage disequilibrium (LD) (e.g. the tendency for genetic
variants located close to each other on the same chromosome
to be associated within a population more often than if they
were unlinked) with class II genes [7]. However, multiple
logistic regression analysis revealed that both HLA-B7 and
HLA-B8 increase the risk of sarcoidosis independently of
class II genes [43]. Moreover, patients with the common allele
combination HLA-A*3, B*07, DRB1*15 have been shown to
be at significantly higher risk of developing chronic disease.
Another common haplotype (HLA-A*01, B*08, DRB1*03),
which is present in approximately 20 % of Swedish sarcoido-
sis patients, is associated almost invariably with resolving dis-
ease in Sweden [43] as well as with LS in Croatian sarcoidosis
patients [51]. HLA class I alleles may thus have more influ-
ence on disease susceptibility and behaviour than previously
thought (43, 51; Fig. 3). As seen above, HLA-DQB1 alleles
are also linked to various HLA-DRB1 alleles, and in African
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Americans, HLA-DQB1 alleles were suggested to be more
important for sarcoidosis associations than DRB1 alleles
[52]. In particular, carriage of HLA-DQB1*0201 was found
to be protective against the disease, while DQB1*0602 was
linked to radiographic progression [10].

Pockets

The peptide-binding groove of the HLA class II molecule
consists of two α-helices, making up the walls of the groove,
and a β-pleated sheet that constitutes the floor of the groove.
Depending on the amino acids within the groove, different
peptides will be bound. As such, certain amino acids at dis-
tinct positions may have a greater influence in antigen binding
than others. In chronic beryllium disease, for example, there is
a strong association between glutamic acid (Glu) at position
69, found primarily on HLA-DPB1*0201, and reactivity
against beryllium and subsequently disease [53, 54]. The na-
ture of the peptide(s) that in addition to beryllium binds to the
HLA-DP molecule has recently started to be investigated [55,
56]. In the peptide-binding groove of the HLA molecule, a
number of pockets are formed (P1, P4, P5, P7 and P9). Side
chains of the amino acids may dig into the HLA molecule to
improve anchoring of the peptide. In sarcoidosis, pockets
number 4, 6 and 7 appear to be important for interacting with
potential sarcoidosis-associated peptides. Foley and col-
leagues described that the protective DRB1*01 and
DRB1*04 molecules have in common small hydrophobic res-
idues at position 11 of antigen binding pocket 6, while non-
protecting DRB1 molecules had instead hydrophilic residues
at the same position [8]. Position 11 contains the only variable

amino acid in pocket 6 and may influence substantially the
binding capacity of the pocket. In a similar approach, Voorter
and co-workers studied 149 Caucasian patients to search for
distinct amino acids within the antigen-binding parts of DRB1
and DQB1 molecules and their associations with sarcoidosis
risk. The patients were divided into those with a good prog-
nosis (i.e. chest radiographic stage I) and those at risk for a
more chronic disease (i.e. chest radiographic stage II–IV) [57].
The authors found the DRB1 residues Pro11, Arg13, Ser37
and Ala71 associated with both disease overall and chronic
disease. Interestingly, all four residues are found on
DRB1*1501. In addition, Ala71, which is part of the peptide
binding pocket 4, allows preferential binding of non-charged
aromatic residues and thereby specifically influences the
HLA-bound peptide repertoire. Moreover, a HLA-DR Arg74
residue was found significantly more often in patients with
radiographic stage I and good prognosis. DR Arg74 is also
part of pocket 4 and is found almost exclusively on
DRB1*0301, which is associated with good prognosis [58].
Arg74 determines the preferential binding of aspartic acid in
pocket 4 of the DR molecule. Interestingly, DRB1 pocket 4
was also shown to be a common denominator for two different
HLA molecules, both with a unique association with lung
accumulated T cells expressing the AV2S3 TCR, further indi-
cating specific antigenic peptide recognition by these cells in
the lungs of sarcoidosis patients [30]. Pocket 7 has also been
suggested to be important for association with sarcoidosis and
for binding of specific peptides. In the US ACCESS study,
HLA-DRB1 amino acid residue at position 47 (F47), which is
located in pocket 7, appeared to independently contribute to
the risk of sarcoidosis in white American patients [59]. Of
note, HLA-DRB1-F47 was present on the three alleles most

Bilateral hilar lymphadenopathy

Erythema Nodosum

Ankle swelling

Fig. 2 Clinical manifestations of
Löfgren’s syndrome
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strongly associated with sarcoidosis, namely DRB1*1101,
DRB1*1201 and DRB1*1501 [59].

Studies of Today

Wennerström and colleagues recently studied 188 patients and
224 controls in Finland and confirmed DRB1*1501 to be a
risk factor for and DRB1*0101 to be protective against sar-
coidosis [60]. While in contrast to previous studies DRB1*15
was not found to associate with persistent disease in Finnish
patients, the authors confirmed a strong association between
DRB1*0301 and good prognosis, particularly in patients
without extra-pulmonary manifestations. Detailed analysis of
HLA class II pockets revealed specific amino acid residues in
pockets 4, 7 and 9 to associate with disease course; in partic-
ular, the amino acid at residue 71 of pocket 4 associated with
disease prognosis.

Sato and colleagues studied 340 UK, 139 Dutch and 163
Japanese patients, and 354, 218 and 168 matched controls,
respectively. In common for all three populations was the
protective effect of HLA-DRB1*01 with a similar tendency
for DRB1*04 in the Caucasian populations [61]. In addition,
DRB1*12 associated with disease in UK and Dutch patients
with a similar trend observed in Japanese patients, whereas
DRB1*14 associated with disease only in Caucasian patients.
Uveitis associated with DRB1*0803 in the Japanese popula-
tion and with DRB1*04 in the UK population, while it was
too rare amongst Dutch patients to provide meaningful results.
In the Japanese cohort, DRB1*0803 was also significantly
associated with neurosarcoidosis. The Dutch cohort was the
only one that included a substantial proportion of patients with
LS, again strongly associating with DRB1*03, as shown be-
fore in several reports [58]. The authors however found no
particular amino acid position to associate with overall dis-
ease, pulmonary disease, LS or uveitis. More recently,
Suzuki and colleagues studied 237 Japanese patients and
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molecules are involved in the presentation of exogenous antigens to T
helper cells. The HLA class III region contains a number of genes
involved in immune response regulation, including tumour necrosis
factor (TNF)-α and complement proteins (C2, C4)
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287 matched controls for any DRB1 or DQB1 allele associa-
tions; DRB1*0803 and DRB1*0901 were identified as risk
alleles, irrespective of disease onset or phenotype [62]. Zhou
and co-workers have recently reported in a study of 131
Chinese Han patients and 122 controls an association between
HLA-DRB1*11 and disease risk, while DRB1*07 and HLA-
B*13 were protective [63]. Of note, DRB1*11 confers sus-
ceptibility to sarcoidosis also in Indian [64] and Japanese pa-
tients [65]. Moreover, in the ACCESS study the HLA-
DRB1*1101 allele associated with disease in both black and
white American patients [59]. Finally, it is noteworthy that
HLA-DRB1*11 has been found to associate with antigen pre-
sentation of distinct mycobacterial derived antigens ESAT-6
and mKatG [66], which have been proposed as sarcoidosis
antigens [67].

HLA-Type in Relation to Phenotypes

Some HLA-DRB1 alleles influence clinical phenotype and
disease behaviour. The best example is probably Löfgren’s
syndrome, which in several reports has been shown to associ-
ate with a benign disease course [45, 49, 51]. In Sweden, the
influence of DRB1*03 on disease course is so strong that it is
now used as a biomarker of good prognosis [68]. On the other
hand, HLA-DRB1*15 has been suggested to predispose to a
chronic form of the disease [69–71]. Sarcoidosis uveitis has
been shown to associate with DRB1*0401 in the ACCESS
study, in both black and white Americans [59]. Similarly,
DRB1*0401 is a risk factor for uveitis in Japanese and UK
subjects [61], as well as in Scandinavian patients in whom
DRB1*0401 homozygosity confers a substantially increased
risk for uveitis [72]. Although very few, patients with
Heerfordt’s syndrome—characterized by fever, parotid or

salivary gland enlargement, cranial nerve palsy and uve-
itis—were also shown to associate with DRB1*0401 [72].
On the other hand, lung-predominant sarcoidosis was found
to associate with DRB1*12 and DRB1*14 [57]. Cardiac sar-
coidosis is associated with HLA-DQB1*0601 in Japanese pa-
tients [73]. Finally, HLA-DQB1*0602, which is in strong LD
with DRB1*1501, has been shown to associate with spleno-
megaly in Japanese patients [74], and with small fibre neurop-
athy in Caucasians [75]. HLA associations with sarcoidosis
are summarized in Table 1.

Conflicting results with regard to HLA associations have
many plausible explanations, besides the well-known intereth-
nic differences between study populations. Patient sampling
and other methodological aspects may also affect the results
and complicate data evaluations. Further, it is likely that a
diagnosis of Bsarcoidosis^ covers several distinct disease en-
tities, each with their own separate genetic association and
exposure history.

Other Genetic Associations with Sarcoidosis

A number of non-HLA genes have also been associated with
risk of disease or phenotype (5, 7; Table 2). One example is
the finding of a sarcoidosis risk variant within the
butyrophilin-like 2 (BTNL2) gene [62, 80, 85–92]. BTNL2 is
structurally similar to the co-stimulatory molecule CD80 (B7-
1) but in contrast to CD80 it is believed to act as an inhibitory
molecule for T cells. Accordingly, defective BTNL2 function
might result in an exaggerated T cell activation. Another ex-
ample is annexin A11 (ANXA11) [80–84]. The functional rel-
evance of the risk variant detected in sarcoidosis patients is not
known, but it has been proposed that it may affect the survival
of inflammatory cells. Other reported genetic associations

Table 1 Summary of HLA associations with sarcoidosis

Gene Association References

HLA-A3, HLA-B7 Risk factor for disease and associates with prolonged disease [42, 43]

HLA-A1, HLA-B8 Risk factor for disease and associates with arthritis and with good prognosis [43–46]

HLA-DRB1*01 Protective against disease [8, 58, 61]

HLA-DRB1*0301a Risk factor for disease and associates with Löfgren’s syndrome and good prognosis [42, 45–47, 49, 51, 70, 76–78]

HLA-DRB1*04 Protective against disease and associates with ocular sarcoidosis and Heerfordt’s syndrome [58, 61, 69, 76, 79]

HLA-DRB1*0803 Risk factor for disease and associates with ocular sarcoidosis (in Japanese patients) [61]

HLA-DRB1*1101 Risk factor for disease [58, 59]

HLA-DRB1*12 Risk factor for disease [59, 61]

HLA-DRB1*14 Risk factor for disease and associates with prolonged disease [58, 69]

HLA-DRB1*15b Risk factor for disease and associates with prolonged disease [59, 70]

HLA-DRB3*1501 Risk factor for disease and associates with Löfgren’s syndrome [59, 71]

HLA-DRB3*0101 Risk factor for disease and associates with disease progression [77]

a In strong LD with HLA-DQB1*0201
b In strong LD with DQB1*0602
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include, amongst others, the cytokines TNF and
transforming growth factor (TGF)-β, and the IL-23 re-
ceptor, as well as different Toll-like receptor (TLR)
genes (Table 2). Several of these gene variants are not
unique to sarcoidosis, but associate also with other in-
flammatory disorders [6].

Immunopathogenesis of Sarcoidosis Granulomatous
Inflammation

Granuloma formation is regarded as a means of defending the
host from persistent irritants of either exogenous or endogenous
origin. In fact, the causative agent is walled off and sequestered

Table 2 Selected non-HLA candidate gene associations with sarcoidosis

Candidate gene, location Variant Association References

ANXA11, 10q22.3-q23.1 rs1049550 Susceptibility to sarcoidosis [80–84]

BTNL2, 6p21.3 rs2076530 A/G Susceptibility to sarcoidosis [62, 80, 85–92]

CCDC88B, 11q13.1 rs479777 Susceptibility to sarcoidosis [93]

CCL5/RANTES, 17q.12 5′ Flanking region between
nucleotide -513 and -378

Organ involvement (≥3 organs) [94]

CCR5, 3p21.31 Haplotype HHC Female-specific association with Löfgren’s syndrome [95]

CD14, 5q31.1 -159 C/T (rs2569190) Susceptibility to sarcoidosis and milder disease [96]

C10ORF67, 10p12.31 rs1398024 Susceptibility to sarcoidosis [97]

GREM1, 15q13-q15 rs1919364 C/G Risk factor for pulmonary fibrosis [98]

IL7R, 5p13 rs10213865 A/C Susceptibility to sarcoidosis; similar trend
observed in patients with Löfgren’s syndrome

[99]

IL23R, 1p31.3 rs11209026 G/A; rs7517847
G/T; rs11465804 T/G

Susceptibility to chronic sarcoidosis;
susceptibility to sarcoidosis and sarcoid uveitis

[100, 101]

ITGAE, 17p13.3-13.2 -1088 A/G (rs2891) Susceptibility to sarcoidosis and risk factor
for pulmonary fibrosis

[102]

MMP9, 20q11.2-q13.1 -1702 T/A Susceptibility to sarcoidosis [103]

MRC1/CD206, 10p12.33 rs691005 T/C Susceptibility to sarcoidosis [104]

MyD88, 3p22 -938 C/A (rs4988453)–1944
C/G (rs4988457) haplotype

Susceptibility to sarcoidosis [105]

NOTCH4, 6p21.3 rs715299 Susceptibility to sarcoidosis [80]

OS9, 12q13.3-q14.1 rs1050045 Susceptibility to sarcoidosis [106]

PTGS2/COX2, 1q25.2-q25.3 -765 G/C (rs6681231) Susceptibility to sarcoidosis and risk
factor for pulmonary fibrosis

[107–109]

RAB23, 6p11 rs1040461 Susceptibility to sarcoidosis [80, 109]

TGF-β1, 19q13.1 -509 C/T (rs1800469),
codon 10 T/C (rs1982073)

Sarcoidosis severity [110]

TGF-β2, 1q41 rs1891467 A/G Acute/self-limiting disease (vs. patients with
chronic disease)

[111]

TGF-β3, 14q24 4875 G/A (rs3917165) Risk factor for pulmonary fibrosis [112]

TLR10-TLR1-TLR6, 4p14 Common haplotype encompassing
the TLR10-TLR1-TLR6 gene cluster

Protection from chronic sarcoidosis [113]

TLR9, 9q33.1 -1237 T/C (rs5743836) Risk factor for chronic sarcoidosis [114]

TNF-α, 6p21.3 -308 G/A (TNFA1/TNFA2;
rs1800629), -857 C/T (rs1799724)

Susceptibility to Löfgren’s syndrome
and erythema nodosum; susceptibility
to sarcoidosis

[115–119]

VDR, 12q13.11 BB/Bb/bb genotypes Susceptibility to sarcoidosis [120]

VEGFA, 6p12 813 C/T (rs3025039)/VEGFA haplotype Protection from sarcoidosis; susceptibility
to acute disease

[121–123]

VEGFR1, 13q12 VEGFR1 haplotypes Susceptibility to sarcoidosis [123]

VEGFR2, 4q11-q12 VEGFR2 haplotypes Acute and chronic disease course [123]

This table only includes either validated associations or positive associations awaiting confirmation

ANXA11 annexin A11, BTNL2 butyrophilin-like 2, CCDC88B coiled-coil domain containing 88B, C10ORF67 chromosome 10 open
reading frame 67, GREM1 gremlin 1, ITGAE integrin alpha(E)beta[7], MMP9 metalloproteinase 9, MRC1 mannose receptor gene 1, MyD88 myeloid
differentiation marker 88, NOTCH4 neurogenic locus notch homolog protein 4, OS9 osteosarcoma amplified 9, PTGS2 prostaglandin-endoperoxide
synthase 2, RAB23 Ras-related protein Rab-23, RANTES regulated on activation, normal T cell expressed and secreted, TGF-β1 transforming growth
factor β1, TLR Toll-like receptor, TNF-α tumor necrosis factor-α, VDR vitamin D receptor, VEGFA vascular endothelial growth factor A, VEGFR
vascular endothelial growth factor receptor
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by cells of macrophage lineage allowing it to be contained, if not
destroyed altogether [124]. However, these cells may also prime
the adaptive immune system by displaying foreign antigens on
the surface of MHC class I or II molecules. Depending on both
pathogen and host factors, the adaptive immune response is usu-
ally dominated by either a type 1 T helper (Th1), Th2 or Th17
cell response [125, 126]. Sarcoidosis is mediated by a predomi-
nantly Th1 immune response in which a complex network of
lymphocytes, macrophages, cytokines and chemokinesmount an
immune response that culminates with granuloma formation
([127]; Table 3). In experimental models, granulomatous inflam-
mation is downregulated with clearance of antigen [128].
Conversely, if the antigen persists, continuing activation of T
cells leads to further accumulation of macrophages, which can
give rise to epithelioid cells (large cells with a pale nucleus and

abundant cytoplasm) or fuse to form giant multinucleated cells
[129]. Macrophages are integral in both formation of granuloma
and in promoting a Th1 immune response. The initial triggering
of macrophages occurs via activation of so-called pattern-recog-
nition receptors, recognizing evolutionary conserved molecular
patterns of different classes of pathogens. The best characterized
family of such receptors are TLRs. Enhanced or altered re-
sponses to TLR2 stimulation have been observed in cells from
the lung and blood of sarcoidosis patients [130–132]. TLR2 has
also been demonstrated to have a role in granuloma formation,
both in animal models [130, 132] and in a human in vitro model
of mycobacterial granulomas [133]. A critical role for aggregates
of the acute-phase reactant serum amyloid A (SAA) to regulate
granuloma formation in sarcoidosis has been proposed byMoller
and colleagues; they found SAA to be expressed to a much

Table 3 Characteristics of cytokines and chemokines involved in sarcoidosis granulomatous inflammation

Cytokine name Source Biological role

Interferon-γ (IFN-γ) Th1 cells Activator of macrophages; inducer of differentiation
of naive CD4+ lymphocytes toward a Th1 phenotype;
regulator of granuloma induction; inhibitor
of fibroblast proliferation

Tumor necrosis factor-α (TNF-α) Macrophages, but also T cells, natural
killer (NK) cells, and neutrophils

Adhesion molecule up-regulator; inducer
of CD4+ T cell proliferation and survival; mediator
of granuloma formation and maintenance

Transforming growth factor-β (TGF-β) Several cell types, including macrophages Inhibitor of lymphocyte activation and cytokine release
by macrophages

Interleukin (IL)-1β Macrophages, but also dendritic cells and
endothelial cells

T cell chemoattractant; activation cofactor following
antigen presentation; adhesion molecule
up-regulator; modulator of Treg function

IL-2 Th1 cells Autocrine inducer of T cell proliferation and survival

IL-6 Mononuclear phagocytes, endothelial
cells, fibroblasts

Inducer of B cell differentiation and antibody secretion;
inhibitor of regulatory T cell differentiation

IL-12 Macrophages, B cells Inducer of Th1 differentiation and IFN-γ production;
mediator of granuloma formation

IL-15 Epithelial cells, fibroblasts, monocytes Inducer of T cell proliferation; mediator of granuloma
formation and maintenance

IL-18 Macrophages and dendritic cells Inducer of Th1 differentiation and IFN-γ production

IL-27 Macrophages and dendritic cells Inducer of T cell differentiation and activation
and IFN-γ production (in synergy with IL-12)

Granulocyte macrophage
colony-stimulating factor (GM-CSF)

Alveolar macrophages, but also T cells,
mast cells, NK cells, endothelial cells
and fibroblasts

Inducer of alveolar macrophage proliferation and
differentiation. Inducer of the fusion of alveolar
macrophages to multinucleated giant cells

Chemokine name Receptor Target cells

CCL2 (monocyte chemotactic
protein 1 (MCP-1))

CCR2 Monocytes

CCL3 (macrophage inflammatory
protein 1α (MIP-1α))

CCR1, CCR5 Neutrophils and monocytes

CCL5 (regulated on activation, normal T cell
expressed and secreted (RANTES))

CCR1, CCR3, CCR5 T cells, eosinophils

CCL19 (macrophage inflammatory
protein 3β (MIP-3β))

CCR7 Dendritic cells

CXCL8 (IL-8) CXCR1, CXCR2 Neutrophils

CXCL9 (monokine induced by IFN-γ (MIG)) CXCR3 Th1 cells

CXCL10 (IFN-inducible protein-10 (IP-10)) CXCR3 Th1 cells
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higher degree in sarcoid granulomas than in granulomas in other
diseases [130]. The same study also demonstrated that SAA
stimulated BAL cells from sarcoidosis patients to a higher degree
of cytokine release than cells from control subjects, partly by
interaction with TLR2, and also promoted experimental Th1-
mediated granulomatous inflammation. Macrophages exert their
effects mainly by producing a number of chemokines and cyto-
kines, such as CCL2 (monocyte chemotactic protein 1 (MCP1)),
CCL3 (macrophage inflammatory protein-1α (MIP-1α)), CCL4
(macrophage inflammatory protein-1β (MIP-1β)), CCL5 (regu-
lated on activation, normal T cell expressed and secreted
(RANTES)), IL-8, IL-12, IL-15 and IP-10 [134]. In addition,
macrophages produce IL-1, IL-15 and TNF-α, which induces
endothelial cell-Tcell interaction by up-regulating the expression
of adhesion molecules on the endothelium [135]. TNF-α is a
critical mediator of granuloma formation and maintenance
through induction of CD4+ T cell proliferation and survival. In
active pulmonary sarcoidosis, alveolar macrophages spontane-
ously release TNF [136], and higher levels of this cytokine have
been observed in patients with severe/progressive disease com-
pared with those with inactive disease [137]. The mechanisms
responsible for the evolution of sarcoid granulomas to fibrosis are
poorly understood but abnormal apoptotic-signalling pathways,
loss of regulatory response as well as the development of a more
Th2-like environment are likely to be involved (136; Table 4).

Sarcoidosis Antigens

A mycobacterial aetiology of sarcoidosis has long been pro-
posed, based on clinical and histological similarities with tu-
berculosis. Evidence for the presence of mycobacteria in sar-
coidosis lesions have been obtained by PCR, and a meta-
analysis of 31 such studies found that the odds of detecting
mycobacterial nucleic acids were at least ten times higher in
sarcoidosis tissues compared to control tissues [138]. Using a
mass spectrometry approach to analyse sarcoidosis tissues, a
specific mycobacterial protein, catalase-peroxidase (mKatG),
was found to be present in a majority of sarcoidosis samples
and to be the target of B cell responses in half of the patients
[67]. Other studies have also found evidence of specific my-
cobacterial proteins in sarcoidosis tissue [139, 140].
Sarcoidosis patients have been found to harbour blood and
lung T cell responses to mycobacterial proteins, including
mKatG, ESAT-6, antigen-85A and heat shock proteins
[141–144]. A preferential stimulation by mKatG of the TCR
AV2S3+ T cells which accumulate in the lungs of HLA-
DRB1*03+ patients has been reported (32; Fig. 4).
Propionibacterial aetiology has also been proposed, although
it remains more controversial. In support of this
aet iopathogenet ic hypothes is i s the presence of
propionibacterial DNA in sarcoidosis tissues [145] and cellu-
lar immune responses to Propionibacterium acnes in a subset
of sarcoidosis patients [146]. It is plausible that there is not one
single aetiologic agent in sarcoidosis, but that different envi-
ronmental agents, including non-organic substances, may lead
to sarcoidosis granulomatous inflammation [147]. In an effort
to directly identify the antigenic peptides presented by HLA
molecules on antigen-presenting cells in the lungs of sarcoid-
osis patients, Wahlström and colleagues analyzed by liquid
chromatography-mass spectrometry BAL cells from 16
HLA-DRB1*0301+ sarcoidosis patients and identified a num-
ber of peptides bound to the HLA-DR molecules, including
peptides derived from well-known autoantigens such as
vimentin and ATP synthase [148]. In a follow-up study, a
prominent T cell response to vimentin was found in peripheral
blood of a subset of patients having the same HLA type [149].
Thus, at least in some patients, autoimmunity may contribute
to the inflammation in sarcoidosis. One possible explanation
for such responses, which may be chronic or transient, is
Bmolecular mimicry^ with pathogen-derived molecules
breaking tolerance to self-antigens.

Th1 Polarization

An established immunologic feature of sarcoidosis is that the
CD4+ lymphocytes that trigger granuloma formation are
strongly Th1 polarized. Indeed, the expression of both
IFN-γ—a cytokine produced by Th1 cells—and a number

Table 4 Key stages in granuloma formation

- Initial activation of macrophages by ligand binding to pattern-
recognition receptors, such as Toll-like receptors (TLRs), followed by
release of soluble mediators

- Recognition of MHC class II bound antigen on antigen-presenting cells
(APC) by T cells and subsequent activation of the CD4+ lymphocyte
subset via the T cell receptor (TCR)

- Oligoclonal proliferation of CD4+ T cells with expression of Th1
cytokine profile (e.g. IL-2 and IFN-γ)

- Macrophage/T cell interaction via antigen presentation by macrophages
to T cells and intercellular signalling (such as T-cell-derived IFN-γ
further activating macrophages) leading to proliferation, activation and
spontaneous cytokine release by both cell lines at sites of inflammation

- Amplified release of macrophage-derived cytokines TNF-α, IL-1, IL-6,
IL-12, IL-15; chemokines IL-8, CCL5 (regulated on activation, normal
T cell expressed and secreted (RANTES)), CCL2 (monocyte
chemotactic protein (MCP-1)), CCL3 (macrophage inflammatory
protein-1α (MIP-1α)), and granulocyte-macrophage colony-
stimulating factor (GM-CSF)

- Fibrosis associated with shift to Th2 cytokine profile, up-regulation of
macrophage-derived fibrogenic cytokines (TGF-β, PDGF and IGF-1),
and increased production of neutrophil protease products

- Disturbance of programmed cell death (apoptosis) by dysregulation of
the TNF-L/TNF-R superfamily, abnormal expression of oncogene
products and change in Th1/Th2 ratio

IFN: interferon; IGF: insulin-like growth factor; MHC: Major Histocom-
patibility Complex; PDGF: platelet-derived growth factor; TGF:
transforming growth factor; TNF: tumor necrosis factor
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of Th1-promoting cytokines, such as IL-12, IL-15, IL-18 and
IL-27—is up-regulated at sites of sarcoidosis granulomatous
inflammation [150–153]. In addition, a study of cytokine ex-
pression in lymph nodes has demonstrated a spatial rearrange-
ment of cytokine-producing cells, with IL-1β, TNF-α and
IFN-β being localized to the granuloma itself, and other cy-
tokines, such as IL-1α, IL-2 and IL-6 being distributed more
randomly [154].

IL-12, one of the most potent Th1-promoting cytokines,
induces Th1 differentiation from naive T cells and Th1 prolif-
eration. BAL cells from sarcoidosis patients display enhanced
(spontaneous) expression of IL-12 protein and mRNA [155],
with higher levels observed in individuals with active disease
compared with both those with inactive disease and healthy
controls [156–158]. IL-15 is a cytokine with functions similar
to IL-12, and its secretion from BAL and peripheral cells is
significantly higher in patients with active sarcoidosis com-
pared with those with inactive disease and healthy controls
[159]. IL-18 is essential for optimal induction of IFN-γ ex-
pression in T cells and natural killer (NK) cells [160]. IL-18

and IL-18R expression is increased in the lung of sarcoidosis
patients and is associated with higher expression of IFN-γ and
IL-2 as well as local T cell activation [152, 160]. IL-27, a
cytokine involved in T cell activation and induction of
IFN-γ, is also overexpressed in sarcoidosis [153]. In turn,
IFN-γ enhances macrophage accessory functions, and thereby
synergizes with other pro-inflammatory cytokines, such as
TNF-α, to facilitate cellular trafficking and recruitment to dis-
ease sites [161]. In addition, IFN-γ up-regulates the expres-
sion of co-stimulatory molecules, which optimize T cell acti-
vation, and increases TNF-α release from appropriately trig-
gered macrophages [162]. The role of IFN-γ in granuloma-
tous inflammation is supported by the observation that gran-
ulomas do not develop in IFN-γ knockout mice exposed to
termophilic bacteria [163]. The notion of Th1 polarization as a
key feature of sarcoidosis is substantiated further by the oc-
currence of new onset or recrudescent disease following treat-
ments with biologic agents that promote a Th1 response (e.g.
IFN-α and IFN-γ) [164, 165] as well as by the observed
down-regulation of several cytokines, chemokines and
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Fig. 4 Proposed model of how qualitative differences in T cell responses
to the mycobacterial protein mKatG may promote distinct clinical
outcomes in patient subgroups. In HLA-DRB1*0301+ patients, mKatG-
specific T cells have the ability to produce a multifunctional Th1 cytokine
profile (IFN-γ and TNF). Reduced expression of T regulatory cell
transcriptor factor FoxP3 in AV2S3+ T cells suggests an effector rather
than a regulatory function for this T cell subset, leading to eradication of

the inciting antigen and disease resolution. Conversely, in HLA-
DRB1*0301− patients, mKatG-specific T cells produce a single-
functional Th1 cytokine profile (IFN-γ), which together with increased
FoxP3+ regulatory T cells leads to antigen persistence and chronic
disease. This figure is based on the results reported in references 25, 27,
31–34, 141 and 144 (courtesy Maria Wikén)
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chemokine receptors associated with Th2 responses at disease
sites in patients with sarcoidosis [155, 166]. IFN-γ is a likely
contributor to the Th1-type cytokine profile in sarcoidosis by
suppressing the Th2 lymphocyte response [167].

Th17 Cells

Th17 cells, i.e. T cells producing IL-17 as their signature cy-
tokine, were found to constitute a separate lineage
10 years ago and have been implicated in several in-
flammatory and autoimmune diseases. They have also
been shown to be essential for pulmonary granuloma
formation in response to mycobacterial infection in mice
[168, 169]. This prompted investigations in sarcoidosis
patients, were a couple of studies found Th17 cells in
increased frequencies in blood and in BAL fluid, and
also to be present in the granuloma [170–172]. Th17
cells specific for the mycobacterial protein ESAT-6 were
found to be present in blood and BAL of sarcoidosis
patients [172], while another study found that IL-17
responses to the mycobacterial protein mKatG were
higher in BAL cells from sarcoidosis patients with
Löfgren’s syndrome compared to non-Löfgren’s patients
[173]. The same study also demonstrated the highest
levels of IL-17 in BAL fluid of HLA-DRB1*03+

Löfgren’s patients, i.e. patients with a very good prog-
nosis. The frequencies of Th17 cells producing IFN-γ,
an example of Bhybrid^ T cells combining characteris-
tics of two lineages, have also been compared between
sarcoidosis patients and healthy controls, however with
conflicting results [172, 174].

Regulatory T Cells

Regulatory T cells (Tregs) maintain immune homeostasis by
inhibiting APCs and effector T cell function [175]. Both natu-
ral constitutive (nTregs) and adaptive (antigen-specific) in-
duced (iTregs) forms of Tregs have been described, which
overall represent about 5–10 % of circulating CD4+ T cells in
healthy subjects [176]. However, there is no marker allowing
nTregs or iTregs to be analysed separately. Most Tregs express
FoxP3, which is regarded as a Bmaster regulator^ of Treg dif-
ferentiation, as well as high levels of CD25. In sarcoidosis,
tissue-, blood- and BAL-derived FoxP3+ T cells appear to ex-
hibit an impaired ability to suppress TNF-α, IFN-γ and IL-2
production and are not effective in inhibiting granuloma for-
mation in vitro [177, 178]. At the same time, peripheral Treg
cells exert powerful antiproliferative activity that may ac-
count for the Bimmune paradox of sarcoidosis^ [177] (e.g.
extensive granulomatous inflammation and cytokine se-
cretion associated with a state of anergy as indicated by

the lack of reaction to skin antigen tests and ex vivo ex-
posure to common recall antigens in peripheral blood)
[179, 180]. However, another study found sarcoidosis
Tregs to have a reduced ability to suppress proliferation
[181]. Moreover, Idali and colleagues have reported a re-
duced expression of FoxP3 in CD4+FoxP3+ BAL T cells
of sarcoidosis patients consistent with a reduced function
of Tregs [35]. Decreased BAL Treg numbers have been
associated with both a favourable prognosis and a chronic
(active) disease course [33, 182], suggesting that further
studies are needed to elucidate the role of dysfunctional
Tregs in the pathogenesis of sarcoidosis.

CD1d-restricted natural killer T (NKT) cells represent an-
other important regulatory T cell subset. Ho and colleagues
have shown that NKTcells are absent or significantly reduced
in the peripheral blood of patients with classical sarcoidosis
(but not in those presenting acutely with features of Löfgren’s
syndrome) [183]. Notably, there was no difference in the pro-
portion of CD1d-restricted NKT cells between peripheral
blood and lungs, suggesting that the peripheral blood deficien-
cy is not due to sequestration of these cells in the lungs.
Furthermore, CD1d expression on APC of patients was nor-
mal; thus, the deficiency of CD1d-restricted NKT cells is not
due to abnormal CD1d expression. The results of a follow-up
study by the same group suggest that the deficiency in NKT
cells may lead to reduced IL-10 production by monocytes,
resulting in an exaggerated T cell proliferation [184].

Progression to Fibrosis

Chronic granulomatous inflammation can lead to fibrosis of
the lung, heart and liver in patients with sarcoidosis. Fibrosis
requires the recruitment and proliferation of fibroblasts, lead-
ing to extracellular deposition of collagen matrix products
[185]. Excessive chemokine production has been associated
with progressive pulmonary fibrosis [186]. Indeed, a number
of mediators that are found at sites of sarcoid granulomatous
inflammation (e.g. fibronectin) are chemoattractant for fibro-
blasts, whereas macrophage-produced transforming growth
factor-β (TGF-β), insulin growth factor-1 (IGF-1) and
platelet-derived growth factor (PDGF) induce fibroblast pro-
liferation and collagen matrix deposition [187, 188]. The
Th1-defining cytokine IFN-γ, which is highly expressed
at disease sites, has direct antifibrotic effects [189],
whereas Th2 cytokines, such as IL-4 and IL-13, pro-
mote fibrogenesis [190]. Accordingly, it has been sug-
gested that a local shift from Th1 to Th2 cytokine pre-
dominance may favour progression to chronic, fibrotic
disease [191, 192]. However, the relevant pathways in-
volved in the fibrotic outcome in sarcoidosis remain
uncertain [193, 194].
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Concluding Remarks

While the search for the sarcoidosis antigen/s continues, it
seems inevitable that the development of the disease is deter-
mined by a complex interplay between host/genetic factors
and the antigen/s. In addition, genetic abnormalities that con-
fer disease risk are likely to be largely separate from those that
influence specific disease manifestations. Therefore, if sar-
coidosis genetics is to move forward, it is imperative that
meticulous databases of phenotypically well-defined patients
continue to be constructed. Some of the genes that could po-
tentially affect an individual’s susceptibility to disease and the
course of any established disease have been identified. Much
work remains to be done, but a fuller understanding of the
genetic basis of sarcoidosis is likely to open up new therapeu-
tic avenues, both for the treatment of this and other granulo-
matous disorders.
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