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Abstract Type 1 diabetes mellitus (T1DM) is a T cell-
mediated autoimmune disease characterized by the destruc-
tion of pancreatic β cells. Numerous studies have demonstrat-
ed the key role of CD4+CD25+FoxP3+ regulatory T cells
(Tregs) in the development of T1DM. However, the changes
in Treg expression and function as well as the regulation of
these activities are not clearly elucidated. Most studies on the
role of Tregs in T1DM were performed on peripheral blood
rather than pancreas or pancreatic lymph nodes. Tissue-based
studies are more difficult to perform, and there is a lack of
histological data to support the role of Tregs in T1DM. In spite
of this, strategies to increase Treg cell number and/or function
have been viewed as potential therapeutic approaches in
treating T1DM, and several clinical trials using these strate-
gies have already emerged. Notably, many trials fail to dem-
onstrate clinical response even when Treg treatment success-
fully boosts Tregs. In view of this, whether a failure of Tregs
does exist and contribute to the development of T1DM and
whether more Tregs would be clinically beneficial to patients
should be carefully taken into consideration before applying
Tregs as treatments in T1DM.
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Introduction

The Immune Basis of T1DM

Type 1 diabetes mellitus (T1DM) is a chronic, T cell-mediated
autoimmune disease. The immune system attacks the insulin-
producing β cells of the pancreatic islet, eventually resulting
in insulin deficiency [1, 2]. Under normal conditions, the vast
majority of self-reactive T cells are eliminated in the thymus
through a mechanism called “central tolerance induction.”
This is part of the process which ensures immune tolerance
to self-antigens. Nevertheless, a few remaining autoreactive T
cells escape thymic elimination and are released to the periph-
eral circulation [3]. Normally, these autoreactive T cells are
actively suppressed by regulatory T cells (Tregs). Therefore,
impaired thymic deletion and defective Treg function
may both contribute to the onset and development of
autoimmune T1DM [4].

In animal models of T1DM, islet-reactive T cells are
primed in the pancreatic lymph nodes [5] and then infiltrate
into islets causing damage toβ cells. Abnormal autoreactive T
cell responses, together with effect of other immune cells,
including macrophages, dendritic cells (DCs), natural killer
T (NKT) cells, and B cells, eventually induce the onset of
autoimmune diabetes. Specifically, the destruction of β cells
is mediated by granzyme and perforin produced by CD8+ T
cells, cytokines such as interferon gamma (IFN-γ), and
interleukin-17 (IL-17) [6]. Fas/Fas and tumor necrosis
factor-α (TNF-α)-dependent pathway also contribute to the
pathogenesis of T1DM [3] (Fig. 1).

The Immunological Properties of Tregs

Tregs are a diverse population of lymphocytes that exhibit
inhibitory or regulatory effects on immune responses by
influencing the activity of other cells. A dysfunction in Treg
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cells has been implicated in the pathogenesis of many auto-
immune diseases [7–9]. Tregs suppress autoreactive T cells
and induce immune tolerance, resulting in a dampening of
inflammation [10]. Cell-to-cell contact, secretion of immuno-
suppressive cytokines, killing or modification of antigen-
presenting cells (APCs), and competition for growth factors
are the four main regulatory mechanisms Tregs exert their
regulatory effects on T cells, natural killer (NK) and NKT
cells, B cells, and antigen-presenting cells (APCs) [11, 12].
Types of Tregs include CD4+CD25+FoxP3+ Tregs,
interleukin-10 (IL-10)-secreting TR1 cells, transforming
growth factor-β (TGF-β)-secreting T helper 3 (TH3) cells,
CD8+ Tregs, CD8+CD28-FoxP3-Tregs, CD3+CD4-
CD8-(DN) Tregs, CD4+Vα14+ NKTregs, and γδ-T-cells
[10, 13, 14]. A comprehensive review of all the various
subsets of Tregs is beyond the scope of this article.
CD4+CD25+FoxP3+ Treg cells have been one of the more
extensively studied types of Treg cells, and the effect of this
subset of Treg cells on T1DM is the main focus of this paper.

Among the various characteristic markers of Treg cells, the
most specific and important one is foxhead box P3(FoxP3),
which is constitutively expressed by Tregs and acts as a master
regulator [15, 16]. CD4+CD25+FoxP3+ Tregs consist of two
major subsets with different origins: thymus-derived natural
Treg (nTreg) and peripheral-induced Treg (iTreg). Though
there exist some differences between the two subsets, nTreg
and iTreg share many similar phenotypes and show compara-
ble suppressive function [17].

Treg Cell Interactions

Animal Models

The existence of suppressor T cells has been recognized for
almost two decades [18–21]. However, inconsistent data ob-
tained from different laboratories have delayed our under-
standing of the mechanism of action of these cells. It was

not until 1995 that several laboratories [22–25] demonstrated
that a distinct subset of CD4+ T cells expressing CD25 pos-
sesses regulatory properties. When CD4+ T cells depleted of
this CD25+ population were transferred into the immunodefi-
cient nude mice, various forms of autoimmunity [22, 23]
including autoimmune diabetes [26] ensued. Later, FoxP3
[15, 16, 27] was found to be the master regulator of Treg
development as well as function [28], directly demonstrated
by the observation that FoxP3 point mutations lead to fatal
autoimmune disease in mice [27, 28]. Data obtained from
animal models of T1DM clearly demonstrate that
CD4+CD25+FoxP3+ Tregs are crucial for bridling T1DM.
Elimination of Tregs in non-obese diabetic (NOD) mice led
to the spontaneous development of autoimmune diabetes. In
contrast, reconstitution or transfer of Tregs could prevent the
development of autoimmune diabetes in murine models
[29–31]. As islet-reactive T cell priming takes place in the
pancreatic lymph nodes, and then primed effector T (Teff)
cells migrate to the islets to destroy β cells, the protective
effect of Tregs can occur both in the secondary lymphoid
organs and the inflammatory pancreas, respectively.

Treg Cell Effects on T Effector Cells

Tregs regulate the activity of autoreactive T cells via several
different mechanisms. In pancreatic lymph nodes (PLNs), Teff
proliferation is inhibited by Tregs, demonstrated by the in-
verse correlation between the level of Tregs and proliferation
of Teffs [30]. Attracted to sites of inflammation, Tregs co-
localize with Teffs and dampen the activity of Teffs. Direct
cell-to-cell contact is required as demonstrated in in vitro
experiments [32]. For example, in lymphoid tissues, Tregs
impaired the survival of T helper type 1 (Th1) cells via
FasL-dependent cytotoxicity [33]. It should be noted that the
elimination of Teffs is only one of the many regulatory mech-
anisms of Treg cells. Van et al. found that Tregs in the PLNs of
NOD mice suppress the activation as well as IFN-γ secretion
of both CD4+ and CD8+ T cells [34]. In addition, Tregs block
Teffs migration to the T–B cell boundary in the lymph node

Fig. 1 Immune basis of T1DM
Defective Treg failed to regulate
autoreactive T cells that target
islet β cells, contributing to the
development of T1DM
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where antigen-loaded DCs are present [35, 36], thus imping-
ing upon the proper priming of autoreactive T cells. By
suppressing CXCR3 expression in Teffs, Tregs reduce their
migration to the PLNs [30].

Tregs may also interfere with the interaction between Teffs
and antigen-presenting cells (APCs). Tang et al. [37] showed
that Tregs and DCs form persistent conjugation, possibly
preventing stable associations between Teffs and these APCs.
Tregs thus use a variety of mechanisms to restrict DCs activ-
ity, consequently suppressing the activation and differentia-
tion of Teffs in the PLNs [38]. Furthermore, it has been
proposed that the suppressive function of Tregs involves the
ability of Tregs to “educate” other Tcells to adopt a regulatory
phenotype [39]. In combination with TGF-βand IL-10, Tregs
induce CD4+CD25− cells to become suppressor cells [39].

Treg Cell Effects on Dendritic Cells (DCs)

It has also been observed that Tregs cluster around DCs in the
PLNs of NOD mice and the engagement of Tregs with DCs
blocks the activation of Teffs [41]. CLTA4 expressed by Tregs
downregulates DC’s expression of CD80 and CD86 and
thereby inhibits the activation of Teffs [42, 43]. Lee et al.
[44] showed that nTreg depletion resulted in accelerated au-
toimmune diabetes characterized by a large number of DCs
infiltrating the pancreas. They further proposed that Tregs can
inhibit DC’s infiltration by regulating chemotaxis of DCs
toward islets-produced CCL19/21 [44].

Cytokines play an important role in the interaction between
Treg cells and DCs. Secreted by Tregs, TGF-β and IL-10
affect the function of Teffs and DCs in a number of ways.
TGF-β1 reduces the production of inflammatory cytokines
from CD4+ T cells [39]. Furthermore, TGF-β1 also induces
the production of IL-10 in Th1 cells and hence attenuates Th1
cell function [45]. Reciprocally, IL-10 enhances the response
of Teffs to TGF-β1 [45]. Thus, TGF-β and IL-10 work in
combination to suppress the function of Teffs. IL-10 also
downregulates IL-12 production in DCs and inhibits the func-
tion of Th1 cells [46, 47]. IL-2 is a key factor in the activation
of T cells. Tregs avidly capture and exhaust IL-2, leading to
IL-2 deprivation of Teffs [48]. The inhibition of IL-2-
dependent MHC/protein interactions has been postulated to
be a potential mechanism by which to shut down
autoreactivity and treat autoimmunity [49].

Other Cellular Interactions

Tregs can also regulate pancreatic autoimmune activity
through the control of other types of immune cells in addition
to autoreactive T cells. Transfer of Tregs resulted in a decrease
in the number of macrophages in the pancreas and inhibition
of deleterious cytokine production [40]. Natural killer (NK)
cells may also be targets of Tregs [50], demonstrated by the

observation that NK cells are activated in the islets in Treg-
deficient mice [38].

Another NOD-related observation involves the role of a
protein CD137, which is a Treg-derived natural immunosup-
pressive protein. It has been found that NOD mice are defi-
cient in CD137+_Treg cells. An APC independent assay
showed that soluble CD137 suppresses highly purified CD4
T cells through its interaction with CD137 ligand on APCs.
CD137 is postulated to act via a negative feedbackmechanism
to suppress hyperactive immune responses. A deficiency in
this population of CD137+ Treg cells may play a role in the
pathogenesis of NOD mouse T1DM [51].

Alteration of Peripheral Tregs in T1DM Patients

Methods

Because of the important regulatory role that Tregs play in the
pathogenesis of T1DM, the number and/or function of Tregs
in T1DM patients have been investigated in the recent years.
We searched the PubMed for all potentially relevant articles.
The key search terms were “diabetes mellitus, type 1”; “dia-
betes mellitus”; “T-lymphocytes, regulatory”; and ‘T-lympho-
cytes.”We focused on studies which investigated the number/
frequency and/or function of Tregs in patients with type 1
diabetes. The search was restricted to cross-sectional or lon-
gitudinal studies conducted in humans. In addition, we man-
ually reviewed references from important review articles for
relevant articles.

Results

The search identified 24 relevant references that investigated
the frequency and/or number of Tregs in T1DM patients.
Sixteen studies reported the frequency of Tregs in T1DM
patients. Twelve studies investigated the suppressive function
of Tregs in patients with type 1 diabetes. The main results of
the included studies are summarized in Table 1.

As shown in Table 1, conflicting results have been obtained
thus far. Peripheral Treg number and frequency have been
shown to be slightly increased, significantly decreased, or
normal in T1DM patients (Table 1). Functional assessments
have also demonstrated lower or normal suppressive function
of Tregs in T1DM patients.

The lack of a general consensus on the role of Treg cells is
not unexpected for the reasons outlined below.

1. Currently, there is no precise definition of Tregs. Different
experiments use differentmarkers to define Tregs, making
comparison of the results almost impossible. Most work
[52–63] utilized CD4+CD25+/high to define Tregs, but
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after the identification of FoxP3, researchers [64–70]
preferred to use this more specific marker to differentiate
Tregs from other T cells. More recently, studies by
Badami et al. [71], Ferraro et al. [72], and Liu et al. [73]
exploited lower expression of CD127 in combina-
tion with the expression of CD4 and CD25 as more
precise markers for live Tregs, allowing for flow
cytometry-based cell sorting.

2. Nearly all of the studies in Table 1 used Tregs from
peripheral blood. Most of their conclusions were based
on the hypothesis that T cell population in the peripheral
at least partly parallels the one infiltrating various tissues
including the pancreas. However, it has been suggested
that Tregs exert their function within the target organ
undergoing autoimmune attack as well as in draining

lymph nodes (DLN) [35, 37, 38, 40, 44]. Consequently,
it is possible that the frequency or function of Treg pop-
ulation in the local immune sites does not parallel to the
one in the peripheral blood. Preferably, Tregs in T1DM
patients should be assessed in the context of the organ
where the autoimmune process takes place in addition to
the peripheral blood.

3. Though most Tregs retained FoxP3 expression after
adoptive transfer under physiological conditions [74,
75], a minority of Tregs were found to have lost
FoxP3 expression following transfer into lymphope-
nic hosts in animal models [74]. Likewise, dimin-
ished maintenance of FOXP3 expression in Tregs
has been shown to occur in T1DM patients [76].
Thus, under particular inflammatory conditions, the

Table 1 Treg frequency and
function in T1DM Surface markers used to identify Treg Frequency/function of Treg in PBMC Reference

CD4+CD25+ Decreased Treg frequency [52]

CD4+CD25+CD127− Decreased Treg frequency [71]

CD4+CD25high Decreased Treg frequency [53]

CD4+FoxP3+ Decreased Treg frequency [64]

iTreg: CD4+CD25+CD127lo/−FoxP3+ Increased iTreg frequency [65]

CD4+FoxP3+ Normal Treg frequency;

Increased frequency of CD45RO+ Treg;

Decreased frequency of CD45RA+ Treg;

Increased frequency of IFN+ Treg;

Increased frequency of TNF+ Treg;

Normal Treg function

[66]

CD4+CD25high Normal frequency of Treg;

Decreased suppressive function

[54]

CD4+CD25high Normal Treg frequency;

Normal suppressive function

[55]

CD4+CD25+CD127lo/−FoxP3+ Normal Treg frequency [67]

rTreg: CD45RA+CD25+FoxP3low

aTreg: CD45RA−CD25+FoxP3high
Normal frequency of rTreg and aTreg [68]

CD4+CD25highCD127− Normal Treg frequency;

Normal suppressive function

[72]

CD4+CD25high Normal Treg frequency [56]

CD4+CD25high Normal Treg frequency [57]

CD4+CD25+ Normal Treg frequency;

Decreased suppressive function

[58]

CD4+Foxp3+ Normal Treg frequency [69]

aTreg:CD45RA-FoxP3high Increased frequency of aTreg;

Decreased suppressive function of aTreg

[70]

CD4+CD25high Normal suppressive function [59]

CD4+CD25+CD127lo/− Normal suppressive function [73]

CD4+CD25high Decreased suppressive function [60]

CD4+CD25high Decreased suppressive function [61]

CD4+CD25+FoxP3+ Transient decrease of Treg function during
3–6 months from diagnosis, restored by
9 months

[62]

CD4+CD25high Increased suppressive function of iTreg [63]
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environment may impact on the frequency and/or
function of Treg cells.

4. The discrepancies between various studies may also result
from the complexity of the in vitro systems. Since tools
for the identification of Tregs in vivo are limited, in vitro
assays are widely used, despite the fact that they are of
limited relevance to the physiological or pathological
conditions in vivo. Furthermore, different systems may
clamp cell behavior to different artificial environment.

5. The disparities of characteristics between patients and
healthy subjects recruited by each study should also be
taken into consideration. Various factors including age,
gender, and disease duration can all influence the immune
status of the patients and possibly change Treg number or
function to some extent. For example, the majority of
studies [53, 54, 62, 65, 66, 68, 72] in Table 1 used age-
matched controls to avoid the potential confounding ef-
fect of age. Moreover, in several studies [52, 61, 63, 65,
67], the researchers divided T1DM patients into two
subgroups, namely the new-onset T1DM patients and
established T1DM patients (6).

Recently, it has been reported that the effector T cell pop-
ulation in T1DM can resist the regulatory activity of Tregs
[57, 59]. Thereby, it is tempting to contemplate that instead of
defects in Tregs, the refractory nature of hyperactivated effec-
tor T cells to the control of Tregs mimics the defect in Treg
function. Taken collectively, current published data suggests
that the frequency of Tregs in the peripheral blood of T1DM
patients may appear normal. However, it is still unclear wheth-
er Treg cells from T1DM patients have intrinsic defective
function or whether the responder T cells are resistant to
suppression. To answer this question, with certainty, further
studies are urgently needed.

Tregs in the Pancreas and Peripheral Lymph Nodes

The characterization of Treg population in the pancreas and
PLNs remains poorly addressed in clinical settings. One study
mentioned in Table 1 compared PLNs-derived Tregs from
T1DM patients and controls, reporting that PLN-derived Treg
functions were impaired in T1DM subjects [72]. Willcox [77]
analyzed postmortem pancreatic samples from 29 T1DM
patients. FoxP3+ Tregs were only found in islets from a single
patient, suggesting that the lack of Treg cells may play a role
in autoimmune pathogenesis in T1DM patients.

Compared to the void of studies in human subjects, several
animal studies have focused on Tregs in the pancreas and
PLNs. Tonkin [40] generated TGF-β-induced islet-specific
Tregs and demonstrated their ability to suppress the transfer
of diabetes into NOD.scid mice using diabetic spleen cells.

Infiltration of both Teffs and Tregs were observed in the
pancreas, suggesting the active role that Tregs play in the
inflammatory site. By the induction of hemopoietic chime-
rism, antea-diabetic mice were restored to adequate pancreatic
islet function even after they had been rendered hyperglyce-
mic. Compared to the antea-diabetic mice, the numbers of
Tregs in the PLNS were significantly decreased in NODmice,
indicating that Tregs in the PLNs had a potential role in
ameliorating disease progression in the model [78]. The accu-
mulation of Treg cells that was observed in the islets and
PLNs in mice models likely played a significant role in
controlling anti-islet inflammation [79].

Mechanistically, local production of CCL22 in islets re-
cruits Tregs to the islets and leads to protection from T1DM in
the NODmodel [80]. In parallel, pDCs [81] was shown to take
a critical role in recruiting Tregs to the pancreas and
preventing the progression of T1DM. After entering the pan-
creas and PLNs, Tregs function to prevent islet destruction via
a variety of mechanisms, including the blocking of interac-
tions between Teffs and DCs [37]. Further studies are needed
to establish whether or not clinical effects in human subjects
parallel those results seen in animal models of T1DM.

Antigen-Specific Tregs in T1DM

Studies on the impairment in the function of Tregs specific to
islet antigen are sparse. In most of these studies, the Tregs
under investigation are not truly antigen-specific Tregs but are
polycolonal in nature. However, it has been demonstrated that
antigen-specific Tregs are much more potent in suppressing
autoimmunity in T1DM than polyclonal Tregs [29]. In the
NOD model, β cell peptide-pulsed DCs can lead to the dif-
ferentiation of islet-specific Tregs, which are capable of
preventing the development of diabetes when co-transferred
with diabetogenic cells [82, 83]. NKG2D, an immune-
activating receptor found on NK cells and CD8 cells, has been
shown to be increased in virus-induced T1DM. Treatment
with antibody to NKG2D in combination with antigen-
specific Treg cells was able to prevent the development of
T1DM in 75 % of mice belonging to a rat insulin promotor
(RIP) lymphocytic choriomeningitis virus (LCMV) mouse
model. On the other hand, NKG2D blockade by itself was
unable to prevent the development of T1DM in a NODmouse
model, even in the presence of the downregulation of NKG2D
in NK and CD8+ T cells. The authors concluded that while
NKG2D can help maintain Treg cell functionality during
ongoing inflammation, it is insufficient by itself to protect
against T1DM in the face of strong inflammatory signals [84].

Similarly, in several clinical trials, islet-specific Tregs have
been generated and deemed as one of the mechanism contrib-
uting to the control of disease progression. For example, in a
phase I clinical trial [85], insulin B-chain immunotherapy
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induced the generation of insulin B-chain-specific Tregs.
GAD65-specific Tregs are also generated during treatment
with a GAD-alum moiety [86]. However, the existence of
naturally occurring islet-specific has not yet been investigated.
It is also possible that even if levels of polyclonal Tregs are
unaltered in T1DM patients, islet-specific Tregs may be defi-
cient in number or function in these subjects with T1DM.

Treg Cell-Based Therapy for T1DM

Several clinical trials aiming to re-establish immune tolerance
via Treg induction or direct infusion of Treg cells have
emerged (Table 2), including anti-CD3 therapy [87, 88],
glutamic acid decarboxylase (GAD) injection [89, 90], hema-
topoietic stem cell transplantation (HSCT) [91, 92], autolo-
gous umbilical cord blood transfusion [93–95], and stem cell
educator therapy [96]. Some of these therapies have shown
efficacy, as demonstrated by increased C-peptide levels and

decreased daily dose of insulin requirement, while the others
failed in meeting their primary goals.

Anti-CD3 Therapy

Anti-CD3 monoclonal antibody effectively blocks T effector
cell activation and, hence, inhibits the development of T1DM
in animal models [97, 98]. In addition, anti-CD3 therapies
lead to the depletion of pathogenic T cells, but preserve or
even boost Treg cell numbers [99]. In general, clinical trials of
anti-CD3 therapy have shown improvement in islet function
in patients with T1DM [88, 100, 101].

Antigen-Specific Therapy

Administration of GAD [89, 102, 103], insulin [104, 105], and
DiaPep277 [106] all fall within the realm of antigen-specific
therapy. The mechanism of these therapies involves the in-
duction of antigen-specific Tregs [107]. Such Tregs then
potently regulate autoimmune responses. However, there are

Table 2 Clinical approaches for T1DM affecting T reg number or function

Type Agent Main mechanisms Efficacy

Anti-CD3 therapy ChAglyCD3 [88] 1. Prevention of
Teff activation

2. Boosting Treg
numbers

Residual beta-cell function was better maintained

hOKT3gamma1(Ala-Ala) [87] Improved C-peptide responses to a mixed meal,
reduced HbA1c and insulin requirements

ChAglyCD3 [101] Suppression of the rise in insulin requirements
of recent-onset T1DM patients over 48 months

Teplizumab [100] Reduced decline in C-peptide at 2 years in some
patients with new-onset T1D

Teplizumab [99] Better C-peptide responses but no improvement
in HbA1c

Otelixizumab [110] No significant effect on C-peptide perseveration

Antigen-specific therapy
(GAD vaccination)

Alum-formulated GAD /
GAD-alum(Diamyd) [89]

Induction of antigen-
specific Treg

Preservation of residual insulin secretion over
30 months but no reduction in insulin needs

GAD-alum(Diamyd) [102] No significant reduction in loss of stimulated
C-peptide

GAD-alum(Diamyd) [103] No alteration of the course of loss of insulin secretion
during 1 year

Antigen-specific therapy
(insulin vaccination)

Oral insulin [104] No significant effect on C-peptide perseveration

Oral insulin [105] Improved C-peptide responses in patients
diagnosed at ages greater than 20 years

Antigen-specific therapy
(heat shock protein vaccination)

DiaPep277 [111] no beneficial effect in preserving islet function

DiaPep277 [112] Increase of C-peptide after diagnosis in the low-risk
HLA genotype subgroup

Stem cell therapy HSCT [91] 1. Direct infusion of Tregs
2. Inhibition of immune

activation by APCs
by stem cells

3. Recruitment of Tregs

Increase of C-peptide and insulin independence
achieved for the majority of patients

HSCT [113] Insulin independence achieved for the majority
of patients

Autologous cord blood
infusion [94]

No preservation of C-peptide

Autologous cord blood
infusion [95]

No change in C-peptide preservation
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pitfalls to the success of antigen-specific therapies in the
clinical settings, and most trials brought about no clin-
ical benefit.

Direct Infusion of Treg Cells

Direct infusion of Tregs is also a promising strategy in the
treatment of T1DM. Stem cells from bone marrow and
umbilical cord blood are abundant with Tregs and may
be utilized for Treg cell transplant. In addition, stem
cells have been shown to inhibit immune activation
triggered by antigen-presenting cells (APCs), recruit im-
munosuppressive cells including Tregs, and support islet
function and regeneration. Though proven to be effec-
tive in reversing autoimmunity in NOD mice [108] and
reducing the levels of islet autoantibodies as well as the
level of blood glucose in a clinical trial [109], most
stem cell therapies did not bring about improvement in
metabolic parameters. The exceptions to this include
two HSCT therapy trials [91, 92].

Conclusions

The evidence supports a defect in the regulation of effector T
cell activity by Tregs, either due to intrinsic defects of Treg
function or resistance of Teff to Treg modulation. Neverthe-
less, a definitive answer to the question as to whether the
frequency/function of Tregs is different between T1DM pa-
tients and healthy controls needs to be further explored, per-
haps by larger clinical surveys.

A n im a l m o d e l s c l e a r l y d em o n s t r a t e t h a t
CD4+CD25+FoxP3+ Treg cells play a pivotal role in modu-
lating the outcome of autoimmunity. Early clinical trials af-
fecting the number of function of Treg cells have produced
encouraging results that indicate the development of Treg cell-
based treatments should be a strategy that should be pursued.
However, the lack of specific markers, imperfect systems for
testing Treg function, the plasticity of Tregs as well as varying
clinical manifestations across studies as a function of age or
disease duration all contribute to the mixed results reported
from these clinical studies. Future studies of Treg number and
function in local sites of inflammation and the effects of
antigen-specific Tregs in T1DM patients will bring new in-
sights into the precise role of Treg cells in T1DM. Moreover,
the definition of the specific defects in Treg regulation in
autoimmune diabetes will lead to improved diagnosis as well
as possible cure for the disease. Ultimately, a more thorough
understanding of T1DM and the role of Tregs will contribute
to the development of safe and effective novel treatment
strategies of T1DM.
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