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Abstract Interleukin-6 (IL-6) is a proinflammatory cytokine
that is multifunctional, with multifaceted effects. IL-6 signal-
ing plays a vital role in the control of the differentiation and
activation of T lymphocytes by inducing different pathways.
In particular, IL-6 controls the balance between Th17 cells and
regulatory T (Treg) cells. An imbalance between Treg and
Th17 cells is thought to play a pathological role in various
immune-mediated diseases. Deregulated IL-6 production and
signaling are associated with immune tolerance. Therefore,
methods of inhibiting IL-6 production, receptors, and signal-
ing pathways are strategies that are currently being widely
pursued to develop novel therapies that induce immune toler-
ance. This survey aims to provide an updated account of why
IL-6 inhibitors are becoming a vital class of drugs that are
potentially useful for inducing immune tolerance as a treat-
ment for autoimmune diseases and transplant rejection. In
addition, we discuss the effect of targeting IL-6 in recent
experimental and clinical studies on autoimmune diseases
and transplant rejection.
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Introduction

Interleukin-6 (IL-6), a B cell-stimulating factor that drives IgG
production, is a phosphorylated glycoprotein with a molecular
weight of 26 kDa. The human IL-6 gene is mapped to the

7p15-p21 chromosome, which was first cloned and reported
by Hirano et al. in 1986 [1].

IL-6 is a classic proinflammatory cytokine that is pivotal in
host immune responses, normal cell inflammatory processes,
and the modulation of cellular growth. This cytokine is also
regarded as a central mediator in chronic inflammatory human
diseases and many autoimmune diseases, including multiple
sclerosis, rheumatoid arthritis, and Crohn’s disease (CD) [2].
Furthermore, IL-6 modulates the resistance of T cells to apo-
ptosis, induces the activation of T helper cells and controls the
balance between Th17 cells and regulatory T (Treg) cells
[3–5]. Therefore, suppression of IL-6 is seen as a rational
strategy for the treatment of a wide range of diseases.

This review will focus on the role of IL-6 in immune
tolerance, with a particular emphasis on the results of targeting
IL-6 in recent experimental and clinical studies on autoim-
mune diseases and transplant rejection.

Biological Characteristics of IL-6

IL-6 is produced by various types of lymphoid and other cells,
such as T and B lymphocytes, fibroblasts, monocytes, endo-
thelial cells, keratinocytes, mesangial cells, and several tumor
cells [6]. IL-6 regulates various physiological processes in
multiple tissues, including the production of acute-phase pro-
teins such as C-reactive protein, antigen-specific immune
responses, host defense mechanisms, inflammation, and he-
matopoiesis [7]. Additionally, IL-6 acts as a maturing agent
for B lymphocytes and stimulates the synthesis and secretion
of immunoglobulins [7]. The cytokine also regulates T lym-
phocyte activation and differentiation [2]. IL-6 belongs to a
family of positive growth regulators, which stimulates the
proliferation and differentiation of myeloid cells, along with
granulocyte-macrophage colony-stimulating factor, granulo-
cyte colony-stimulating factor, interleukin-3 (IL-3) and
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interleukin-1 [8]. IL-6 also acts synergistically with IL-3 to
support the formation of blast cell colonies and induces mac-
rophage and megakaryocyte differentiation [9]. Moreover, IL-
6 upregulates the production of vascular endothelial growth
factor and is involved in the recruitment of mesenchymal
vascular cells and neoangiogenesis [10].

IL-6 Receptors

There are two types of receptors for IL-6. One is the cell-
membrane IL-6 receptor (IL-6R), and the other is the soluble
IL-6 receptor (sIL-6R). IL-6R only exists on specific cells,
such as macrophages, monocytes, hepatocytes, neutrophils,
and T and B lymphocytes, under normal conditions [11]. IL-
6R forms a low-affinity complex with glycoprotein 130
(gp130, also called CD130) and starts the intracellular signal
(classical signaling) that results from binding to IL-6 [12]. sIL-
6R is generated by the shedding of membrane-bound IL-6R
via limited proteolysis of the ADAM (a disintegrin and me-
talloproteinase) gene family members ADAM10 and
ADAM17 (90 %) and by mRNA alternative splicing (10 %)
[13]. sIL-6R binds to IL-6 and then to the membrane receptor
β chain-gp130, leading to signal transduction (transsignaling)
[12]. sIL-6R mediates IL-6 signal transduction in a variety of
cells, such as endothelial cells, neural cells, and smooth mus-
cle cells, that only have gp130 on their surfaces [14].

IL-6 Signaling Pathways

IL-6 transmits its signals through its unique receptor system.
IL-6 interacts with a cell-surface type I receptor complex
consisting of the signal-transducing component gp130 and a
ligand-binding glycoprotein termed IL-6Ra [12]. There are
several signaling pathways for IL-6 [15]:

JAK/STAT3

The activation of Janus kinase (JAK) tyrosine kinases leads to
the activation of signal transducer and activator of transcrip-
tion 3 (STAT3) and tyrosine phosphorylation. After phosphor-
ylation, STAT3 forms a dimer that is then translocated to the
nucleus to transmit signals from the cell membrane [16]. The
IL-6–JAK–STAT3 pathway regulates the expression of sever-
al genes, leading to the induction of proliferation and differ-
entiation. The termination and modulation of this signaling
pathway are mediated by the suppressors of cytokine signal-
ing feedback inhibitors and protein inhibitors of activated
STAT proteins. These suppressors are induced by activated
STAT3 in normal cells under normal physiological conditions.

Ras/MAPK

Ras protein is activated in response to IL-6. Ras activation
leads to hyperphosphorylation of mitogen-activated protein
kinase (MAPK) and an increase in its serine/threonine kinase
activity. MAPK then activates transcription factors that medi-
ate diverse effects, including cell growth stimulation, acute-
phase protein synthesis, and immunoglobulin synthesis, de-
pending on the cell type [17].

PI3K/Akt

The enzyme phosphatidylinositol-3 kinase (PI3K) modifies
cer ta in phosphat idyl inosi t ides to phosphoryla te
phosphatidylinositol-4,5-bisphosphate (PIP2) into
phosphatidylinositol-3,4,5-trisphosphate (PIP3). In turn,
PIP3 phosphorylates and activates the serine/threonine kinase
PkB/Akt, which is recruited to the plasma membrane [18].
Activated Akt phosphorylates several downstream targets to
upregulate cellular survival-related signaling pathways [19].

IL-6 and Th17 Cells

The current consensus is that IL-6, together with transforming
growth factor-β (TGF-β), induces Th17 differentiation [20,
21]. The combination of TGF-β and IL-6 induces the expres-
sion of orphan nuclear receptors (retinoid-related orphan re-
ceptor γt (RORγt) and retinoid-related orphan receptor α
(RORα)), which are the key transcription factors that trigger
the differentiation of the Th17 lineage [22, 23]. STAT3 regu-
lates IL-6-induced expression of RORγt and RORα and
interleukin-17 (IL-17) production [24, 25]. Although IL-6
activates both STAT3 and STAT1, it has been demonstrated
that STAT3 activation is maintained while STAT1 activation is
suppressed in Th17 cells [26].

IL-6 and Treg Cells

TGF-β is required for Th17 and Treg differentiation and can
induce the expression of both Foxp3 and RORγt [27].
However, this induction exclusively leads to Treg differentia-
tion, as Foxp3 can associate with RORγt and inhibit the
transcriptional activation of RORγt [27]. In the presence of
IL-6, this inhibition is abrogated, and Th17 differentiation is
initiated [20, 21]. Thus, IL-6 acts as a potent proinflammatory
cytokine by promoting Th17 differentiation and inhibiting
Treg differentiation in T cells (Fig. 1). Therefore, control of
IL-6 maintains the balance between Th17 and Treg cells and
may induce immune tolerance [4].
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Th17/Treg and Immune Homeostasis

Th17 cells play a crucial role in triggering inflammation and
tissue injury in several autoimmune diseases [28]. Treg cells
play a critical role in maintaining immune homeostasis and
preventing autoimmune diseases [29, 30]. Therefore, a bal-
ance between Th17 and Treg cells is crucial for immune
homeostasis [4].

Th17 Cells and Transplant Rejection

Th17 cells are very relevant to transplantation rejection in
organ transplantation [31–33]. Rejection was still observed
when the signaling pathways of Th1 and Th2were inhibited in
a mouse model of heart transplantation [34]. This rejection
was not observed in a mouse model of heart transplantation
with a deletion of Th17A [35]. The same results were ob-
served in renal and lung transplantation [36, 37]. Several
experimental studies have investigated the contribution of
Th17 cells to the development of graft-versus-host disease
(GVHD) and have made important observations in various
animal models [38–44].

The Th17 differentiation pathway has been shown to play
important roles in acute GVHD (aGVHD) [42, 45]. It was
shown that the infusion of IL-17-deficient T cells could atten-
uate chronic GVHD (cGVHD) in the skin and salivary glands
in a cGVHDmodel, which suggests that Th17 cells contribute
to cGVHD development [46]. Taken together, these studies
suggest that Th17 cells are involved in the development of
GVHD and that this effect is mediated both through the direct
effects of IL-17 and through indirect effects on the

differentiation of other T cell subsets and their local recruit-
ment to GVHD target organs. However, Th17 cells are not
necessary for GVHD development, an observation suggesting
that Th17 cells interact with other T cell subsets in the path-
ogenesis of GVHD, including proinflammatory and IFN-γ-
releasing Th1 cells and immunosuppressive Treg cells. The
importance of Th17 cells relative to the other T cell subsets in
the pathogenesis of GVHD seems to differ between various
target organs. This organ-dependent variation is likely at least
partly caused by local organ-specific variations in the chemo-
kine network and differences in the expression of chemotactic
receptors by the various T cell subsets.

The expression of Th17 cells was observed to significantly
increase in the phase of acute rejection in patients who had
undergone liver transplantation [47]. The expression of Th17
cells significantly increased in patients who had undergone
renal transplantation with acute rejection [48]. The expression
of Th17 cells was observed in kidney tissues in patients with
acute rejection in renal transplantation, although no expres-
sion was observed in kidney tissues in patients without rejec-
tion [49]. The same result was observed in patients who had
undergone lung transplantation [50]. These findings demon-
strate an increased Th17 cell population in patients with
cGVHD, in addition to an inflammatory process [45, 51,
52]. Th17 cells are associated with cGVHD in patients fol-
lowing hematopoietic stem cell transplantation [53–55]. In
one study, the TC and CC genotypes of rs81903036 in the
IL-17 gene are associated with an increased risk of aGVHD in
patients. Thus, these genetic polymorphisms have an influ-
ence on the association with GVHD, suggesting that immu-
nogenetic factors affect Th17 differentiation [56]. A second
study described circulating T cells derived from allotransplant
recipients with severe treatment-induced cytopenia early after
allotransplantation as able to release IL-17, and high levels
were observed in patients who later developed aGVHD [57].
This was a small study, so the results should be interpreted
with great care; however, the observations support the con-
clusion of the first study and suggest that IL-17 contributes to
the development of aGVHD, at least in acute leukemia pa-
tients transplanted with peripheral blood stem cells from fam-
ily donors and receiving myeloablative conditioning therapy.
The number of Th17 cells in a stem cell collection could better
predict the risk of aGVHD. A threshold of Th17 cells was not
only correlated with cGVHD but was also associated with
aGVHD [42, 46, 52, 58–63].

Treg Cells and Immune Tolerance

Treg cells can prevent graft rejection and induce transplanta-
tion tolerance [64]. Zheng et al. showed that Treg cells gener-
ated ex vivo can act as a vaccine that generates host suppressor
cells with the potential to protect MHC-mismatched organ
grafts from rejection [65]. In vivo, alloantigen-specific Treg

Fig. 1 IL-6 maintains the Th17/Treg balance. IL-6, together with
TGF-β, induces Th17 differentiation from naive T cells. In contrast, IL-
6 inhibits the Treg differentiation induced by TGF-β. Abbreviations:
RORγ, retinoic acid receptor γ; RORα, retinoic acid receptor α; Foxp3:
Forkhead box p3
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cells have been shown to prevent rejection initiated by CD4+

T cells in both organ and bone marrow transplantation [66,
67]. Treg cells can exert a variety of actions on effector Tcells,
and especially inhibition of cell proliferation and cytokine and
antibody production [68]. For certain donor-recipient combi-
nations, CD8+ T cells have a crucial role in graft destruction
during both the initiation and the effector phases of the re-
sponse. Treg cells can suppress allograft rejection mediated by
memory CD8+ T cells [69]. It has been shown that Treg cells
play a pivotal role in transplantation tolerance [70]. Hall et al.
demonstrated that upon receipt of a cardiac allograft, rats
treated with cyclosporine developed graft-specific unrespon-
siveness and suppression, which was mediated by Treg cells
[71]. Several other studies have also implicated Treg cells in
the maintenance of transplantation tolerance [72–76].
Removal of Treg cells from normal mice enhanced graft
rejection [77]. When Treg cells were inoculated together with
naive T cells and transplanted into syngeneic T cell-deficient
mice with allografts, graft survival was significantly
prolonged [78]. Various treatments fail to induce allograft
tolerance in the absence of the Treg subset, and the suppres-
sive effects mediated by tolerant lymphocytes in adoptive
transfer systems are neutralized [72, 75, 79]. Several other
studies, such as studies using monoclonal antibodies (mAbs)
against CD154, CD4, CD8, or intrathymic antigen inocula-
tion, have demonstrated that transplantation tolerance-
inducing methods led to the in vivo generation of Treg cells
[66, 80–82]. Many types of immunosuppressive drugs, in-
cluding nonspecific immunosuppressive drugs after transplan-
tation, are used to avoid acute and chronic rejection in the
clinic. These drugs usually consist of calcineurin inhibitors
(such as cyclosporine, sirolimus, and tacrolimus), mycophe-
nolate mofetil (MMF), and CD25-specific antibodies. These
drugs can induce immune tolerance and the development of
Treg cells in cases of organ transplantation [83–93].

Targeting IL-6 and Immune Tolerance

Ratajczak et al. demonstrated that the percentage of Th17 cells
was not associated with any evidence of severe tissue damage
at cGVHD onset [63]. However, in situ quantification of the
Th17/Treg ratio showed that a high Th17/Treg ratio was
correlated with severe clinical and pathological GVHD, which
argued against a pathogenic role for the Th17 subset [94]. It is
thus very important to induce immune tolerance to inhibit the
production of Th17 cells and to promote the production of
Treg cells. IL-6 has a very important role in regulating the
balance between Th17 and Treg cells. The two T cell subsets
play prominent roles in immune functions: Th17 cells are key
players in the pathogenesis of autoimmune diseases, and Treg
cells function to restrain excessive effector T cell responses.
IL-6, together with TGF-β, induces the development of Th17

cells from Th0 cells, whereas IL-6 inhibits TGF-β-induced
Treg differentiation [28, 29]. Thus, IL-6 acts as a potent
proinflammatory cytokine toward T cells through the promo-
tion of Th17 differentiation and the inhibition of Treg differ-
entiation. A low Th17/Treg ratio is required in immune
tolerance. Thus, targeting IL-6 is very important in
immune tolerance (Fig. 2).

Targeting IL-6 in Autoimmune Diseases

Preclinical and translational findings indicate that IL-6 plays
an important role in autoimmune disorders, including rheu-
matoid arthritis (RA), systemic lupus erythematosus (SLE),
systemic sclerosis (SSc), polymyositis (PM), Takayasu arter-
itis (TA), giant cell arteritis (GCA), and Crohn’s disease (CD),
and provides a biologic rationale for targeted therapeutic
investigations [95–97]. Past success in treating certain dis-
eases with drugs that antagonize IL-6 signaling has provided
further support for a pathological role for IL-6. Targeted
biological therapies include monoclonal antibodies (mAbs)
directed against IL-6 and IL-6R, which are now widely stud-
ied for their efficacy in treating autoimmune diseases in which
IL-6 has a central role.

IL-6 is one of the key cytokines involved in the develop-
ment of RA. Seven phase III clinical trials of anti-IL-6RAb
demonstrated its efficacy both as a monotherapy and in

Fig. 2 IL-6 blockade by anti-IL-6Ab or anti-IL-6RAb may modify a
Th17/Treg imbalance. IL-6, together with TGF-β, induces Th17 differ-
entiation from naive T cells, whereas IL-6 inhibits Treg differentiation. A
Th17/Treg imbalance is believed to lead to the development of various
autoimmune diseases and transplant rejection. Continuous treatment with
anti-IL-6Ab or anti-IL-6RAb may repair such an imbalance. RORγ and
RORα are master transcriptional regulators for Th17 cells, and Foxp3 is a
master transcriptional regulator for Treg cells. Abbreviations: RORγ,
retinoic acid receptor γ; RORα, retinoic acid receptor α; Foxp3:
Forkhead box p3
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combination with disease-modifying antirheumatic drugs for
adult patients with moderate to severe RA [97–103]. A
Cochrane database systematic review concluded that anti-IL-
6RAb-treated patients taking concomitant methotrexate com-
pared with placebo were four times more likely to achieve
American College of Rheumatology (ACR)-defined 50 %
improvement and 11 times more likely to achieve disease
activity score remission [104].Moreover, radiological damage
of joints was significantly inhibited by the treatment [97, 103].
As a result, anti-IL-6RAb has now been approved for the
treatment of RA in more than 90 countries worldwide. A
Japanese study demonstrated the safety and tolerability of
anti-IL-6RAb monotherapy in RA patients [105]. A systemic
literature review also demonstrated the safety and tolerability
of treatment with anti-IL-6RAb at 6 mg kg−1 [106].

IL-6 plays a pathological role in SLE [107–109]. Treatment
with anti-IL-6RAb also represents a promising therapy for
SLE patients and mice. In murine SLE models, IL-6 blockade
with anti-IL-6RAb or anti-IL-6Ab prevents the onset and
progression of the disease [110, 111]. An open-label phase I
dosage-escalation study showed that the disease activity in 8
of 15 evaluable patients with SLE significantly improved with
treatment with different doses of anti-IL-6RAb (2 mg kg−1 for
four patients, 4 mg kg−1 for six patients, and 8 mg kg−1 for six
patients) [112]. The other clinical studies also showed that IL-
6 plays a pathological role in SLE and that treatment with anti-
IL-6RAb was effective for SLE patients [113–117].

IL-6 expression is reportedly high in the sera of SSc pa-
tients, and its elevation correlates with the skin score [118].
Treatment with anti-IL-6RAb appears to be a promising ther-
apy for SSc patients. The clinical effect of anti-IL-6RAb was
examined in two SSc patients who had been resistant to
conventional treatment regimens. Both patients showed soft-
ening of the skin and thinning of the collagen fiber bundles in
the dermis during histological examination [119].

The expression of IL-6 was found in the sera and in
infiltrating mononuclear cells in the muscles of PM patients
[120, 121]. IL-6 blockade by either gene knockout or anti-IL-
6RAb administration showed a preventive or therapeutic ef-
fect on myositis in models of experimental myositis induced
by myosin or C protein [122, 123]. In the clinic, two PM
patients who had been refractory to corticosteroids and immu-
nosuppressive drugs were treated with anti-IL-6RAb. The
level of creatine phosphokinase was normal, and high-
intensity zones disappeared in the thigh muscles, based on
magnetic resonance images [124]. Thus, anti-IL-6RAb may
also be effective as a novel drug for refractory PM.

IL-6 is clearly involved in the development of TA and GCA
[125, 126]. Clinical manifestations and abnormal laboratory
findings were improved after treatment with anti-IL-6RAb for
a woman with refractory active TA [127]. Rapid remission was
observed in five patients with GCA and two patients with TA
when they received treatment with anti-IL-6RAb [128]. IL-6

has also been demonstrated to play a significant role in CD
development [129]. In a colitis mouse model, anti-IL-6RAb
prevented the occurrence of signs and symptoms of colitis
[130]. A pilot randomized trial showed that a high clinical
response was achieved for patients with active CD who re-
ceived treatment with anti-IL-6RAb [131]. Anti-IL-6RAb is
also efficacious for the treatment of other autoimmune diseases
[132–134].

Targeting IL-6 and Transplantation Tolerance

As we report above, Th17 cells and IL-6 contribute to the
mechanisms of rejection after transplantation and IL-6 is a
vital factor in the imbalance of Th17 and Treg cells [4, 20–27].
IL-17 participates in the process of acute rejection of organ
transplantation [51, 135]. Treg cells can induce immune tol-
erance after transplantation [64–79]. Thus, the investigation of
Th17 and Treg cells in GVHD is especially important [136].
Indeed, in several animal models of disease, anti-IL-6R anti-
bodies have been demonstrated to suppress antigen-specific
Th17 differentiation and to induce antigen-specific Treg cells
[4, 134, 137–139].

Tawara et al. used a series of complementary knockout and
antibody blockade strategies to analyze the impact of IL-6 in
multiple clinically relevant murine models of GVHD [140].
The results showed that deficiency in IL-6 in donor T cells led
to prolongation of survival. Complete inhibition of IL-6 with
anti-mouse IL-6R caused a decrease in GVHD and an even
greater reduction in GVHD-inducedmortality and preserved a
sufficient graft-versus-tumor effect. The reduction in GVHD
was independent of the direct effects on T cell effector expan-
sion and donor Treg cells. Huu et al. examined the effects of
anti-IL-6R mAb on either the prevention or the treatment of
murine sclerodermatous cGVHD (Scl-cGVHD) in a murine
model [141]. The researchers found that administration of
anti-IL-6RAb attenuated the development of severe Scl-
cGVHD and fibrosis. Thus, IL-6 blockademay be an effective
approach for preventing Scl-cGVHD and treating cGVHD
and scleroderma in humans. Noguchi et al. showed that anti-
IL-6R treatment can inhibit the pathogenesis of CD4+ T cell-
mediated lethal GVHD against minor histocompatibility anti-
gen [142]. Chen et al. reported that inhibition of the IL-6
signaling pathway by antibody-mediated blockade of the IL-
6R markedly reduces the pathological damage attributable to
GVHD in a murine model [143]. Jagged2-signaling and TLR
signals, except the above pathways described, also joined the
mechanism of IL-6 for transplantation rejection through up-
regulation of IL-6; additionally, blocking IL-6 can induce
immune tolerance and increase the graft survival [144, 145].

In the clinic, a patient with GVHD presenting with abdom-
inal pain and diarrhea had been refractory to all known treat-
ments, but after tocilizumab was administered at 8 mg/kg
every 2 weeks, the symptoms improved in conjunction with
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histological improvement [146]. A 65-year-old woman
who had suffered from acquired hemophilia A derived
from cGVHD was successfully treated with anti-IL-
6RAb [133]. Drobyski et al. used tocilizumab (an anti-
IL-6R mAb) to treat eight patients with refractory aGVHD
(n=6) or cGVHD (n=2) once every 3–4 weeks [147]. The
majority of patients with aGVHD had grade IVorgan involve-
ment of the skin or gastrointestinal tract, whereas both patients
with cGVHD had long-standing severe skin sclerosis at the
time of treatment. Four patients (67 %) with aGVHD had
either partial or complete responses that were apparent within
the first 56 days of therapy. One patient with cGVHD had a
significant response to therapy, whereas the second had stabi-
lization of disease that allowed for a modest reduction in
immunosuppressive medication use. These results indicate
that tocilizumab has activity in the treatment of steroid-
refractory GVHD. However, Roddy et al. reported nine pa-
tients who had steroid-refractory GVHD and received toci-
lizumab therapy [148]. All patients had GI involvement, and
six patients had two organs involved. The median aGVHD
grade was 3 (range 3–4). Two patients (22 %) had a complete
response, and two had mixed responses, with CR in one organ
but no response in another. Only one of nine patients survived.
Six patients (67 %) died from aGVHD. These clinical results
showed that tocilizumab has a degree of activity in the treat-
ment of steroid-refractory aGVHD but may not be significant-
ly better than other available agents. Therefore, certain clinical
trials are being performing for the treatment of GVHD with
anti-IL-6RAb in patients who have undergone allogeneic
HSCT because tocilizumab is FDA-approved for treating
RA but not GVHD [149].

Effect of IL-6 and Targeting IL-6 onMemory B Cell Class
Switching and Other T Cell Subsets

IL-6 is a pleiotropic cytokine and has broad biologic activities
in various components of the immune system [150, 151]. IL-6
was initially identified as B cell stimulatory factor 2, which is
important for the development of antibody-producing plasma
cells [152].

IL-6 causes polyclonal B cell activation, plasmacytosis,
and B cell neoplasia, which constitutes an important link
between adaptive and innate immunity by mediating the B
cell responses involved in autoimmunity [153]. IL-6 is central
for the induction and/or maintenance of plasma cells that
produce immunoglobulin subclasses. In IL-6, knockout mice
have shown a marked reduction in B cell immune responses,
particularly reductions in the levels of IgG1, IgG2a, and IgG3
on immunization with a T cell-dependent antigen [154, 155].
A recent study showed that antibody production is indirectly
promoted by B cell helper capabilities of CD4+ Tcells through
increased IL-21 production with IL-6 stimulation [156]. The

role of B cells in the pathogenesis of RA has also become
more widely appreciated in the recent years [157]. B cell
differentiation and selection in the inflamed synovium, includ-
ing the formation of ectopic follicular structures, is a key
finding in RA [158]. Treatment of the B cell compartment
for patients with RAwith anti-IL-6RAb showed that anti-IL-
6RAb induced a significant reduction in the frequency of
peripheral preswitch and postswitch memory B cells, and the
number of IgG+ and IgA+ B cells declined and correlated well
with reduced serum immunoglobulin levels [159–161].

The immunologic responses for transplantation rejection
are mainly regulated by Tcell subsets, especially helper Tcells
[162]. In particular, CD4+ T cells play a central role in trans-
plantation rejection [37, 163–166]. CD4+ T helper cells can be
subdivided into Th1, Th2, Th17, and Treg subsets based on
the production of signature cytokines on activation. In the case
of the Th1/Th2 dichotomy, the characteristic cytokines are the
following: IFN-γ (Th1) versus IL-4, IL-5 (Th2), Th1 in-
creased GVHD, and Th2 decreased GVHD [167–169]. IL-6
inhibited Th1 responses and enhanced Th2 responses [130,
170–173].

Conclusion

IL-6 contributes to the mechanisms of autoimmune diseases
and transplantation rejection. The balance between Treg and
Th17 cells is mediated by IL-6. Inhibition of IL-6 production,
receptors, and signaling pathways are strategies to develop
novel therapies for inducing immune tolerance. Currently,
more attention should be paid to transplantation rejection,
especially in GVHD prevention of haploidentical hematopoi-
etic stem cell transplantation for the treatment of anti-IL-6 Ab
or anti-IL-6RAb. Therefore, large, well-designed, double-
blinded, randomized, and controlled clinical trials should be
performed to verify the role of inhibition of the interleukin-6
signaling pathway in transplantation tolerance.
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