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Abstract Autoimmune diseases are immune disorders char-
acterized by T cell hyperactivity and B cell overstimulation
leading to overproduction of autoantibodies. Although the
pathogenesis of various autoimmune diseases remains to be
elucidated, environmental factors have been thought to con-
tribute to the initiation and maintenance of auto-respond in-
flammation. Toll-like receptors (TLRs) are pattern recognition
receptors belonging to innate immunity that recognize and
defend invading microorganisms. Besides these exogenous
pathogen-associated molecular patterns, TLRs can also bind
with damage-associated molecular patterns produced under
strike or by tissue damage or cells apoptosis. It is believed that
TLRs build a bridge between innate immunity and autoim-
munity. There are five adaptors to TLRs including MyD88,
TRIF, TIRAP/MAL, TRAM, and SARM. Upon activation,
TLRs recruit specific adaptors to initiate the downstream
signaling pathways leading to the production of inflammatory
cytokines and chemokines. Under certain circumstances, liga-
tion of TLRs drives to aberrant activation and unrestricted
inflammatory responses, thereby contributing to the perpetu-
ation of inflammation in autoimmune diseases. In the past,
most studies focused on the intracellular TLRs, such as TLR3,
TLR7, and TLR9, but recent studies reveal that cell surface
TLRs, especially TLR2 and TLR4, also play an essential role
in the development of autoimmune diseases and afford multi-
ple therapeutic targets. In this review, we summarized the
biological characteristics, signaling mechanisms of TLR2/4,

the negative regulators of TLR2/4 pathway, and the pivotal
function of TLR2/4 in the pathogenesis of autoimmune dis-
eases including rheumatoid arthritis, systemic lupus erythe-
matosus, systemic sclerosis, Sjogren’s syndrome, psoriasis,
multiple sclerosis, and autoimmune diabetes.
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Introduction

Toll-like receptors are membrane-bound proteins that recog-
nize invading organisms bearing pathogen-associated molec-
ular patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs) [1]. PAMPs are conserved molecules derived
frommicroorganisms, for example, lipopolysaccharide (LPS),
peptidoglycan, flagellin, and microbial nucleic acids, while
most DAMPs are endogenous molecules released from dying
host cells molecules upon cellular stress or tissue damage,
such as oxidative stress and heat shock proteins [2]. Activation
of Toll-like receptors (TLRs) by PAMPs or DAMPs can up-
regulate inflammatory cytokines and chemokines, and engage
an assortment of intracellular signaling pathways to regulate
the nature, magnitude, or duration of the host’s inflammatory
response [3]. The first TLR to be characterized was Toll-like
receptor 4 (TLR4) by Medzhitov in 1997 [4]. Thereafter, 13
TLRs have been identified, TLR1 to TLR13, among which
TLR1 to TLR10 functions in human [5]. TLRs play an essen-
tial role in innate immune system. They regulate a pro-/anti-
inflammatory balance [6] (Fig. 1).

Autoimmune disease is an inflammatory disorder that char-
acterized by the production of autoantibodies. Although the
mechanism of autoimmune diseases remains elusive, accumu-
lated evidence implicates the association between TLRs and
autoimmune [7]. TLR2 and TLR4 are cell-surface TLRs.
Recent studies have demonstrated them to be significant in

Y. Liu :H. Yin :M. Zhao :Q. Lu (*)
Department of Dermatology, Second Xiangya Hospital, Central
South University, #139 Renmin Middle Rd, Changsha,
Hunan 410011, People’s Republic of China
e-mail: epigenetics2010@126.com

Y. Liu :H. Yin :M. Zhao :Q. Lu
Hunan Key Laboratory of Medical Epigenetics, Changsha,
Hunan 410011, People’s Republic of China

Clinic Rev Allerg Immunol (2014) 47:136–147
DOI 10.1007/s12016-013-8402-y



the pathogenesis of autoimmune diseases. In this review, we
summarized the biological characteristics, signaling pathway,
and inhibitors of TLR2/4 and their function in autoimmune
diseases (Tables 1 and 2).

Structure of TLRs

All TLRs are integral membrane glycoprotein receptors with
molecular weights ranging from 90 to 150 kDa. They are

Fig. 1 TLR2/4 signaling pathway and negative regulators [17–43].
PAMPs or DAMPs bind with TLR2-TLR1/TLR2-TLR6 heterodimer or
TLR4 homodimer to activate MyD88-dependent signaling pathway that
recruits TIRAP/MyD88 complex and its downstream kinases, the
IRAK1/IRAK4 complex. After that, TRAF6 is recruited to activate IKKs
complex and TAK1/TAB complex, which lead to the nuclear transloca-
tion of NF-κB and activation of MAPKs. Ligation of TLR4 homodimer
can also activate MyD88-independent signaling pathway in which
TRAM is required for the activation of TRIFwhich interacts with TRAF3
and TRAF6. Activation of TRAF6 and RIP1 leads to the nuclear trans-
location of NF-κB, while TRAF3 induces activation of TBK1/IKKi with
subsequent nuclear translocation of IRF3. In this signal transduction
process, endogenous inhibitors negatively regulate TLR2/4 signaling.

SOCS1 facilitates ubiquitination and proteasomal degradation of TIRAP.
MyD88s cannot associate with IRAK4 and prevents IRAK4 from phos-
phorylating IRAK1. ADAM15 acts as a negative regulator of TRIF.
Tollip reduces the autophosphorylation of IRAK-1. IRAK-M lacks the
kinase activity of its counterparts IRAK1 and IRAK4, thus silences signal
transduction. SHP-1 causes inactivation of IRAK1 through binding to its
kinase tyrosine-based inhibitory motif (KTIM). CD300a and CD300f can
function through SHP-1 to inhibit IRAK activity. A20 deubiquitinates
TRAF6. USP25 reverses the Lys(48)-linked ubiquitination of TRAF3.
SyK diminishes TRAF6-dependent proinflammatory signaling while
elevated TRAF3-dependent IFN production. Triad3A promotes substan-
tial degradation of TLR4, decreases TRAF3 level and blocks IRF-3
activation
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composed of three components: an N-terminal ligand recog-
nition domain, a single transmembrane helix, and a C-terminal
cytoplasmic signaling domain [8]. The recognition domain
contains 16–28 leucine-rich repeats which form a horseshoe
shape and is responsible for the recognition of PAMPs and
DAMPs [9]. The transmembrane domain of TLRs contains

atypical stretch of approximately 20 uncharged, mostly hy-
drophobic residues [10]. The signaling domain of TLRs is
also known as Toll/interleukin-1 receptor (TIR) domain be-
cause they are homologous with interleukin-1 receptors
(IL-1R) [11]. TLR2 and 4 are both cell-surface TLRs with
extracellular recognition domain. Engagement of ligands
with the TLR2/TLR1 or TLR2/TLR6 heterodimer or the
TLR4 homodimer induces activation of intracellular “sig-
naling cascades” when the TIR domain is attached by
intracellular adaptors [12].

Ligands of TLR2/TLR4 and Their Signaling Pathways

TLR2 and 4 are expressed by a wide range of cell types
including professional immune cells, for example, mono-
cytes, myeloid DCs, mast cells, as well as T and B lympho-
cytes, and nonprofessional immune cells like synovial
fibroblast-like cells and epithelial cells [13]. As an important
member of pattern recognition receptors, TLR2 can bind a
wide range of both exogenous ligands including lipopro-
teins, peptidoglycan, lipoteichoic acid, lipoarabinomannan,
glycosylphosphatidylinositol, phenol-soluble modulin, zy-
mosan, glycolipids, and endogenous DAMPs, such as
Snapin, Hyaluronic acid, heat shock protein (HSP)70, and
high mobility group box protein 1 (HMGB1) [13, 14].

Table 1 Ligands of TLR2 and TLR4

Receptor PAMPs DAMPs Refs

TLR2 Lipoproteins Snapin [13–16]
Peptidoglycan Hyaluronic acid

Lipoteichoic acid Hsp 70

Lipoarabinomannan HMGB1

Glycosylphosphatidylinositol Gp96

Phenol-soluble modulin

Zymosan

Glycolipids

TLR4 Lipopolysaccharide Hsp 22, 70, 72

Taxol HIF-1α

Viral glycoproteins HMGB1

rSV fusion protein Fibronectin

MMTVenvelope protein ECM components

Fatty acid

mmLDL

Fibrinogen

Table 2 Effects of ligation of TLR2 or TLR4 on different cells in autoimmune diseases

Diseases Cells Ligands Effects Refs

RA RASFs Peptidoglycan
Lipoteichoic acid, LPS,
Hsps, HMGB-1

Enhancing the production of pro-inflammatory
cytokines and chemokines, like TNF,
IL-6, IL-8, and MMP 3

[51, 52]

Macrophage LPS, Hsps, HMGB-1 Enhancing the production of pro-inflammatory cytokines [51, 57]

CD14+ monocyte HMGB-1 Increasing production of IL-23 [59]

Th 17 HMGB-1 Promoting the differentiation of Th17 and production of IL-17 [59]

SLE PBMC Pam3CSK4, LPS Dysregulation of cytokines and autoantibodies production [76]

CD8+ T cells Mrp8, Mrp14 Leading to increased interleukin-17 (IL-17) expression [78]

B cells (in animal models) Proteoglycan biglycan Accumulation of B cells with an enhanced B1/B cell ratio [79, 80]

SS DCs LPS Secretion of cytokines [86, 87]

Fibroblasts Antifibroblast antibodies
LPS

Up-regulation of the production of profibrotic
and proangiogenic chemokines

Augmented TGF-b1 sensitivity

[88, 89]

SjS Human salivary cells Peptidoglycan, LPS Stimulating CD54 expression and IL-6 production [94]

PBMCs Peptidoglycan, LPS, zymosan A Inducing the production of IL-23/IL-17 [95]

MS Oligodendrocyte precursor cells Hyaluronan Repressing maturation [102]

T1D β cells HMGB1 β cells damage [110]

B cells Pam3CSK4
LPS

Production of a higher level of IL-8 and a lower level of IL-10 [111]

DCs Apoptotic β-cells with
secondary necrosis

Inducing TLR2-dependent maturation of DCs [116]

CD4+CD25+Tregs
(in animal model)

Pam3CSK4 Increasing the frequency and ameliorating the
tolerogenic function of Tregs

[117]
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However, TLR4 can recognize and bind different ligands, for
instance, the exogenous PAMPs like lipopolysaccharide,
taxol, viral glycoproteins, rSV fusion protein, mice mamma-
ry tumor virus (MMTV) envelope protein, as well as endog-
enous ligands, such as necrotic cells, heat-shock proteins,
HMGB1, fibronectin, extracellular cell matrix (ECM) com-
ponents, fatty acid, minimally oxidized low-density lipopro-
tein (mmLDL), and fibrinogen [15, 16].

The ligation of TLRs can recruit five cytosolic adaptors:
myeloid differentiation primary response 88 (MyD88), TIR
domain-containing adaptor-inducing IFN-β (TRIF), TIR
domain-containing adaptor protein (TIRAP; also known as
MAL), TRIF-related adaptor molecule (TRAM), and Sterile
α and armadillo motif-containing protein (SARM) [17]. The
canonical TIR pathway depends on MyD88, which is utilized
by all TLRs, except for TLR3. Upon activation in MyD88-
dependent pathway, both TIRAP/MAL andMyD88 are recruit-
ed through TIR–TIR interactions to the TLR2/TLR1 or
TLR2/TLR6 heterodimer or the TLR4 homodimer [18].
MyD88 interacts with interleukin-1 receptor-associated kinase
(IRAK) complex, which consists of two active kinases (IRAK-
1 and IRAK-4) and two noncatalytic subunits (IRAK-2 and
IRAK-3/M) [19]. The phosphorylation of IRAK-4 can in turn
activate IRAK-1 and then recruit tumor necrosis factor
receptor-associated factor 6 (TRAF-6) to form MyD88–
IRAKs–TRAF-6 complex which activates a complex contain-
ing TGF-β-activated kinase 1 (TAK1), TAK1-binding protein
1 (TAB1), TAB2, and TAB3 [3, 20]. Activation of the
TAK1/TAB complex activates both the mitogen-activated pro-
tein kinases (MAPKs) and the inhibitor of NF-κB kinase (IKK)
complex [21]. IKK complex is made up of IKKα, IKKβ, and
IKKγ/NEMO (NF-κB essential modulator) [22]. Activation of
IKK complex leads to the phosphorylation of the inhibitor of
NF-κB (IκB) proteins, which results in the ubiquitination and
subsequent degradation of IκB [23]. Thus, the NF-κB gets free
and translocates into nucleus to regulate gene transcription and
inflammatory cytokines and chemokines production, such as
IL-1β, IL-6, IL-8, IL-12, IL-17, TNF-α, IFN-γ, iNOS, and
ICAM-1 [24]. However, a research group found that activation
of NF-κB by TLR4 signaling is specifically TAK1 independent
in synovial fibroblasts in rheumatoid arthritis [25].

In MyD88-independent signaling pathway, TLR4 needs
TRAM for the activation of TRIF that interacts with TRAF3
and TRAF6 [26]. The activation of TRAF6 and receptor-
interacting protein1 (RIP1) leads to the nuclear translocation
of NF-κB [27]. The interaction between TRAF3 and
TBK1/IKKi causes the phosphorylation of IRF3 leading to
its translocation to nucleus and initiate the production of type
IFN [28]. In this process, SARM acts as a negative regulator
of TRIF activation [29]. Additionally, TRAF3 differently
controls MyD88- and TRIF-signaling; the ubiquitination and
degradation of TRAF3 have been demonstrated to be essential
in MyD88-dependent pathway [30].

Endogenous Negative Regulators of TLR2 and TLR4
Signaling

However, there are some endogenous inhibitors that modulate
TLRs signaling pathways, which are important for the main-
tenance of the balance of immune response. These inhibitory
proteins target the receptors, adapter molecules, and key ki-
nases to impair the TLR-mediated production of inflammatory
cytokines.

Regulators Target Adaptors

The most universal adaptor molecule in TLR signaling is
MyD88. After being stimulated by LPS or TNF, a splice-
variant of MyD88, MyD88s, is up-regulated in monocytes.
This short form of MyD88 cannot associate with IRAK4 and
prevents IRAK4 from phosphorylating IRAK1, thereby
preventing the activation of NFκB [31]. And the partner of
MyD88, adaptor TIRAP, can be inhibited by suppressor of
cytokine signaling (SOCS) 1. It facilitates ubiquitination and
proteasomal degradation of TIRAP. In vivo experiment dem-
onstrates that cells from SOCS1 transgenic mice are unable to
respond to LPS [32]. In MyD88-independent pathway, adap-
tor protein TRIF can be inhibited by A disintegrin and
metalloprotease (ADAM)15 which acts as a negative regula-
tor of TRIF-mediated NF-κB and IFN-β reporter gene activity
possibly by mediating the proteolytic cleavage of TRIF. Sup-
pression of ADAM15 expression can enhance TRIF-mediated
cytokine production [33].

Regulators Target IRAKs

Downstream of these adaptors, tyrosine phosphatase SHP-1
causes inactivation of IRAK1 through binding to its kinase
tyrosine-based inhibitory motif (KTIM) [34]. Additionally,
CD300a and CD300f, membrane of CD300 family, can func-
tion through SHP-1 to inhibit MyD88-mediated signaling.
However, CD300f can also activate SHP-2 to regulate TRIF-
mediated TLR signaling pathways which required the com-
bined action of SHP-1 and SHP-2 [35]. A substrate of SHP-1,
SHPS-1, can also negatively regulate the MyD88-dependent
TLR signaling pathway. The inhibitory effects were modulat-
ed by SHPs and phosphoinositide 3-kinase (PI3K) [36]. An-
other two inhibitors targeting IRAKs are IRAK-M and Toll-
interacting protein (Tollip). IRAK-M belongs to IRAK kinase
family but lacks the kinase activity of its counterparts IRAK1
and IRAK4. It exhibits suppressive capacity to the production
of proinflammatory cytokines and inhibits downstream NFκB
activation [37]. Tollip targets IRAK1 and reduces the auto-
phosphorylation of IRAK-1. Moreover, some studies showed
that Tollip was also able to interact with TLR2 and TLR4 [38].
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Regulators Target TRAFs

A20 (also referred to as TNF-α-induced protein 3; TNFAIP3)
is an ubiquitin-editing enzyme that specifically deubiquitinates
TRAF6, thereby inhibiting its downstreamTLR signaling [39].
And regulator ubiquitin-specific protease 25 (USP25) has been
identified to inhibit TRAF3. USP25 is recruited to the TLR4
signaling complex upon the ligation of TLR4 and LPS. And it
down-regulates TLR4 signaling by reversing the Lys(48)-
linked ubiquitination of TRAF3 [40]. Non-receptor tyrosine
kinase Sky also targets TRAFs and differently regulates the
LPS-dependent, lysine 63-linked ubiquitination of TRAF6 and
TRAF3, which results in the diminished TRAF6-dependent
proinflammatory signaling and elevated TRAF3-dependent
IFN production [41].

Regulator Targets Multiple Molecules

Triad3A is an E3 ubiquitin ligase that interacts with several
components in TLR signaling pathway. Triad3A can be in-
duced following decreased TRAF3 level in a dose-dependent
manner. In one hand, Triad3A overexpression promotes sub-
stantial degradation of TLR4 with a concomitant decrease in
signaling, but does not affect TLR2 expression or signaling
[42]. In the other hand, Lys48-linked ubiquitination of TRAF3
by Triad3A increases TRAF3 turnover, and Triad3A expres-
sion blocks IRF-3 activation by Ser-396 phosphorylation [43].

All those negative regulators of TLR signaling pathway
restrict immune responses and enable a balanced immune
homeostasis.

TLR2 and TLR4 in Autoimmune Diseases

Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a progressive inflammatory au-
toimmune disease mainly affecting the joints. It is character-
ized by synovial hyperplasia and inflammatory cell infiltra-
tion, leading to tissue destruction and functional disability
[44]. Environmental factors have been proposed to be triggers
of inflammatory response in RA and contribute to the persis-
tence of inflammation [45]. T cells, B cells, macrophages, and
fibroblast-like synoviocytes (FLSs) are important mediators
of chronic inflammation of RA [46]. TLR2 and TLR4 have
been demonstrated to be expressed on macrophages and sy-
novial fibro-blasts and the expressional levels increase in RA
patients than osteoarthritis (OA) patients and healthy donors
[47, 48]. And the TLR4 responsiveness to LPS stimulation
was also enhanced in peripheral bloodmononuclear cells from
patients with recent onset rheumatoid arthritis than in cells
from OA and healthy control subjects, which caused the
dramatically increase of IL-6 and TNF-alpha production

[49]. TLR2 activation promotes angiogenesis, cell adhesion,
and invasion through the Tie2 signaling pathway, key mech-
anisms involved in the pathogenesis of RA [50].

Exogenous ligands like peptidoglycan, lipoteichoic acid,
and lipopolysaccharides binding with TLR2 or TLR4 can
enhance the production of pro-inflammatory cytokines and
chemokines such as interleukin 6 (IL-6) and interleukin 17
(IL-17) in human synovial fibroblasts and peripheral blood
mononuclear cells (PBMC) from RA patients [51, 52] and
trigger cartilage inflammation and degeneration [53]. This
may explain how the microbial trigger involved in the patho-
genesis of RA. In addition to the potential role of microbial
TLR ligands, a number of endogenous proteins have been
implicated as potential endogenous TLR ligands in RA. Cells
under strike during synovial inflammation can release produc-
tion of heat shock proteins (HSPs), high mobility group box
protein 1 (HMGB1), hyaluronan fragments, and hypoxia-
inducible factor-1α (HIF-1α) [54, 55]. Hsp70 and Hsp72
released from FLSs in response to heat shock or TNF-α may
be a major paracrine/autocrine inducer of IL-10 production in
FLSs via TLR2 or TLR4 [56]. Heat shock glycoprotein 96
(Gp96) expression increased in synovial fluid from the joints
of RA compared with disease controls and activated macro-
phages through TLR2 signaling, which strongly correlated
with inflammation and synovial lining thickness [57].
HMGB1 is a non-histone nuclear protein that can serve as
an alarm to drive the pathogenesis of inflammatory and auto-
immune diseases. HMGB-1 expressional level increased in
RA and its ligation with TLR4 enhanced production of TNF,
IL-6, IL-8, and matrix metalloproteinase (MMP) 3 in RASFs
[58]. Additionally, HMGB-1 can promote the differentiation
of Th17 via up-regulating TLR2 and IL-23 of CD14+ mono-
cytes from patients with RA [59]. Hyaluronic acid (HA)
differently modulates TLR-4 and the inflammatory response
depending on its degree of polymerization. Small HA frag-
ments initiate pro-inflammatory responses, while highly po-
lymerized HA exert a protective effect in inflammatory pa-
thologies such as rheumatoid arthritis [60]. Thus, the release
of endogenous TLR ligands creates a vicious circle of
inflammation.

Animal models also afford evidence for the importance of
TLR2 and TLR4 in RA development. Different TLR knock-
outs in the IL-1 receptor antagonist knockout model show
opposite effects: IL1rn−/−Tlr2−/− mice developed a more se-
vere arthritis with reduced inhibitory function of regulatory T
cells (Tregs) and dramatically increased IFN-gamma produc-
tion by T cells, while IL1rn−/−Tlr4−/− mice were protected
against severe arthritis with markedly lower numbers of
Th17 cells and a impaired capacity to produce IL-17 [61]. In
collagen-induced arthritis mice model, TLR4 activation by
LPS enhanced the protease high temperature requirement A1
(HTRA1) expression through the NF-κB pathway in fibro-
blasts and macrophages and increased the incidence of
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collagen-induced arthritis in mice [62]. And the incidence and
severity of collagen- induced arthritis was significantly lower
in TLR4-deficient DBA1J mice compared to wild-type
mice [63]. These results imply that blockade of TLR4 and
induction rather than blockade of TLR2 may be new ther-
apeutic strategies.

Recent years, numerous research groups have joined forces
in an endeavor to discover the correlation between polymor-
phisms of TLRs and RA susceptibility or severity. Most of
these studies focused on two functional variants of TLR4:
Asp299Gly and Thr399Ile (D299G/T399I) [64]. However,
the results are not in consistence [65, 66]. So, in order to
determine whether toll-like receptor polymorphisms confer
susceptibility to RA and influence the clinical characteristics
of RA, some research groups performed meta-analysis. The
results show lack of an association between the TLR4 poly-
morphism and RA but the numbers of guanine-thymine
[(GT)(n)] repeats in intron II of the TLR2 gene presented a
significantly higher S-allele frequency in Korean patients with
RA than in controls (30.3 vs. 23.0 %, p =0.03) [67, 68].
Besides this, another study identified two non-missense ge-
netic polymorphisms located in regulatory region of TLR4
(minor allele C and homozygotic variant genotype CC of
rs41426344 and minor allele C of rs7873784) to be risk
factors for the development of RA in Chinese Han people,
which suggests the non-missense polymorphisms located in
regulatory region should not be ignored in disease association
analysis [69].

Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a non-organ-specific
autoimmune disease characterized by B cell hyperactivity,
abnormally activated T cells, defects in the clearance of apo-
ptotic cells, and immune complexes [70]. SLE is thought to
result from interaction between genetic and environmental
factors [71]. SLE has an increased overall risk for infection
and bacterial infections in SLE are associated with higher
morbidity and mortality [72]. One of the mechanisms where-
by bacteria and viruses can participate in autoimmune disor-
ders is their interaction with TLRs. Recently, some studies
revealed the expressional change of TLR2/4 in SLE.
Komatsuda A et al. found that the mRNA level of TLR2
significantly increased in PBMCs of SLE patients, while
Martina Kirchner et al. identified that the surface expression
of TLR4 on CD14+ monocytes decreased dramatically in SLE
patients compared with control subjects [73, 74]. Moreover,
the number of CD180-negative B cells (CD180 molecule is a
homologue and negative regulator of TLR4) in peripheral
blood changes in parallel with disease activity in SLE patients
and the animal experiment testified that CD180-negative B
cells contributed significantly to anti-dsDNA and histone
antibodies production and renal lesions [75].

Cytokines and autoantibodies production from PBMCs in
response to TLR activation is dysregulated in SLE patients. It
was found that in SLE patients IL-10 protein production was
down-regulated after the activation of TLR-2 and TLR-4, but
TNF-α protein production was decreased after the activation
of TLR-2 rather than TLR-4 [76]. And the endogenous ligand
HMGB1 in circulating DNA-containing immune complexes
(ICs) is crucial for anti-dsDNA antibody induction depending
on the TLR2/MyD88/miR-155/Ets-1 pathway [77]. In addi-
tion, Loser K et al. found that local myeloid-related protein-8
(Mrp8) and Mrp14 can induce autoreactive CD8+ T cells and
increase interleukin-17 (IL-17) expression via Toll-like recep-
tor 4 signaling, which is essential for the development of
systemic autoimmunity [78].

Experimental evidence in animal models for SLE sug-
gests a role for TLR2 and TLR4 in the development of
murine lupus. Compared to C57BL/6lpr/lpr mice, TLR2-
and TLR4-deficient C57BL/6lpr/lpr mice develop a less
severe disease, fewer immunological alterations, a dimin-
ished renal lesion, and significantly reduced antinuclear,
anti-dsDNA, and anti-cardiolipin autoantibody titers [78].
Particularly in C57BL/6lpr/lpr-TLR4-deficient mice, anal-
ysis of B cell phenotype showed a significant reduction of
marginal zone B cells and a decrease of IL-6 production
[79]. Conversely, activation of TLR2/4 by proteoglycan
biglycanin MRL/lpr mice can trigger CXCL13 expression
and cause accumulation of B cells with an enhanced B1/B
cell ratio in the kidney [80]. In transgenic mice with mono-
clonal anti-dsDNA, ligation of TLR4 by lipopolysaccha-
rides in vitro and in vivo induced severe SLE syndromes
through the overproduction of IL-10 and IFN-gamma [81].
Compared to wild-type, TLR4−/− mice injected with pris-
tine (an experimental model used to study lupus nephritis)
demonstrated a global decrease in Th1, IFN-gamma, and
IL-17A and IL-6 cytokine production and autoantibody
levels of anti-dsDNA and anti-RNP were both down-
regulated andrenal injury was attenuated in TLR4−/− mice
which showed less glomerular immunoglobulin and com-
plement deposition. The results indicated that TLR4 was
required for the development of autoimmunity and lupus
nephritis in pristane nephropathy [82].

Although the polymorphisms of TLR2 (Arg677Trp and
Arg753Gln) and TLR4 (Asp299Gly and Thr399Ile) genes
lack association with the susceptibility or severity of SLE,
the TIRAP single nucleotide polymorphism rs8177374 (C/T),
which encodes a leucine substitution at serine 180 of Mal
(S180L), is demonstrated to be a protective factor against
developing systemic lupus erythematosus [83].

Systemic Sclerosis

Systemic sclerosis (SSc) is a connective tissue disease of
presumed autoimmune origin characterized by excessive
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extracellular matrix deposition in the skin and other visceral
organs [84]. Fibrosis is the central process of scleroderma or
systemic sclerosis resulting from inflammatory cell infiltration
and the release of cytokines and growth factors causing fibro-
blasts activation and enhanced extracellular matrix (ECM)
synthesis and deposition [85]. Recent studies implicated that
activation of Toll-like receptors contributed to the pathogene-
sis of fibrosis. Activation of TLR4 enhanced IL-10 secretion
by TLR4-stimulated DCs, which led to elevated CCL18 levels
in SSc patients [86]. Also, stimulation of DC subsets from
patients with early SSc by ligands for TLR2 or TLR4 resulted
in increased secretion of IL-6, IL-10 as well as TNFalpha and
a decreased IL-12 production [87]. Besides DCs, TLR4 is also
expressed on surface of fibroblasts and activation of TLR4
contributes to the up-regulation of production of profibrotic
and proangiogenic chemokines by fibroblasts [88].
Bhattacharyya S et al. found that activation of fibroblast
TLR4 signaling with damage-associated endogenous ligands
could augment fibroblast sensitivity to transforming growth
factor-b1 (TGF-b1) and promote matrix production and con-
nective tissue remodeling by increasing fibrogenic genes ex-
pression and inhibiting anti-fibrotic microRNA expression
which reveals the role of TLR4 in converting self-limited
tissue repair into intractable fibrosis [89]. Besides endogenous
ligation of TLR4, environmental stimuli omniscan and
gadodiamide signaling via TLR4 and 7 could enhance pro-
duction of numerous proinflammatory or profibrotic cyto-
kines, chemokines, and growth factors, including CXCL10,
CCL2, CCL8, CXCL12, IL-4, IL-6, TGF-b, and vascular
endothelial growth factor [90]. In animal model of human
systemic sclerosis, skin fibrosis induced by subcutaneously
injected with bleomycin in vivo, is attenuated in mice harbor-
ing a missense mutation in the intracellular signaling domain
of TLR4 [89]. And CD19 deficiency suppresses fibrosis and
autoantibody production in mouse model by inhibiting TLR4
signals [91]. Therefore, TLR4 may be a potential therapeutic
target for SSc.

Sjogren’s Syndrome

Sjogren’s syndrome (SjS) is a chronic slowly progressing
autoimmune disease, characterized by dysfunction and de-
struction of salivary and lacrimal glands associated with
chronic lymphocytic infiltrating lesions, resulting in dry
eyes and dry mouth [92]. In addition to the apparent prima-
ry sites of autoimmunity in SjS, other organs can be in-
volved in the pathologies of SjS including the lungs, kid-
neys, GI tract, skin, vasculature, bladder, and vagina [93].
In salivary gland epithelial cells (SGEC) and acinar cells as
well as salivary-infiltrating mononuclear cells of SjS pa-
tients, TLR2 and TLR4 display significant higher expres-
sional levels than controls [94–96]. In cultured human salivary
cells (HSG), a similar expression pattern is observed. Agonists

to TLR stimulate CD54 expression and IL-6 production
through phosphorylation of MAPKs in HSG cells rather than
Akt phosphorylation or activation of NF-kappaB p65 [94]. In
addition, stimulation of TLR2 induces the production of IL-
23/IL-17 from the PBMCs of primary SjS patients via IL-6,
STAT3, and NF-kB pathway [95]. All these data indicate that
TLR2 and TLR4 contribute to the pathogenesis of Sjogren’s
syndrome.

Psoriasis

Psoriasis is an immune-mediated skin disease characterized
by abnormal keratinocyte differentiation and proliferation
[97]. The roles of TLR2 and TLR4 in psoriasis are implied
by the elevated expression of TLR2 and TLR4 on peripheral
blood mononuclear cells and keratinocytes in patients with
psoriasis [98, 99].

Multiple Sclerosis

Multiple sclerosis (MS) is considered a chronic inflammatory
disease of the central nervous systemwith autoimmune origin;
it is characterized by inflammation, demyelination, and axonal
pathology [100]. Bacterial and viral infections are potential
cofactors implicated in the initiation and persistence of auto-
immune inflammation [101]. Accordingly, TLRs, an impor-
tant member of pattern recognition receptors family, are hy-
pothesized to be involved in the pathogenesis of MS. One of
the evidence supports this hypothesis is the elevated expres-
sional level of TLR2 and TLR4 in MS patients and rodent
experimental autoimmune encephalomyelitis (EAE), an ani-
mal model for multiple sclerosis [101, 102]. Moreover, TLR2
is required for repressive effects of hyaluronan on oligoden-
drocyte precursor cells maturation in vitro and TLR2-null
mice showed enhanced remyelination in the lysolecithin
remyelination model [102]. Another TLR2/4 ligand,
HMGB-1, is evident in active lesions of MS and EAE and
functions as a potent proinflammatory signal through interac-
tion with TLR2 or TLR4 [103]. However, in EAE model, the
loss of TLR4 solely in CD4(+) T cells almost completely
released disease symptoms or even could not induce EAE
when transferred into Rag1−/− mice, mainly through dimin-
ished Th17 and, to a lesser degree, Th1 responses. More-
over, compared with WT γδ T cells, Tlr4(−/−) γδ T cells
exhibited almost 50 % reduction in IL-17 and IFN-γ pro-
duction following EAE induction [104]. TLR4 signaling
pathway also plays a role in the response to interferon-beta
(IFNβ) treatment in MS patients. Baseline expression of the
interleukin-1 receptor-associated kinase 3 (IRAK3), a neg-
ative regulator of TLR4 signaling, has been demonstrated
to be significantly decreased in IFNβ responders compared
with no responders [105]. Thus, inappropriate responses of
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TLR2 or TLR4 have been testified to be involved in the
pathogenesis of multiple sclerosis.

Autoimmune Diabetes

Type 1 diabetes (T1D) is characterized by autoimmune de-
struction of the insulin-secreting beta cells in the pancreas
[106]. Recent studies demonstrated that TLR2/4 could serve
as a link between innate immunity and pro-inflammatory state
of T1D [107]. The mRNA expressional levels of TLR2,
TLR4, and MyD88 as well as ligands of TLR2 or TLR4, such
as Hsp60 and HMGB1, have been identified elevated in
patients with T1D [108, 109]. Also, TLR4 expressed mainly
on β cells so that ligands, like HMGB1, may signal via TLR4
to selectively damage β cells rather than α cells during the
development of T1D, which contributes to the initiation of
T1D [110]. Compared to non-diabetic (ND) donors, B cells
from diabetic patients produce a higher level of IL-8 and a
lower level of IL-10 in response to TLR2 and TLR4 activation
[111]. TLR4 is also associated with lipid metabolism [112].
TLR4 deficiency reduced lipid accumulation in cardiac mus-
cle early after the onset of type 1 diabetes, with a decreased
level of lipoprotein lipase (LPL) and an increase level of
phosphorylation of AMP-activated protein kinase (AMPK)
[113]. Evidence from mice experiments also indicates the
important role of TLR2 and TLR4 in the pro-inflammatory
state of T1D. Knockout of TLR2 or TLR4 in mice attenuates
the production of pro-inflammatory cytokines in
streptozotocin-induced diabetic mouse model [114, 115]. Ad-
ditionally, some researchers found that late apoptotic β-cells
with secondary necrosis could induce inflammatory responses
in macrophages through the toll-like receptor 2/MyD88/nu-
clear factor-κB signaling pathway. It could also promote
TLR2-dependent maturation of dendritic cells, and then acti-
vate autoreactive T-cells. However, in TLR2 knockout mice
apoptotic β-cells failed to prime diabetogenic T-cells in the
pancreatic lymph nodes, thereby conferring a significant pro-
tection against type 1 diabetes and insulitis in T1D animal
models [116]. To reduce TLR2 responsiveness and induce
TLR tolerance, some research groups treated NOD mice with
TLR2 agonists, Pam3CSK4 [117, 118]. Chronic Pam3CSK4
administration successfully prevented the development or re-
currence after islet transplantation of diabetes in NOD mice
and inhibited priming of naive T cells as well as the activity of
sensitized T cells [118]. Moreover, treatment of prediabetic
mice with a synthetic TLR2 agonist enhanced the number and
function of CD4+CD25+ Tregs and conferred DCs with
tolerogenic properties by which diminished T1D. TLR2 liga-
tion also promoted the expansion of Tregs upon cultured with
DCs and enhanced their capacity to prevent the disease [117].
All these data demonstrate the central role of TLR2 and TLR4
in the pathogenesis of autoimmune diabetes and indicate new
therapeutic perspectives.

Therapeutic Perspectives

A bulk of studies suggests that TLR2 and TLR4 pathways
contribute to the development of autoimmune diseases. The
underlying mechanisms are becoming clearer and they offer
exciting therapeutic options. TLR2 and TLR4 as well as their
ligands, adaptors and downstream kinases, negative regula-
tors, and even microRNAs targeting TLRs could be interven-
tion targets. Small molecules activate or inhibit these targets
have been identified and summarized in previous review
[119]. There are also some traditional Chinese medicine ex-
tractives which can inhibit inflammation through TLR
pathway. Celastrol, a pentacyclic-triterpene extract from
Tripterygium wilfordii Hook might inhibit FLS migration
and invasion by suppressing TLR4/NF-kB-mediated MMP-
9 expression [120]. And coumarins, the major components of
Urtica dentate Hand, can maintain the DCs in an immature
tolerogenic state partially by down-regulating TLR4-signaling
pathways in DCs and promote Treg differentiation [121].
Different molecules can target different components in
TLR2 or TLR4 signaling pathways to regulate inflammatory
responses, thereby ameliorating autoimmune diseases.

Conclusion

Increasing evidence about TLR2 and TLR4 has led to the
recognition that the innate immune system may act, under
some circumstances, as a double-edged sword. In addition to
its beneficial role in host defense, it may lead to initiation and
maintenance of autoimmune responses. Treatments target
TLR2 and TLR4 signaling can break the perpetuated inflam-
matory loop and ameliorate autoimmune diseases. But exact
mechanism underlying the interaction between TLR2 and
TLR4 with autoimmune diseases remains unclear; therefore
continued efforts in this direction are required.
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