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Abstract Autoimmune type 1 diabetes is characterized by
selective destruction of insulin-secreting beta cells in the
pancreas of genetically susceptible individuals. The mecha-
nisms underlying the development of type 1 diabetes are not
fully understood. However, a widely accepted point is that
type 1 diabetes is caused by a combination of genetic and
environmental factors. Although most type 1 diabetes patients
do not have a family history, genetic susceptibility does play a
vital role in beta cell autoimmunity and destruction. Human
leukocyte antigen (HLA) regions are the strongest genetic
determinants, which can contribute 40-50 % of the genetic
risk to type 1 diabetes. Other genes, including /NS also con-
tribute to disease risk. The mechanisms of the susceptible
genes in type 1 diabetes may relate to their respective roles
in antigen presentation, beta cell autoimmunity, immune tol-
erance, and autoreactive T cell response. Environmental sus-
ceptibility factors also contribute to the risk of developing type
1 diabetes. From an epigenetic standpoint, the pathologic
mechanisms involved in the development of type 1 diabetes
may include DNA methylation, histone modification,
microRNA, and molecular mimicry. These mechanisms may
act through regulating of gene expression, thereby affecting
the immune system response toward islet beta cells. One of the
characteristics of type 1 diabetes is the recognition of islet
autoantigens by autoreactive CD4" and CD8" T cells and
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autoantibodies. Autoantibodies against islet autoantigens are
involved in autoantigen processing and presentation by HLA
molecules. This review will mainly focus on the molecular
mechanism by which genetic, epigenetic, and environmental
factors contribute to the risk of type 1 diabetes.
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Introduction

Diabetes is now known to be an organ-specific autoimmune
disease, but the phenotype differs in children versus adults.
The two major autoimmune diabetic conditions include type 1
diabetes, which generally but not exclusively affects children,
and latent autoimmune diabetes of adults (LADA) [1].

Almost 40 years ago, islet cell antibodies against type 1
diabetes (T1D)-specific antigens were found in the serum of
T1D patients, suggesting that the beta cell loss of TID was
autoimmune in nature [2]. T1D is generally thought to be
characterized by autoimmune destruction of insulin-
producing pancreatic beta cells mediated by an autoantibody
to islet cell antigens [3, 4]. The resultant loss of insulin causes
an overproduction of glucose and a decreased cellular uptake
of glucose, resulting in hyperglycemia. Loss of insulin also
leads to an increase in fat breakdown and fatty acid oxidation,
which, in turn, causes overproduction of ketones [5]. Over-
production of ketones leads to diabetic ketoacidosis, and
lifetime exogenous insulin treatment is required for the treat-
ment of diabetes patients.

T1D can be present at any age. The incidence of T1D in
children has been increasing over the past several decades [6].
It is considered one of the most common chronic childhood
diseases [7]. Abundant research on T1D has historically orig-
inated out of Europe and North America, including countries
such as Finland, Norway, Sweden, UK, Canada, and the USA
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[8, 9]. The incidence and prevalence of T1D vary substantially
worldwide [10, 11]. For example, the incidence of T1D is 60
cases in Finland and 40 cases in Sardinia per 100,000 people
each year, while the incidence of T1D in China and Venezuela
has been reported to be as low as 0.1/100,000 per year [1, 12].
The mechanisms underlying the increased incidence of T1D
in selected countries are unknown but have been attributed to
environmental influences [4].

LADA was first reported over 27 years ago [13]. LADA
patients are defined as glutamic acid decarboxylase antibody
(GADA)-positive, initially without insulin treatment for at
least 6 months, diagnosed over the age of 30 years according
to the criteria of Immunology of Diabetes Society (IDS) [14].
LADA is a slowly progressive form of autoimmune diabetes
in adults. The progression of autoimmune beta cell loss is
associated with the development of islet cell autoantibodies in
a manner similar to T1D, but the clinical features are more
consistent with type 2 diabetes (T2D) [15]. LADA patients do
not require insulin treatment during the first 6 months after
diagnosis [16, 17]. Many other names have been used to
describe this condition, including diabetes mellitus type 1.5
[18], non-insulin requiring autoimmune diabetes (NIRAD)
[19], slowly progressive T1D (SPT1D) [20], and autoimmune
diabetes in adults (ADA) [16].

The relationship between LADA, T1D, and T2D remains
controversial [21, 22]. LADA was once considered a slowly
progressing subtype of T1D. However, the clinical features
more resemble T2D. It is suggested that LADA is different
from both classic T1D and T2D [23]. Studies from our group
[14] and others [24] have demonstrated that human leukocyte
antigen (HLA) protective haplotypes are less frequent in
LADA. However, other studies have shown that LADA share
similar susceptibility genes to classic T1D [25-28] and T2D
[29]. Some researchers believe that diabetes occurs on a
contimuum. Our results suggested that the susceptible haplo-
types of the HLA-DQ gene present a continuous spectrum
from T1D, through LADA, to T2D [30]. Autoimmune diabe-
tes is not triggered by a single factor but results from a
complex interaction between genetic and environmental fac-
tors. The molecular mechanisms involved in susceptibility
and the development of autoimmune diabetes, T1D in partic-
ular, are complex and redundant immune pathways.

Genetics

TID is caused by both genetic and environmental factors.
Genetic susceptibility plays a vital role in the pathogenesis
of T1D. It was reported that the risk of diabetes in sibling is
6 %, which is 15 times higher than that in the general Cauca-
sian population [31]. The concordance rate for monozygotic
twins (3040 %) is much higher than that for dizygotic twins
(6-8 %) [32, 33]. These observations suggest that the genetics

is a significant risk factor. Over 50 susceptibility regions have
been identified to associate with T1D (Table 1). The major
susceptibility genes to T1D are located in HLA region. The first
reports regarding the association between HLA and T1D were
published 40 years ago [70], which spawned extensive research
from all regions of the world to determine which alleles of HLA
are associated with T1D. In addition to HLA, other genes, such
as INS, cytotoxic T-lymphocyte-associated protein 4 (CTLA4),
and PTPN22, also contribute to the risk of T1D.

HLA Association

HLA is located on human chromosome 6p21.3, spans about
4,000 kb, and contains over 200 genes (Fig. 1). Certain HLA
genes are reported to have immune response functions to
environmental pathogens and in autoimmune diseases [72,
73]. The genes that encode class I (A, B, and C) and class 11
(DP, DQ, and DR) molecules are important in self and non-
self-immune recognition. Nine thousand five hundred and
forty-six polymorphisms of the HLA region have been report-
ed so far (Table 2). The extreme polymorphism of the HLA
makes it an invaluable tool for T1D association studies. HLA
class I molecules are widely expressed as single chain proteins
that can present intracellular antigen to CD8" T cells.

HLA class II molecules are heterodimers expressed mainly
on professional antigen-presenting cells. They are composed of
o and 3 chains and are responsible for presenting extracellular
antigen to CD4" T cells [2]. The strongest association with the
development of T1D is in the HLA class II loci, which can
contribute about 40—50 % risk to the T1D susceptibility [2, 75].
The precise mechanisms by which the HLA class II genes
confer susceptibility to the loss of islet beta cells are largely
unknown, but the binding properties of key peptides derived
from proinsulin, insulinoma-associated antigen 2 (IA-2),
glutamic acid decarboxylase (GAD), and zinc transporter 8
(ZnT8) to antigen-presenting cells may play a role [68].

Specific combinations of alleles, genotypes, and haplo-
types of the class II genes may contribute to the risk of T1D.
DRBI1 and DQBI are considered to be associated with T1D in
people from almost all regions of the world [76]. It has been
shown that both susceptible and protective alleles may be
found at the DRB1, DQAI, and DQBI loci, including
DQB1*0602, DQB1*0302, DRB1*0301, DRB1*0401, and
DRB1*0405 alleles [77, 78]. Specifically, DRB1*0401,
DRB1*0402, and DRB1*0405 have been suggested to confer
susceptibility to T1D, while DRB1*0403 and DRB1*0406
confer protection from T1D [79, 80]. However, the suscepti-
ble and protective alleles in Asians are different from the
Caucasian population. Susceptibility and protective class II
alleles in Japanese populations with T1D include
DQB1*0301, DQB1*0602, DRB1¥1501, and DRB1*1502
[81, 82]. In the Korean population, these alleles include
DQB1*0301, DQB1*0503, DQB1*0601, DQB1*0602,
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Table 1 SNP and genes associated with T1D

Table 1 (continued)

Chromosome SNP Candidate genes References Chromosome SNP Candidate genes References

1p31.3 1s2269241 PGM1 [34] 16qg23.1 1s7202877 CTRBI [34]

1pl13.2 1s2476601 PTPN22 [34-38] 17p13.1 rs16956936 DNAH2 [34]

1g31.2 1s2816316 RGS!I [34, 35, 37, 38] 17q12 152290400 GSDMB [34, 38]

1g32.1 153024505 IL10 [34, 37, 38] 17921.2 157221109 SMARCE]I [34]

2p25.1 rs1534422 ILISRAP [34] 18pl1.21 rs1893217 PTPN2 [34, 35, 39]

2p23.3 15478222 EFR3B [37] 18¢22.2 15763361 CD226 [34, 35, 39]

2ql1.2 159653442 AFF3 [39] 19q13.32 15425105 SLCI145 [34]

2q24.2 1990760 IFIH] [34, 35, 40] 19q13.42 15602662 FUT2 [34, 64]

2q32.3 rs6752770 STAT4 [34, 41] 20p13 12281808 SIRPG [34, 37, 38]

2q33.2 rs3087243 CTLA4 [34, 35, 42, 43] 21q22.3 rs3788013 UBASH3A [34, 35, 65]

2435 153731865 SLCI1Al [44] 219223 15760426 AIRE [34, 66]

3p21.31 rs11711054 CCR5 [34, 35] 22ql2.2 1s5753037 HORMAD?2 [34]

4p15.2 110517086  (Gene desert) [34, 37, 38] 22q13.1 15229541 CIQTNF6 [34, 37]

4q27 rs4505848 L2 [34, 35, 39] Xp22.2 1s5979785 TLRS [34, 67]

5p13.2 136897932 IL7R [39] Xq28 152664170 GAB3 [34]

5pl3.2 rs1445898 CAPSL [39]

6p22.1 151592410 LOC729653 [45] Based from T1DBase and Pociot [68] and Morahan [69]

6p21.33 1s3094663 HLA region [46]

6p21.32 159268645 HLA [34, 47, 48] DRB1*0803, DRB1*1202, and DRB1*1405 [83, 84]. In the

6q15 11755527 BACH2 [34, 35, 43] Chinese populations, susceptibility and protective alleles in-

6q22.32 1rs9388489 Céorf173 [34, 37, 38] clude DQB1*0301, DQB1*0402, DQB1*0501,

6q23.3 152327832 INFAIP3 [34, 49] DQB1*0503, DQB1*0601, DQB1*0602, DRB1*0403, and

6925 15237025 SUMO4 [50] DRB1*0406 [85, 86]. Independent effects of HLA-A and

6q25.3 151738074 r1G4p [34, 35] HLA-B may also increase the risk of T1D independent of

Tpl5.2 157804356 SKAP2 [34] HLA class II genes [47].

7Tpl2.1 rs4948088 COBL [34]

Tpl2.2 rs10272724 IKZF1 [51] HUMAN CHROMOSOME 6

9p24.2 1s7020673 GLIS3 [34, 52]

10p15.1 15947474 PRKCQ [34, 35, 43] C-:X )

10p15.1 rs12251307 IL2RA [34, 53]

10g22.3 151250558 ZMIZ1 [34] / \

10g23.31 rs10509540 RNLS [37, 38, 40]

11p15.5 rs7111341 INS [34, 35, 54, 55] # Class | H Class Il

12p13.31 154763879 CD69 [34, 37]

12q13.2 1s2292239 ERBB3 [34, 39, 56]

12q13.3 15703842 CYP27BI [53, 57]

12q13 151265564 CcuUx2 [34, 58]

12q24.13 517696736 SH2B3 [34, 59]

13q22.2 1s539514 LMO7 [37]

13q32.3 rs9585056 GPRI183 [34, 60]

14q24.1 rs1465788 ZFP36L1 [34, 37, 38]

1493222 154900384 Cl4orf64 [34]

14q32.2 1s941576 MEG3 [61] 4 DRA g DRB1 DQA1 j DQB1 DPA1 g DPB1 +

15g25.1 rs3825932 CTSH [34, 37, 38]

15q14 1s7171171 RASGRPI [34, 62] DR SUBREGION DQ SUBREGION DP SUBREGION

16p13.13 rs12927773 PRM1 [34, 39] Fig. 1 Representation map of the HLA region on human chromosome

16p13.13 512708716 CLECI64 [34, 37, 38] 6p21. HLA genes confer ~50 % risk to T1D. HLA genes are arranged in
three classes, class 1, class I1I, and class I1. The class I (4, B, and C) and

16p12.3 1512444268 UMOD [34,37] class I (DR, DQ, and DP) genes are reported to be associated with T1D.

16p11.2 rs4788084 1L27 [34, 63] Adapted from Mehers 2008 [71] and Kelly 2003 [5]
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Table 2 Number of HLA alleles to date

Class Locus Number of alleles
HLA class I A 2,365
B 3,004
C 1,848
E 13
F 22
G 50
HLA class II DRA 7
DRB 1,456
DQAI 51
DQBI1 416
DPAL1 37
DPB1 190
DMA 7
DMB 13
DOA 12
DOB 13
Total 9,564

Number of alleles for HLA loci, data comes from IMGT/HLA Database
and according to Noble and Erlich [74]; additional information can be
found at www.ebi.ac.uk/imgt/hla/stats.html

With regard to genotypes and haplotypes, specific combi-
nations of alleles at the DRB1, DQA1, and DQBI1 loci con-
tribute to the risk of developing TID. DQA1*0501-
DQB1#¥0201 and DQA1*0301-DQB1*0302 encode the
HLA-DQ2 and HLA-DQS8 molecules, respectively. HLA-
DRB1*03 and HLA-DRB1*04, which encode DR3 and
DR4 molecules, are in linkage disequilibrium with DQ2 and
DQ8, respectively. These alleles form the DR3-DQ2 and
DR4-DQ8 haplotypes, respectively [5]. The highest risk of
DR-DQ haplotypes for T1D are DRB1*0301-DQA1*0501-
DQB1*0201 and DRB1*0401-DQA1*0301-DQB1*0302
[77, 87]. Studies from different countries have shown that
association of class II allele at the DRB1, DQA1, and DQB1
loci may vary among countries and ethnic origins [79]. For
example, the DRB1*0301-DQB1*0201 and DRB1*0401-
DQB1*0302 haplotypes are consistently associated with
T1D in Caucasian individuals, while the DRB1*0405-
DQB1*0401 and DRB1*0901-DQB1*0303 haplotypes are
associated with Japanese individuals and East Asian popula-
tions [76, 81, 88]. Other haplotypes that are associated with
T1D, including DRB1*0801-DQA1*040-DQB1*0402,
DRB1*0405-DQB1*0401, DRB1*0901-DQA1*0301-
DQB1*0303, DRB1*0802-DQB1*0302, and DRB1*0901-
DQB1*0303, also vary among different countries [89-91].

In contrast with classic T1D, the association between HLA
and LADA is not as well understood. Studies have demon-
strated that HLA genetics are related to LADA in Caucasian
populations [16, 21, 23]. A study conducted in a large well-

characterized LADA cohort found that patterns of HLA-
DRBI1 and HLA-DQBI loci in LADA are similar to that of
T1D [26]. The authors found that DRB1*0301-DQB1*0201
and DRB1*0401-DQB1*0302 haplotypes are the main sus-
ceptibility haplotypes in LADA, while DRB1*1501-
DQB1*0602 is a protective haplotype in LADA. The highest
risk HLA genotypes for T1D, DR3/DR4 and DQ2/DQ8, were
more prevalent in LADA compared with normal controls;
however, the extent of the association was not the same when
compared with T1D [16].

When comparing LADA with juvenile-onset T1D, the
highest risk genotype DQ2/DQ8 was less frequent in LADA,
which is more consistent with late onset diabetes [23, 92].
However, when comparing LADA with adult-onset T1D,
there were no consistent differences in HLA class II, which
suggest that they may share similar HLA genetic backgrounds
[25, 93, 94]. Other reports suggest differences in HLA asso-
ciation between LADA and classic T1D, and some studies
have also shown that LADA patients have an increased fre-
quency of DRB1*0602, suggesting that DRB1*0602 may
play a protective role in delaying the onset of autoimmune
diabetes [29, 95]. HLA-DRB1*03 and HLA-DRB1*04 alleles
in T1D patients are higher than in LADA [96]. In contrast to
the strong association of HLA with autoimmune diabetes in
Caucasians, the most susceptible HLA-DQ genes in Chinese
LADA were moderate-risk haplotypes, including DQA1%*03-
DQB1*0303 and DQA1*05-DQB1*0201 in our studies [14,
30]. This suggests that the immunogenotype association of
Chinese LADA is more moderate than that in Caucasians.

In conclusion, HLA associations with T1D and
LADA are extremely complex, with many alleles and
haplotypes affecting diabetes risk [5]. The mechanisms
of HLA-DR and HLA-DQ molecules’ association with
T1D and LADA may be related to the primary role of
HLA in antigen presentation to CD4" T cells. If HLA
cannot present an antigen, the antigen cannot, through
classical pathways, become an autoantigen in our body.
Different antigens are recognized by the immune system
and presented by different HLA molecules. The struc-
tural differences between the susceptible and protective
HLA molecules may vary with autoantigens and the T
cell receptors (TCRs) of autoreactive T cells and thus
contribute to disease risk.

Non-HLA Association

Although association studies have shown that the HLA region
is the most important genetic factor conferring risk or
protectivity toward the development of T1D and related dis-
orders, other T1D susceptibility genes, such as INS, PTPN22,
CTLA4, IFIHI, CLECI61, and PTPN2, have also been de-
scribed (see Table 1).
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The first strong non-HLA association with T1D was found at
polymorphisms within the /NS gene on chromosome 11p15.5:
a variable number of tandem repeats (VNTRs) located 596 bp
upstream of the translational start site of the /NS gene [54, 97].
The VNTRs in the INS gene are found in three forms, class I
alleles (2063 repeats), class II alleles (64—139 repeats), and
class III alleles (140-210 repeats) [98]. The class I alleles are
associated with susceptibility to T1D, while the class III
alleles are associated with protection against T1D. The mech-
anism by which the VNTRs in the /NS gene affect the risk of
T1D is unknown. However, it has been shown that the
VNTRs can regulate insulin messenger RNA (mRNA) tran-
scription in the pancreas and thymus. Class I alleles are
associated with high mRNA expression levels in the pancreas
and low levels in the thymus, while class III alleles are
associated with lower levels of insulin mRNA in the pancreas
but higher levels in the thymus [99, 100].

Insulin and its precursor, preproinsulin, are potential target
autoantigens for beta cell destruction (Fig. 2). Low levels of
proinsulin in the thymus may affect the positive selection of T
cells in the thymus, which will cause migration of CD4",
proinsulin-specific T lymphocytes to the periphery and in-
crease the risk for developing T1D. On the other hand, high
levels of proinsulin in the thymus may promote negative
selection of insulin-specific autoreactive T lymphocytes, lead-
ing to immune tolerance [101] and a decrease risk for the
development of T1D.

CTLA4

The association between T1D and CTLA4, located on chro-
mosome 2q33, was confirmed by several studies [42, 102].
CTLA4 protein is a costimulatory receptor on CD4" T cell
surface, which can bind B7 ligands that activate CD28, an
important molecule in T cell costimulation (Fig. 2). CTLA4
plays a role in producing a negative signal to inhibit T cell
activation and has a crucial role in the function of CD4" T
regulatory cells [103]. The intracellular part of CTLA4 inter-
acts with the intracellular part of CD3 receptor to initiate
phosphorylation of several downstream molecules, leading
to activation of T cells after their binding to HLA molecules
on antigen presenting cells (APCs) [2].

Changes in expression of CTLA4 can increase T cell self-
reactivity and may play a role in autoimmune diabetes [102,
104]. Studies have shown an association between CTLA4
A49G polymorphisms and T1D [105]. The A49G polymor-
phism in exon 1 of CTLA4 causes substitution of alanine with
threonine in the signal sequence, leading to incorrect expres-
sion of the mutant protein and the subsequent reduction of
CTLA4 cell surface expression. CTLA4 has been implicated in
multiple autoimmune diseases [102, 106], including, but not

@ Springer

limited to, rheumatoid arthritis (RA), systemic lupus erythe-
matosus, and Addison’s disease [107].

PTPN22

PTPN22, located on chromosome 1pl3, encodes lymphoid
tyrosine phosphatase (LYP), and mutations of this gene have
been associated with T1D [108]. LYP is mainly expressed in T
cells and plays a role in inhibiting TCR signaling by dephos-
phorylation of three kinases in the TCR signaling pathway.
LYP also interacts with C-terminal Src tyrosine kinase (Csk)
to downregulate T cell activation (Fig. 2) [109]. The non-
synonymous single nucleotide polymorphism (SNP)
C1858T results in a substitution mutation of arginine for
tryptophan (R620W). Functional studies have found that the
gain-of-function R620W mutation can increase phosphatase
activity [110]. This mutation leads to increased inhibition of
TCR signaling, which will reduce CD4" T cell activation and
potentially leads to increased autoimmunity [111]. In addition
to T1D, PTPN22 gene has also been reported to be associated
with other autoimmune diseases [112], including RA, Grave’s
disease, and SLE [113, 114].

Other Susceptible Genes

Interleukin 2 receptor alpha (IL2ZRA), which encodes the
alpha chain of the IL-2 receptor complex locus (CD25) and
locates on chromosome 10p15, was identified as a major non-
MHC risk gene associated with TID. CD25 is expressed on
regulatory naive T cells, memory T cells, and activated mono-
cytes [115]. CD25 is responsible for binding of IL-2 and plays
arole in the proliferation of regulatory T cells. CD25 regulates
the activity of effector T cells through regulatory cells, and
mutations in CD25 may potentially lead to the development of
autoimmunity. Expression of CD25 on the surface of the
regulatory T cells is important in regulating T cell proliferation
in response to an immunogenic stimulus [2, 71, 116].

Small ubiquitin-like modifier 4 (SUMO4) has also been
reported to be a risk factor for T1D [50]. However, inconsis-
tent results have also been reported [117]. The substitution of
methionine to valine (M55V) in SUMO4 has been proposed
as a causative variant associated with T1D. This substitution
causes a significant reduction of sumoylation capacity and
higher NF-«kB activity as well as elevated secretion of IL12B
[50]. Subsequent studies have found that SUMO4 sumoylates
IkBo and negatively regulates NF-kB transcriptional activity
[118]. The transcription factor NF-«B has a central regulatory
role in the immune response [119] and is involved in the
development of autoimmune diabetes.

Several studies have found polymorphisms in signal trans-
ducers and activators of transcription (STAT) to be associated
with T1D [120]. STAT4 is expressed in activated peripheral
blood monocytes cells (PBMCs), dendritic cells (DCs), and
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Fig. 2 Development of the
autoimmune response. During
thymocyte maturation, positive
and negative selection takes place
in the thymus. This process
requires the interaction between
the MHC molecules on the APCs,
autoantigens (proinsulin as an
example here), and the TCR on
the surface of thymocyte. Large
percentages (98 %) of thymocytes
are removed by apoptosis
(negative selection). The rest

(2 %) thymocytes are positively
selected and then migrated into
peripheral as mature T cells. The
mature T cells will then develop
into CD4" and CD8" T cells and
regulatory T cells. The balance
between regulatory and effector T
cells plays an important role in the
development of both T1D and
LADA. Note that susceptibility

CENTRAL Antigen
(thmeS) presenting
cells

(APCs)
Autoantigen
(Proinsulin)

Positive
selection

Hegative
selection

Mature
T cells ./"

PERIPHERAL / \

Regulatory £
Tcells l

Apopotosis

genes, including HLA, CTLA4,
and PTPN22 are involved in this

process. Adapted from Ounissi-

Benkalha 2008 [2] Cytotoxic

Tcells

Insulin

macrophages at sites of inflammation [121]. STAT4 directly
interacts with the IL-12 receptor and plays an important role in
the IL-12 signaling pathway [122]. IL-12 is an immunoregu-
latory cytokine which takes part in the generation of Thl cells
and cytotoxic lymphocytes and leads to the production of
proinflammatory cytokines [123].

Although the /NS gene is the only non-HLA gene consis-
tently demonstrated to be associated with LADA [27], other
associations have been reported [28, 124]. The influence of
non-HLA genes on LADA may, in fact, be more significant
than in T1D. A study from Germany showed that PTPN22,
STAT4, CTLA4, IL2RA, INS, ERBB3, SH2B3, and CLEC16A4
are all associated with LADA [125]. Other studies suggest that
HLA-related genes play more of a role in the onset of T1D in

CD4+

Cytokines

Apopotisis

Autoantibodies

children, whereas non-HLA genes play more of a role in the
onset of LADA and T1D in young adults [29, 126]. Different
HLA associations could not explain the differences between
LADA and classic T1D, and further studies are needed to
clarify the role of genetics in LADA.

Environment

Environmental factors may not only impact disease but can
also interact with genetic factors to affect the development and
progression of human disease. The importance of environ-
mental factors in the pathogenesis of T1D is suggested by (1)
the low concordance rate (3040 %) in monozygotic twins
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[127, 128], (2) only 10 % of genetically individuals with
susceptible HLA genes eventually progress to diabetes
[129], (3) a 15-fold difference in the disease incidence among
Caucasians living in Europe, and (4) population studies which
show that the incidence of diabetes increased after migration
to a high-incidence region [130]. Studies have shown that the
proportion of patients with high-risk HLA has decreased,
while the proportion of patients with low-risk and protective
HLA has increased [131, 132]. These data suggest an in-
creased environmental risk. In Europe, the lowest annual rate
occurs in Macedonia, amounting to 3.2/100,000 under
15 years, while the highest rate is 60/100,000 in Finland.
The 15-fold difference cannot be explained by genetic factors
alone [133].

Environmental factors that have been attributed to autoim-
mune diseases include a wide range of chemicals, pathogens,
drugs, toxins, diet, stress, viral infection, organ phosphates,
heavy metals, and solvents [134—138]. Other non-
environmental factors that can contribute to the pathogenesis
of T1D and other autoimmune diseases, and which may be
affected by the environment, include weight, puberty, increased
linear growth, body mass index, and other parameters of body
habitus. Studies have examined the role of chemicals in the
environment in the development of T1D, such as N-nitroso
compounds, air pollutants, and persistent organic pollutants
[139, 140]. Environmental chemicals may affect the develop-
ment and function of the immune system, leading to autoim-
munity and contributing to the development of T1D [141].

Diet is associated with T1D, with particular risk factors
being cow’s milk and wheat gluten, while the protective
effects of breastfeeding and various nutrients have also been
demonstrated [142, 143]. The gut immune system plays an
important role in the development of autoimmune diabetes,
and the intestinal walls of patients with T1D have been found
to be more leaky than those of non-diabetic patients [144].

Psychological stress is associated with T1D-related auto-
immunity at early ages. Studies suggest that psychological
stress may accelerate the appearance of T1D, contribute to the
induction or progression of T1D-associated autoimmunity,
and induce beta cell stress or adversely impact the immune
system, as a mechanism for the development of the autoim-
mune state [145].

Height, weight, and BMI have been associated with an
increased incidence of T1D [146]. A number of viral infec-
tions have been associated with T1D and/or autoantibodies in
humans, including enterovirus, rubella, mumps, rotavirus, and
cytomegalovirus (CMV). A meta-analysis found a clinically
significant association between enterovirus infection and T1D
autoimmunity [147]. Other studies also found increased en-
terovirus RNA in the blood of children with T1D compared to
control children, suggesting that enterovirus plays a role in the
pathogenesis of T1D, by initiation of the process leading to
beta cell damage [148, 149].
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How exactly these factors influence the development of
T1D is unclear. However, evidence has shown that the mech-
anism by which these environmental factors induce T1D may
include epigenetic modification (DNA methylation, histone
modification, and microRNA), reaction with the self-
component to generate novel antigen molecules, and molecu-
lar mimicry [150], which is based on the cross-reactivity
between environmental antigens and autoantigens. This has
been supported by the detection of serum autoantibodies that
also recognize pathogenic epitopes. For example, the anti-
GAD autoantibody obtained from T1D patients also reacts
with CMV.

Epigenetics

Environmental factors can induce epigenetic changes, which
regulate gene expression and affect immune cell function. For
this reason, epigenetics provides a source of molecular mech-
anisms that can explain the environmental effects on the
development of autoimmune diabetes [150, 151]. Epigenetics
focuses on the mechanisms that influence gene expression and
cell function without a change in the DNA sequence. There
are three main epigenetic modifications, including DNA
methylation, histone modification, and microRNA. All of
them are associated with transcriptional regulation and deter-
mination of the cellular transcriptome, thereby contributing to
cell function [152].

DNA Methylation

DNA methylation is a biochemical process involving the
addition of a methyl group to the fifth carbon of cytosine
DNA nucleotides in CpG dinucleotide islands by using S-
adenosylmethionine (SAM). DNA methylation is carried out
by specific enzymes called DNA methyltransferases
(DNMTs) including DNMT1, DNMT3a, DNMT3b,
DNMT3L, and DNMT?2. 5-Methylcytosine can be converted
to 5-hydroxymethylcytosine and cytosine by the ten-eleven
translocation (TET) family of proteins [153]. Generally,
DNMTs have two classes, including maintenance DNA meth-
yltransferases and de novo methyltransferases.

DNMT1 is responsible for the maintenance of methylation
patterns during DNA replication, while DNMT3a and
DNMT3b are responsible for de novo methylation [154].
Methyl-CpG-binding domain (MBD) proteins also regulate
methylation together with DNMTs [128]. There are two types
of demethylation—passive demethylation and active demeth-
ylation. The maintenance methyltransferase DNMT1 has a
preference for hemi-methylated DNA. If DNMT]1 is inhibited
or absent during DNA replication, the newly synthesized
DNA will not be methylated, and this will cause passive
demethylation. Active demethylation can occur through the



Clinic Rev Allerg Immunol (2014) 47:174-192

181

enzymatic replacement of 5-methylcytosine (SmeC) with cy-
tosine with the help of TET and thymine-DNA-glycosylase
(TDG) [155]. The balance between methylation and demeth-
ylation is important to the growth and development, as aberrant
methylation may cause serious diseases [156, 157], such as
cancer, autoimmune diseases, and neurodegenerative diseases.

A genome-wide DNA methylation analysis of diabetic ne-
phropathy in T1D was performed in 2010. Nineteen CpG sites
were found to correlate with the development of diabetic ne-
phropathy in T1D [158]. Another genome-wide DNA methyl-
ation profile was performed by using CD14" monocytes from
15 T1D-discordant monozygotic twin pairs. It was discovered
that 132 different CpG sites significantly correlated with the
diabetic state, including 58 hypermethylated T1D-methylation
variable positions (MVPs), such as TNF and TRAF6, and 74
hypomethylated TID-MVPs, such as GAD65 and HLA-
DQBI1 [159]. DNA methylation has also been found to de-
crease TLR9 stimulation of FOXP3 expression, through atten-
uation of IRF-7 binding activity in T1D [160].

Specific DNA methylation changes in T1D have also been
found [161]. It has been proposed that the methylation level in
the human /NS gene acts as a biomarker in predicting beta cell
death [162, 163]. Our group found that the genomic DNA
methylation in CD4 " T cells from LADA patients was signif-
icantly increased compared to controls. DNMT3b mRNA
levels were higher in CD4" T cells from LADA patients,
whereas FOXP3 expression was decreased, and the FOXP3
promoter region was hypermethylated in CD4" T cells [162].
All these studies suggest the importance of aberrant DNA
methylation in the development of autoimmune diabetes
[164]. This mechanism may explain the effect of DNA meth-
ylation in the expression of autoimmune diabetes-related
genes, such as INS and FOXP3.

Histone Deacetylation

Histone proteins are subjected to a wide variety of posttrans-
lational modification, including lysine acetylation, lysine and
arginine methylation, serine and threonine phosphorylation,
lysine ubiquitination, and sumoylation. These modifications
work together to alter the function of the nucleosome. Among
histone modifications, acetylation/deacetylation is the most
common gene expression regulatory mechanism. This process
is catalyzed by histone acetyltransferase (HAT) and histone
deacetylase (HDAC) enzymes respectively [165].

Another modification is lysine methylation within the his-
tone tail. The number of methyl groups in lysine residues has
an impact on gene expression. For example, three methyl
groups on the lysine 4 residue of histone H3 has been associ-
ated with transcriptional activation. However, the triple meth-
ylation of residues 9 or 27 has been associated with transcrip-
tional inhibition [166]. Other modifications, such as phosphor-
ylation, ubiquitination, and sumoylation can also modulate

gene expression. A chromatin immunoprecipitation (ChIP)
linked to microarray (ChIP-on-chip) approach [167] was used
to analyze histone methylation patterns in blood lymphocytes
and monocytes from patients with T1D. The expression of a
series of genes was found to be significantly increased in
H3K9me2 in lymphocytes but not in monocytes from patients
with T1D. Many of these genes were associated with autoim-
mune and inflammation-related pathways, such as TGF-beta,
NF-kB, p38 MAPK, toll-like receptor, and interleukin 6.

Expression of the T1D susceptibility gene CTLA4 was also
increased in their study [168]. Another study analyzed the
T1D mellitus (T1DM)-specific gene expression and the rela-
tionship with T1DM autoimmunity. It was found that CD4" T
cells of patients with T1DM were downregulated, specifically
affecting key immune functions and the cell cycle. At the
same time, gene expression of HDAC was decreased [169].
The H3K9Ac status of HLA-DRB1 and HLA-DQBI has also
been shown to be associated with T1D [170]. This study
suggests that the promoters and/or enhancers of key suscepti-
ble genes may be important determinants in their functional
association to T1D susceptibility, suggesting that the interac-
tion between genetics and epigenetics may play a role in the
development of T1D.

MicroRNAs

MicroRNAs are short non-coding RNA sequences (22 nucle-
otides) found in plants and animals. MicroRNAs are transcrip-
tional and posttranscriptional regulators of gene expression
[171]. MicroRNA binds to the complementary sequences in
the 3' UTR of multiple target mRNAs, causing the degrada-
tion of the target gene. They are crucial regulators of immune
function, including development, differentiation, prolifera-
tion, and apoptosis [172—174]. Dysregulated microRNA ex-
pression patterns have been found in patients with T1D [175,
176]. Tt has been shown that dysregulated microRNA will
cause aberrant immune function and may be involved in the
development of T1D.

Increased expression levels of miR-326 in the peripheral
blood lymphocytes from patients with T1D have been report-
ed. The predicted targets are involved in immune regulation,
indicating that miR-326 may be associated with ongoing islet
autoimmunity [177]. Increased expression of miRNA-510 and
decreased expressions of both miRNA-342 and miRNA-191
were identified in regulatory T cells of T1D patients [178].
Another study found that miR-21a and miR-93 were down-
regulated in PBMCs from patients with T1D [179].

More recently, a study compared the expression level of
serum microRNAs from new onset T1D children and healthy
controls. Twelve increased human microRNAs in T1D pa-
tients (miR-152, miR-30a-5p, miR-181a, miR-24, miR-148a,
miR-210, miR-27a, miR-29a, miR-26a, miR-27b, miR-25,
and miR-200a) were identified. Several of these microRNAs
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were linked to apoptosis and beta cell function [180].
MicroRNA-21 was reported to prevent T1D by blocking
pancreatic beta cell death. It has been proposed that the
NF-kB-microRNA-21-PDCD4 axis plays a vital role in T1D
and represents a unique therapeutic target for disease treat-
ment (Table 3) [182]. The contribution of microRNA to
immune system function and the development of autoimmu-
nity are becoming more and more evident [183]. It is believed
that the study of microRNA in T1D will elucidate new mech-
anisms involved in the development of T1D.

Environmental factors can affect epigenetic mechanisms of
gene expression and the development of T1D. These mecha-
nisms can regulate gene expression and thus affect the devel-
opment and function of immune and islet beta cells. The
increased research on epigenetics in recent years will provide
a new perspective and a possibility that epigenetic modifica-
tion can act as a potential diabetes therapeutic target [184].

Mechanisms of Autoimmunity in T1D
Molecular Mimicry

Viral infections are thought to be a major environmental factor
influencing the development of T1D. Common viruses iden-
tified to be associated with T1D include enteroviruses such as
coxsackievirus B [185], rotavirus [186], mumps virus [187],
and CMV [188]. It is unknown whether viruses act as an
accelerator during the ongoing immune process initiated by
other factors [189] or whether they are able to initiate the
entire autoimmune process. It is difficult to establish which
immunological processes link viral infections to disease initi-
ation and progression. A commonly discussed mechanism by
which viruses may take part in the development of T1D is
molecular mimicry. Molecular mimicry is based on structural
similarity (amino acid sequence or conformational structure)
between pathogen and autoantigen [190]. The virus, which
may share a similar epitope with certain structures on the beta
cells, can mimic autoantigens and thus activate T cells, induc-
ing a cross-reactive autoimmune response [189].

Molecular mimicry has been thought to be a primary
mechanism contributing to many autoimmune diseases, in-
cluding T1D, systemic lupus erythematosus, multiple sclero-
sis, and Sjogren’s syndrome. The potential cross-reactivity
between the non-structural P2-C protein of coxsackievirus
and the autoantigen GAD65 was found in T1D [191]. Another
study showed that the homologous peptides for cross-
reactivity are immunogenic. However, the homology between
GADG65 and P2-C was not associated with significant func-
tional consequences [192].

Similarity and cross-reactivity between the VP1-protein of
enteroviruses and the beta cell autoantigen tyrosine phospha-
tase IA-2 have also been reported, and it was postulated that
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enterovirus infection may also alter immune responses [193].
The similarity between GAD65 and human CMV (hCMV)
major DNA-binding protein has also been demonstrated. The
hCM V-derived epitope can be naturally processed by dendrit-
ic cells and recognized by GADG65 reactive T cells [194].

All these data suggest that molecular mimicry may play a
role in the development of T1D. However, functional studies,
which involve experimentally inducing T cells with a viral
peptide to mimic the islet autoantigen, are still needed to
demonstrate the role of molecular mimicry role in the devel-
opment of T1D. Whether molecular mimicry can only en-
hance autoimmunity, or can initiate autoimmunity, or both, is
unknown. We should also keep in mind that molecular mim-
icry between virus and autoantigens may not be the sole
mechanism for the development of autoimmunity; other
mechanisms may also play a major role in initiating the
immune response and in the pathogenesis of T1D.

Autoantigens and Autoantibodies

One of the characteristics of T1D is the recognition of beta cell
proteins as autoantigens by autoreactive CD4" and CD8" T
cells and autoantibodies. Several autoantigens have been at-
tributed to T1D. These autoantigens include propreinsulin,
GADG65, TA-2 [195], ZnTS8, non-specific islet cell
autoantigens (ICAs), imogen 38, pancreatic duodenal homeo-
box factor 1 (PDX1), chromogranin A (CHGA), islet specific
glucose-6-phosphatase catalytic subunit-related protein
(IGRP), heat shock protein 60 (hsp60) [196], and islet cell
antigen 69 (ICA69). It has been shown that many proteins
mentioned above are potential targets of the immune system.

Several methods have been used to characterize
autoantigens in T1D [197]. The first method involves the
detection of islet cell autoantibodies, such as GADG65,
ICA69, TA-2, and carboxypeptidase H (CPH). The second
method is based on the detection of islet autoreactive T cells.
Imogen 38 and IGRP were identified as beta cell autoantigens
by detection of pancreatic islet autoreactive CD4" T cells. The
third method employed a technique used in cell biology,
which is based on selective expression of (3 cell proteins
defined by complementary DNA subtraction libraries or mi-
croarrays. Previously reported autoantigens, imogen 38,
IGRP, TA-2, TA-2f3, and ZnT8, were confirmed or identified
by this method. The fourth method is through a process
known as inverse translation or adoptive transfer. GAD65
and insulin were confirmed by adoptive transfer of
autoreactive T cells. Proteomic strategy was used as a fifth
method for identifying islet autoantigens [198].

It has been proposed that 3 cell loss is caused by lympho-
cytic infiltration of the islet by dendritic cells, macrophages,
and T lymphocytes [2]. Autoreactive T lymphocyte cells
specific for beta cell autoantigens, such as insulin, GAD, IA-
2, and ZnT8 have been identified [199, 200]. Studies have
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shown that CD4 " helper and CD8" cytotoxic T lymphocytes
play an important role in the pathogenesis of T1D [201, 202]
(Fig. 2). The main factors initiating autoreactive responses are
not clear; however, it is well accepted that specific
autoantigens are processed by APCs. APCs include DCs,
macrophages, and B cells in the pancreatic islets. The
autoantigens are then presented to naive T cells by diabetes-
associated HLA molecules to contribute to priming and ex-
pansion of pathogenic T cells and generation of autoreactive
CD4" T cells. These activated CD4" T cells will then produce
cytokines and subsequently activate beta-cell-specific cyto-
toxic CD8" T cells. The activated T cells will be recruited to
islets and stimulate macrophages and other T cells, contribut-
ing to the destruction of islet beta cells [196, 203].

Fundamental molecular mechanisms still remain unclear
[204]. For example, what is the role of the autoantigen-
specific CD4" T cell response [196]?. Which autoantigen is
primary in initiating T1D? A series of studies suggest that
proinsulin or insulin is the primary autoantigen. The specific
expression of insulin in islet beta cells makes it a good candi-
date. Other autoantigens are expressed elsewhere. We should
also keep in mind that the true primary autoantigen in T1D has
not yet been definitively identified. The importance of identi-
fying T1D-associated autoantigens will help us understand the
molecular mechanisms by which beta cells are destroyed by the
immune system during the development of T1D. Identification
of autoantigens is also important for the development of
autoantigen-specific tolerance induction immunotherapy and
for establishing diagnostic and predictive markers of T1D.

The autoimmune nature of T1D is supported by the ap-
pearance of autoreactive T cells and autoantibodies. Most
patients with TID develop humoral and cellular immune
responses to islet autoantigens such as GAD65 and insulin
[205, 206]. The presence of antibodies to islet autoantigens
can occur many years before clinical diagnosis. Autoanti-
bodies against these islet autoantigens are present in the serum
0f'90 % of patients with T1D [207-209]. It is not clear if these
autoantibodies play a pathogenic role in the development of
T1D or if they are merely an epiphenomenon.

The first autoantibodies reported were islet cell autoanti-
bodies [210]. ICAs are detected by reacting serum with sec-
tions of human pancreas and then staining for these autoanti-
bodies. Anti-insulin antibodies were found in patients with
T1D without exogenous insulin. Other studies indicate that
anti-insulin antibodies are present several years before clinical
diagnosis. Anti-GAD antibodies were first reported in patients
with stiff man syndrome and were subsequently reported in
patients with T1D [211]. ZnT8 was identified as an
autoantigen from microarray data; our results and others show
that ZnT8 autoantibodies is a predictive and diagnostic marker
associated with T1D [212].

Autoantibodies may play an important role in autoantigen
processing and presentation by HLA molecules. Several
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experiments have shown that the T cell response to
autoantigen is enhanced or shifted in the presence of autoan-
tibodies. This suggests that disease-associated GAD6S5 anti-
body can modulate the GAD65 presentation to the T cells and
it may be a potential mechanism for the breakdown of islet
beta cell tolerance [213]. Autoantibodies are widely used in
disease prediction and diagnosis. It is accepted that the num-
ber of positive antibodies in patients is more important in
predicting disease than the particular autoantibody. One ex-
periment analyzed 45 new onset patients, 882 first degree
relatives, and 217 controls, and found that 98 % had one or
two antibodies and 76 % had two or three autoantibodies
when they are diagnosed [214]. Our results suggest that com-
bination testing of IAA with GADA and [A-2A may improve
the LADA diagnosis rate [215].

T1D is caused by autoimmune destruction of beta cells in
genetically susceptible individuals. Several studies have
shown that HLA alleles are associated with autoantibodies
[216]. This suggests that HLA molecules may participate in
regulating the generation of autoantibodies against a specific
autoantigen. The relationship between HLA and autoanti-
bodies still needs to be explored further in order to better
understand the inter-relationship between these two important
pathogenic mechanisms.

Discussion

Accumulating data suggests that autoimmune T1D is the
result of interaction between genetic susceptibility and envi-
ronmental factors. Both genetic and environmental factors are
vital for the development of autoimmune T1D. The findings in
this field will accelerate our understanding of T1D. The im-
proved understanding will help elucidate new methods of
predicting the risk of developing T1D, as well as novel treat-
ment methods and methods to prevent the onset or progression
of'the disease process. Currently, prediction of T1D is possible
by the detection of autoantibodies in relatives of T1D patients
[217]. However, negative autoantibody results do not rule out
the possibility of developing T1D. Environmental factors are
also important factors in the pathogenesis of T1D. Therefore,
the modification of environmental exposures in the global
population or in populations with high genetic susceptibility,
while a massive undertaking, may be a strategy for the pre-
vention of sporadic and familial T1D.

It has been suggested that the HLA genes are, by far, the
strongest genetic determinants to T1D. HLA was identified by
its role in transplant rejection. HLA has been suggested to be
involved in over 100 diseases, including many autoimmune
diseases, such as RA, multiple sclerosis, and T1D; infectious
diseases, such as AIDS; and other diseases, such as narcolepsy
[74]. The main genes associated with susceptibility of
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TID are the HLA class II genes, HLA-DRB1, HLA-
DQA1, and HLA-DQBI.

Alleles at the class I locus A and locus B have also been
shown to play a role in T1D susceptibility. Previous research
has suggested that T1D is associated with class I A*24 alleles
[218]. B*3906 alleles appear to be the alleles most commonly
associated with T1D [219]. The class III region does not have
classical HLA loci but includes several immunologically rel-
evant genes, such as tumor necrosis factor-o (7NFA) gene and
complement C4-encoding genes C44 and C4Bc SNPs in the
-238 and -308 positions in the promoter region of the 7NFA
gene have been reported to be associated with T1D with
conflicting results. It is recommended that all studies regard-
ing genetic susceptibility genes in T1D be accompanied by
consideration of HLA genetic susceptibility in the interpreta-
tion of the data [74].

About 50 additional non-HLA loci have been found to
contribute to the development of T1D. Certain susceptible
genes were found based on the candidate gene strategy, which
takes into account the immunological or islet-related function
of the candidate genes. Many susceptible genes were identified
by genome-wide association studies (GWAS). It is estimated
that there are about 5—10 million frequent variants in the human
genome, with most of them being SNPs. However, only a few
dozen SNPs are expected to be involved in susceptibility to
T1D. The identification of these SNPs had been a significant
challenge until the development of high-throughput SNP
genotyping arrays. Given the huge number of SNPs used in
GWAS, a very large number of T1D cases and health controls
are needed to get a genome-wide statistical significance [2].

GWAS is based on common variants (high-population
frequency and low contribution to disease) in the human
genome [220, 221]. Several large GWAS have been per-
formed, with the greatest amount of data coming from the
T1D genetics consortium (T1DGC) [34, 222]. The most sig-
nificant GWAS associations were found to be in the HLA
region and the insulin gene, which were previously identified
by linkage analysis and candidate gene strategy. A repository
of GWAS genes associated with T1D can be found at www.
tldbase.org. Most of these genes are involved in
immunological and metabolic function [68]. With the
advancement of high-throughput next-generation sequencing
technologies, rare variant SNPs (low-population frequency
and high contribution to disease) can be rapidly identified.
These results will represent a significant achievement in the
development of methodology that will contribute to our un-
derstanding of the genetic susceptibility to T1D.

Although GWAS have identified many common variants
which are associated with T1D, the reason for familial clus-
tering of T1D is largely unknown. A new methodology to help
explain this takes advantage of copy number variation (CNV).
CNVs are a form of structural variation, leading to the cell
having a different number of copies of one or more sections of

the DNA. CNVs may affect the expression of surrounding
genes. Several studies have reported an association between
CNV and autoimmune diseases in humans, such as systemic
lupus, psoriasis, Crohn’s disease, RA, and T1D [223]. Recent-
ly, a genome-wide CNV analysis was performed in 20 unre-
lated adults with T1D and 20 control subjects. Nine CNVs
were identified to be either enriched or depleted in patients
with T1D or who were at high risk for T1D [224]. These CNV
regions may contain genetic variants which can contribute to
disease onset and be used to predict the risk of developing
T1D. We believe that knowledge of CNVs involved in T1D
could also improve our understanding of the mechanisms of
autoimmune diabetes.

The mechanisms of susceptibility genes in TID may be
related to their role in presenting antigens and in autoreactive
T cell responses. However, the key autoantigens and T cell
populations which are vital in the initiation and amplification
of (3 cell loss are still unclear. This is a significant unmet need
in our quest for answers to the questions regarding pathogen-
esis of T1D. Other susceptibility genes that should be consid-
ered in the future include the BACH?2 gene, which is specifi-
cally expressed in 3 cells.

MicroRNAs play an important role in regulating the ex-
pression of target genes. These short inhibitory RNA se-
quences have the capability to influence many biological
processes, including the maintenance of immune homeostasis
and immune cell differentiation and maturation. This regula-
tory role of microRNA is essential for the maintenance of
physiological systems. MicroRNAs have been associated with
aberrant expression in many autoimmune diseases, including
multiple sclerosis, RA, and systemic lupus erythematosus
[225-227]. These findings suggest that microRNAs play crit-
ical roles in the pathogenesis of autoimmune diseases. Aber-
rant expressions of microRNAs were identified in autoim-
mune diabetes (Table 3), and these findings may provide a
new perspective on molecular mechanism of autoimmune
diseases and highlight the development of microRNA-based
disease interventions.

Posttranslational modifications (PTMs) have also been
proposed to be important in the development of TID. We
know that proteins can be modified after they are translated
and result in new antigens, and the antigens which undergo
modifications are recognized by T cells or antibodies as new
antigens [228]. PTMs have been shown to be involved in
several autoimmune diseases, including RA, multiple sclero-
sis, and celiac disease [229, 230]. Evidence has also shown
that PTMs may also be important in T1D. Cells undergoing
stress are more prone to PTM changes. The 3 cell is suscep-
tible to ER and oxidative stress, and it is a good candidate for
PTMs. The [3-cell-specific autoantigen, insulin, is present in
high concentration in 3 cells, and is thus a target for PTMs
[231]. A recent paper demonstrated that 3 cell proteins which
undergo PTMs may be involved in {3 cell destruction in T1D
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[232]. However, this conclusion has been challenged in an-
other paper, suggesting that there is no evidence of a causal
effect of PTMs of {3 cell proteins in T1D [233]. Further
experimental studies are required to clarify whether and how
PTMs are involved in the pathogenesis of T1D.

One of the characteristics of T1D is the recognition of islet
autoantigens by autoreactive CD4" and CD8" T cells and
autoantibodies. CD4" T cells and CD8" cytotoxic T lympho-
cytes play an important role in the pathogenesis of T1D. It is
generally believed that in T1D, specific autoantigens are proc-
essed and presented by APCs to naive T cells, leading to
activation of CD4" T cells [234]. This results in the production
of inflammatory cytokines leading to the activation of beta-
cell-specific CD8" T cells. These activated T cells are then
recruited to islets and stimulate macrophages and other T cells,
resulting in the damage to islet beta cells [235].

The primary autoantigen involved is a controversial issue,
and it has not been definitively identified. Identification of this
autoantigen will help us understand the molecular mecha-
nisms on how beta cells are destroyed by the immune system.
It will also help in the development of new strategies for
autoantigen-specific tolerance induction immunotherapy and
for the diagnosis and prognosis of T1D. Autoantibodies
against islet autoantigens may play an important role in
autoantigen processing and presentation by HLA molecules.

The gut microbiota refers to the microbe population living
in our intestine. One third of gut microbiota is common to the
majority of humans, while two thirds are specific to the
individual. Both the gut and pancreas are involved in the
intestinal immune system, so it is expected that there may be
an association between autoimmune diabetes and the gut
[236]. The gut microbiota has been implicated in a variety of
autoimmune diseases, including RA, T1D, and systemic lupus
erythematosus [237, 238].

Significant differences in gut microbiota were found be-
tween children with T1D and healthy controls by PCR-DGGE
and real-time quantitative PCR methods. In a recent study, the
number of Clostridium, Bacteroides, and Veillonella was in-
creased, while the number of Lactobacillus and
Bifidobacterium was decreased in children with T1D. The
quantity of bacteria which is critical to maintenance of gut
integrity was decreased in the children with T1D [239].

Gut microbiota can affect the function of innate and adap-
tive immune systems. Studies have shown that the balance
between Th17 and Treg cells is dependent on the composition
of gut microbiota [240, 241]. Altered gut microbiota can cause
increased gut permeability and decreased butyrate and mucus
production, imbalance of T cells, and eventually may lead to 3
cell destruction [242]. More research is still needed to eluci-
date the role of gut microbiota in the development of T1D.
The research of microbiota will provide us with new methods
for the prevention and treatment of T1D by targeting the gut
immune system.

@ Springer

It is important for us to understand that the interaction
between genetic and environmental factors is important not
only in the initiation of (3 cell autoimmunity, but may also be
involved in the disease process of T1D. Another consideration
to keep in mind is that there may be interactions among
environment factors [129].

Conclusions

It is known that the development of autoimmune T1D is a
complex process. The molecular mechanisms of autoimmune
responses, beta cell autoimmunity, immune tolerance, and the
causes of autoimmune diseases are numerous and complicated
[243]. The interaction between genetic factors and environ-
mental factors are crucial in the development of autoimmune
T1D. Advances in genetics, epigenetics, autoreactive T cells,
and new autoantigen discovery are important research goals
that will drive new methods of diagnosis and treatment of
autoimmune diseases such as T1D.
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