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Abstract The conversion of an arginine residue in a protein
to a citrulline residue, a reaction carried out by enzymes called
peptidylarginine deiminases (PADs), is rather subtle. One of
the terminal imide groups in arginine is replaced by oxygen in
citrulline, thus resulting in the loss of positive charge and the
gain of 1 dalton. This post-translational modification by PAD
enzymes is conserved in vertebrates and affects specific sub-
strates during development and in various mature cell line-
ages. Citrullination offers a unique perspective on autoimmu-
nity because PAD activity is stringently regulated, yet autoan-
tibodies to citrullinated proteins predictably arise.
Autoantigens recognized by anti-citrullinated protein antibod-
ies (ACPA) include extracellular proteins such as filaggrin,
collagen II, fibrinogen, and calreticulin; membrane-associated
proteins such as myelin basic protein; cytoplasmic proteins
such as vimentin and enolase; and even nuclear proteins such
as histones. Some ACPA are remarkably effective as diagnos-
tics in autoimmune disorders, most notably rheumatoid arthri-
tis (RA). Several ACPA can be observed before other clinical
RA manifestations are apparent. In patients with RA, ACPA
may attain a sensitivity that exceeds 70 % and specificity that
approaches 96–98%. The biological context that may account
for the induction of ACPA emerges from studies of the cellular
response of the innate immune system to acute or chronic
stimuli. In response to infections or inflammation, neutrophil
granulocytes activate PAD, citrullinate multiple autoantigens,
and expel chromatin from the cell. The externalized chromatin

is called a neutrophil extracellular “trap” (NET). Citrullination
of core and linker histones occurs prior to the release of
chromatin from neutrophils, thus implicating the regulation
of citrullinated chromatin release in the development of
autoreactivity. The citrullination of extracellular autoantigens
likely follows the release of NETs and associated PADs.
Autoantibodies to citrullinated histones arise in RA, systemic
lupus erythematosus, and Felty’s syndrome patients. The
citrullination of linker histone H1 may play a key role in
NET release because the H1 histone regulates the entry and
exit of DNA from the nucleosome. Juxtaposition of
citrullinated histones with infectious pathogens and comple-
ment and immune complexes may compromise tolerance of
nuclear autoantigens and promote autoimmunity.
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Introduction

The initial discovery of citrulline residues in proteins seemed
to be a biochemical anomaly as it contradicted the central
dogma of molecular biology. Since there is no codon or tRNA
for citrulline, this amino acid residue cannot be translationally
incorporated into newly synthesized proteins. However, de-
cades ago, proteins containing citrulline were unambiguously
identified in several mammalian tissues [1]. Thus, enzymes
that convert arginine residues to citrulline residues in a protein
were predicted to exist, and indeed, distinct enzymes were
subsequently discovered in vertebrate species ranging from
fish to humans and they were successfully purified from skin,
muscle, and hair follicles [2, 3]. In total, higher eukaryotes
express five peptidyl arginine deiminases (PADs), which
modify proteins with important tissue-specific functions.
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However, the significance of this arginine modification
remained uncertain until additional substrates were identified.

Among the first deimination substrates that were identified
in the epidermis were keratin and filaggrin, two autoantigens
targeted in disorders as diverse as pemphigus and rheumatoid
arthritis (RA) [4, 5]. These studies identified filaggrin as the
target of the previously unexplained reactivity of RA sera with
rat epithelia [6]. These results prompted the search for the
specific molecular determinants that account for RA reactiv-
ity. The search was directed toward a specific sequence
contained within filaggrin, a protein that contains a high
number of citrulline residues. Positive “hits” were recorded
against peptides matching the sequence of filaggrin provided
that the peptides incorporated citrulline residues in place of
arginine residues during synthesis [7]. Such peptides proved
to be particularly useful substrates in assays used to diagnose
RA [2, 8–12]. The usefulness of the peptides was increased by
joining their ends to form a loop. Such cyclic citrullinated
peptides (CCP) were used for the development of an ELISA
that attains a high sensitivity and exhibits remarkable speci-
ficity for RA over other autoimmune conditions [8]. The assay
has since been optimized, and it is included among the revised
2010 classification criteria for RA [13].

Preceding studies on autoimmunity in multiple sclerosis
(MS) patients had indicated that myelin basic protein (MBP)
exists in alternative isoforms, which contain variable numbers
of citrulline residues and differ by their isoelectric points, and
that these isoforms differentially react with T cell lines from
MS patients [14]. The number of citrulline residues was
observed to change during development and during progres-
sion ofMS [15]. Thus, deimination was shown to be regulated
during development and to dictate immunoreactivity of auto-
antibodies in diverse disorders. These discoveries have had
profound impacts on the diagnosis and clinical evaluation of
RA and related autoimmune disorders.

Autoantibodies Recognize Citrulline in Diverse
Autoantigens

The remarkable success of the anti-CCP assay in the detection
of RA led to a sustained, worldwide effort to identify addi-
tional citrullinated autoantigens (Table 1). These efforts also
shed light on the biological mechanisms that drive the con-
version of arginine residues in proteins to citrulline residues.
Early on, it was recognized that filaggrin is not the only
extracellular matrix protein that is modified by PADs. Other
important proteins that are deiminated by PADs and whose
citrulline residues form part of the epitopes recognized by RA
autoantibodies include collagen type II and fibrinogen. Ele-
vated levels of citrullinated collagen II in the synovium of RA
patients [16] suggested that PAD-mediated modification of
cartilage in RA joints may directly contribute to the induction

of autoantibodies. In parallel, a citrullinated peptide derived
from the primary sequence of fibrin (residues 60 to 74) was
shown to be useful as a clinical diagnostic for RA with a
sensitivity of 74 % and a specificity of 95 % [12].

Interestingly, calreticulin, a plasma protein that is involved
in binding to apoptotic cells [17] and that contributes to innate
system activation, can recognize the conserved domain of
RA-predisposing HLA molecules (the so-called “shared epi-
tope”). Furthermore, the binding is enhanced by deimination
of calreticulin [18]. This observation suggests that
deimination of certain plasma proteins may play a regulatory
role in the clearance of cell remnants. A similar anti-
inflammatory role may be ascribed to the deimination of
cytokines such as CXCL8, CXCL10, and TNF [19–21]. The
deiminated cytokines have a reduced chemotactic potency and
a decreased stimulatory effect on other immune cells. Perhaps,
autoantibodies to citrullinated autoantigens may also have a
beneficial effect by enhancing clearance of the modified
antigens.

Conversely, increased citrullination of autoantigens such as
myelin basic protein is associated with impaired function of
the affected organs [22]. Similarly, the deimination of filaggrin
promotes the unfolding and degradation of this structural
protein [23], and the deimination of fibronectin decreases its
function as ligand for adhesion receptors [24]. Deimination
also has destabilizing effects on cytoplasmic proteins.
Citrullinated vimentin is found at elevated levels in the syno-
vial fluid and in circulating immune complexes of RA patients
[25], and vimentin deimination is linked to the disassembly of
the cytoskeleton [26]. By analogy, the deimination of F-actin
capping protein presumably deregulates the formation of actin
fibers [27].

Three additional proteins are preferentially recognized in
their citrullinated form. The citrullinated form of the immu-
noglobulin chaperone BiP is preferentially bound by RA
patients’ sera, and treatment of mice with citrullinated BiP
promotes experimental arthritis [28]. The deiminated HSP90
heat shock protein was identified as a useful diagnostic
autoantigen in interstitial lung disease that is a potentially
serious manifestation of RA [29]. The deimination of enolase,
a glycolytic enzyme, may play a role during the infection of
gingival epithelial cells [30]. This enzyme is one of the sub-
strates of the bacterial PAD, which is expressed by the peri-
odontal pathogen Porphyromonas gingivalis. The discovery
of infection-induced autoantigen deimination supports the
intriguing possibility that an oral pathogen could induce
autoantigen modifications and thus break immune tolerance.
Clearly, analysis of anti-citrullinated protein autoantibodies
(ACPA) has fostered the emergence of productive new areas
of research (see [31, 32] as examples).

One immediate obvious implication of autoantibodies to
citrullinated epitopes is that the post-translationalmodification
(PTM) itself is the protagonist in converting the autoantigens
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into stimuli for the adaptive immune system. Tolerance is a
strong force that normally prevents the activation of
autoreactive B and T lymphocytes in individuals who remain
free of autoimmune disease. Therefore, the central question in
autoimmune disease research is to account for the initial
events that break tolerance and lead to the specific recognition
of autoantigens. One possibility, suggested by the prevalent
occurrence of ACPA, was that the conversion of specific
arginine residues into citrulline residues alters the recognition
of B cell receptors and/or T cell receptors to such a degree that
tolerance is evaded and lymphocytes to the modified
autoantigens proliferate [33]. However, it remained a matter
of speculation what conditions were likely to lead to a drastic
change in the amount of citrullinated proteins. Possible can-
didates for these conditions were discovered in the course of
studies into the regulation of PADs.

Histone Deimination

Deeper understanding of autoantigen deimination came from
careful analysis of stimuli that causes the activation of PAD4,
the only PAD that is localized to the nucleus and abundantly
expressed in granulocytes and monocytes [2, 3]. Immunoflu-
orescence with an anti-PAD4 monoclonal antibody demon-
strated the highly variable expression levels and heteroge-
neous cellular distribution of PAD4 in human blood neutro-
phils (Fig. 1). Because PAD activity strictly depends on cal-
cium, Hagiwara et al. induced granulocyte differentiation in
HL-60 cells and then exposed them to calcium ionophore
[34]. This treatment raised intracellular calcium levels and

induced deimination. Antibodies to modified citrulline were
used in two-dimensional protein gel electrophoresis to identify

Table 1 Examples of
autoantigens that acquire citrul-
line residues

Function Reference

Extracellular PAD substrates

Filaggrin Outer nucleated layer of epidermis [7]

Collagen II Component of joint cartilage [16]

Fibrinogen/fibrin Component of blood clots [12]

Calreticulin Plasma protein [18]

Cytokines (CXCL8 and CXCL10) Immune cell signaling [73]

Membrane-associated substrate

Myelin basic protein Formation of axon sheath [22]

Cytoplasmic PAD substrates

Vimentin Intermediate filaments [25]

F-actin capping protein Regulation of actin cytoskeleton [27]

BiP (heavy chain-binding protein) Immunoglobulin chaperone [28]

HSP90 Heat shock protein of 90 kD [29]

Enolase Glycolytic enzyme [30]

Nuclear PAD4 substrates

Histones H1, H2A, H3, and H4 Structure of chromatin [34, 59]

Peptidylarginine deiminase 4 (PAD4) Nuclear deiminase [68]

Fig. 1 Detection of peptidylarginine deiminase 4 in human blood neu-
trophils. Human neutrophils were purified, as described [35], and incu-
bated with a mouse monoclonal antibody to PAD4 (kind gift of Dr.
Nakashima, Japan). The antibody was detected with a fluorescent anti-
mouse antibody (shown in red) and the nuclear DNAwas visualized with
Sytox green. The overlap between the two colors yields yellow. All cells
in this preparation exhibit the typical lobulated granulocyte nucleus,
indicating that cells were highly purified. The PAD4 signal is heteroge-
neous in different neutrophils, suggesting that PAD4 is localized to nuclei
and cytoplasm in these cells. The bar indicates 10 μm
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nucleophosmin and three of the four core histones (H2A, H3,
and H4) as abundant substrates of PAD4 [34]. This and
subsequent studies implicated apoptosis in the induction of
histone deimination. Because granulocyte apoptosis is in-
duced during the resolution phase of an inflammatory re-
sponse, it was proposed that increased amounts of citrullinated
autoantigens may be generated during an inflammatory re-
sponse in vivo.

However, the idea that apoptosis induces deimination
proved incorrect. This was concluded from studies show-
ing that classic stimuli for apoptosis fail to induce PAD
activation, and caspase inhibitors are unable to block
deimination [35]. The solution to this dilemma was pro-
vided by experiments that identified a new form of neu-
trophil cell death. Brinkman and Zychlinski discovered
that neutrophils initiate a programmed cell death quite
distinct from apoptosis when in contact with bacteria,
yeast, or viruses [36–38]. This program proceeds through
stages of nuclear and granule membrane dissolution, chro-
matin unwinding, and the release of chromatin from the
cell [39]. Because the extracellular chromatin may capture
and immobilize microbes, the authors coined the expres-
sion “neutrophil extracellular traps” (NETs), and nowa-
days, this form of cell death is known as NETosis [37,
38].

Neeli et al. were the first to connect histone
deimination with NET release by showing that HL-60
granulocytes and primary human blood neutrophils re-
spond to numerous stimuli associated with infections or
inflammation by rapidly inducing histone deimination
[35]. The stimuli can be as diverse as lipopolysaccharide
(LPS), tumor necrosis factor (TNF), hydrogen peroxide,
or lipoteichoic acid. The specific induction of histone
deimination can be visualized by immunofluorescence
with antibodies that react with deiminated histone H3.
Neeli et al. used this technique and discovered that
deiminated histones are incorporated into NETs [35]. Al-
ternatively, citrulline residues can be visualized with a
chemical probe that reacts with the functional groups on
citrulline (Fig. 2). This approach indicates that a majority
of protein deimination occurs in the granulocyte nucleus.
The direct relation between histone deimination and
NETosis was confirmed by Wang and colleagues who
showed PAD4-mediated histone PTM in cells undergoing
NET release in response to calcium ionophore or TNF
[40]. Later, examination of PAD4-deficient mice revealed
that PAD4 activity is required for NETosis [41]. There-
fore, evidence of deiminated histones has become synon-
ymous with an inflammatory process [42–45]. Once con-
ditions for physiologically induced histone deimination
were identified, it became important to test whether
deiminated histones serve as preferential substrates for
disease-associated autoantibodies.

Autoantibodies to Deiminated Histones

Numerous observations had indicated that activated neutrophils
present a more suitable target for certain types of autoantibodies
[46]. However, Dwivedi et al. systematically tested the idea that
deiminated histones are the preferred antigens of human auto-
antibodies [47]. First, the authors compared binding of systemic
lupus erythematosus (SLE), RA, and Felty’s syndrome pa-
tients’ sera to unstimulated versus LPS-treated neutrophils by
confocal microscopy and determined that activated neutrophils
and their NETs react more avidly with patient IgG. Second,
Dwivedi et al. prepared deiminated histones by incubating
purified histones with recombinant PAD4 and observed prefer-
ential binding to deiminated histones in ELISA and Western
blots. Subsets of SLE and RA sera and essentially all Felty’s
syndrome sera showed preferential binding. Felty’s syndrome
is a rare but severe variant of RA. Third, these authors also
showed that patients’ sera contained substances leading to
increased levels of spontaneous NETosis. Thus, a potential
vicious cycle of NETosis induction and autoantibodies to
NET-associated antigens was discovered [33]. Pratesi and col-
leagues extended the work by Dwivedi et al. by using
citrullinated peptides derived from histone H4 and showing

Fig. 2 Chemical detection of citrulline in mouse neutrophils. Mouse
neutrophils were elicited by thioglycollate injection into the peritoneal
cavity of C57BL/6 mice and collected by lavage. Citrulline residues were
detected by phenylglyoxal-rhodamine, a stereospecific dye that reacts
with citrulline functional groups at low pH (the details of this procedure
will be published elsewhere, Neeli and Radic, in preparation). Neutro-
phils are easily identified by the shape of their polymorphic nucleus. In
addition, there are elicited monocytes in this cytospin preparation. Citrul-
line residues (red) were observed in the nucleus (DNA is stained green)
and cytoplasm of neutrophils and, to a lesser extent, in the cytoplasm of
monocytes. The overlap between the two colors yields yellow. The bar
indicates 10 μm
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that the peptides exhibit equal or better discrimination between
RA and control sera than citrullinated peptides derived from
filaggrin do [48].

Fundamental insights into the relation between NETosis and
autoimmunity were derived in a notable series of papers pub-
lished in 2011. Lupus neutrophils were shown to often include
a population of low density granulocytes that exhibit an in-
creased tendency for NETosis [49]. In vivo, these cells poten-
tially account for the observed NET DNA in affected kidneys
and skin, along with the increased abundance of NET compo-
nents in blood that may act as lupus autoantigens [49]. The
consequences of an increased NET release in vivo may lead to
elevated levels of pro-inflammatory cytokines such as
interferon-α (IFN-α) and interleukin-17. The relation between
NETs and the production of IFN-α was made explicit by
showing that NET components consisting of DNA and the
cationic defensin LL37 activate plasmacytoid dendritic cells
via toll-like receptor 9 (TLR9) to secrete IFN-α [50]. Additional
experiments suggested that SLE patients’ neutrophils are primed
by IFN-α to release NETs in response to autoantibody-
ribonucleoprotein complexes [51]. These experiments cast pre-
viously known roles of TLR9 and type I IFN in a new light.

An activated neutrophil subset was also characterized in
patients with RA. Studies by Khandpur et al. [52] identified
NETting neutrophils in synovial tissues of RA patients and
showed that neutrophils are stimulated to undergo NETosis by
incubation with ACPA reacting with vimentin. Such NETs
had a distinct composition of NET components, as demon-
strated by RA NET purification followed by mass spectrom-
etry [52]. In conjunction, these studies strengthened the argu-
ment that neutrophils play an important role in the

pathogenesis of SLE and RA. Additional evidence supporting
the idea that neutrophil activation is responsible for introduc-
ing modifications into autoantigens and that these PTM, in
turn, stimulate autoantibody production is provided by the
prevalence of RA autoantibodies to oxidatively modified
autoantigens [53]. However, studies in a mouse model of
lupus could not confirm the contribution of NETs to the
development of autoimmunity, as breeding to mice incapable
of NET release failed to ameliorate the typical pathology or
autoantibody production [54]. It is unclear whether differ-
ences in Fc receptors between mice and humans may account
for the observed differences in experimental outcomes [55].
Additional parallels between PAD deimination and human
pathology exist and promise exciting applications of PAD
inhibitors in the treatment of cardiovascular diseases [45]
and cancer [56].

Histone Deimination and Chromatin Structure

Experiments with autoantibodies to deiminated histones show
that studies in autoimmunity have the ability to illuminate
basic principles in molecular biology. H1 linker histones are
a family of seven isoforms of extranucleosomal histones that
occupy the DNA between adjacent nucleosomes [57]. As
such, linker histones are in an ideal position to regulate chro-
matin structure and gene expression [58]. Because it was not
known whether H1 histones are deiminated, conditions that
strongly induce PAD4 were used to stimulate neutrophils and
linker histones were purified based on their unique solubility
in 5 % perchloric acid [59]. Mass spectrometry revealed that

A

NET

B

Condensed
chromatin

Relaxed
chromatin

CitCit

2181 H1.2R32 R53      R78

Fig. 3 Histone H1, an important element of chromatin dynamics.
a:PAD4 converts two of the three arginine residues in H1.2 to citrulline
residues in stimulated neutrophils. Whereas Arg32 is located in the
unstructured N-terminal tail of H1.2, Arg53 is contained within the
globular domain of the protein. The residue Arg 78, also present within
the globular domain of H1.2, is not citrullinated. bHistone H1 plays a key

function in chromatin folding and compaction. H1-depleted chromatin
appears relaxed in comparison to native (H1-containing) chromatin fi-
bers. Citrullination of H1 may contribute to its detachment from the
chromatin and the subsequent unfolding of chromatin that is required
for the relaxed NET chromatin release
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only two of the three arginine residues in H1.2 are converted
to citrulline residues in neutrophils (Fig. 3), a conclusion that
was confirmed in vitro by incubation with the recombinant
PAD4 [59]. Peptides containing either of these two citrulline
residues were used to determine which citrullinated peptide is
the preferred substrate of autoantibodies from SLE or
Sjögren’s syndrome patients. Even though only about 6 %
of SLE sera contained autoantibodies to deiminated H1 his-
tones, the most prevalent binding was to the citrulline residue
at position 53 (Fig. 3). This residue is located within the most
conserved portion of the H1 helix-turn-helix domain [59].
Residue 53 plays a key role in regulating chromatin structure,
a conclusion consistent with recent observations in pluripotent
stem cells. Deimination of H1 linker histone by PAD4 is
essential for the reprogramming of gene expression that is
required during differentiation of pluripotent stem cells into
separate cell lineages [60]. Autoantibodies to deiminated H1
linker histones thus identify a crucial switch in chromatin
structure that is essential for stem cell gene reprogramming.

Deimination of core histones similarly has broader implica-
tions for gene expression. Now, in the classic experiments on
histone deimination, Cuthbert et al. [61] and Wang et al. [62]
identified hormone responsive genes whose promoters exhibit
deiminated histones. Subsequent studies provided additional
examples of gene regulation by histone deimination and linked
PAD4 to diverse biological processes ranging from mammalian
development to tumorigenesis [63–67]. Because PAD4
autocitrullinates and thereby alters autoantibody binding [68],
it will be important to determine whether and to what extent
autoantibodies that arise is systemic autoimmune disorders af-
fect the function of PAD4 and its specific chromatin substrates.

Summary and Future Perspectives

From nearly a decade of research into autoantibodies to
deiminated histones, it stands established that inflammatory
conditions lead to a neutrophil cell death that is both antimicro-
bial and prone to induce autoantibodies to chromatin
autoantigens. Autoantibodies to deiminated histones arise in
distinct autoimmune disorders and thus provide arguments for
the important role of neutrophils in the initial stimulation of the
adaptive immune system that leads to autoimmunity. Clearly, it
is imperative to pursue studies on deimination and its regulation
during NETosis. Early successes of therapies for autoimmune
disorders that are based on inhibition of PAD4 suggest that
inhibitors of PAD4will find broad applications in rheumatology
clinics. Studies in animal models of autoimmunity have shown
significant improvement in disease presentation upon adminis-
tration of PAD4 inhibitors [3]. The remarkable list of clinical
conditions that were improved by PAD4 inhibition includes
experimental arthritis, lupus, MS-like disease, and colitis
[69–72]. It is reasonable to expect that future efforts to

understand and regulate PAD4 will continue to yield real bene-
fits for patients suffering from diverse autoimmune disorders.
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