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Abstract Biliary epithelial cells (BECs) provide the first
line of defense against lumenal microbes in the biliary
system. BECs express a variety of pathogen recognition
receptors and can activate several intracellular signaling
cascades to initiate antimicrobial defenses, including pro-
duction of several anti-microbial peptides, cytokines, che-
mokines, and adhesion molecules. BECs also secrete
immunoglobulin A and interact with other cells through
expression and release of adhesion molecules and immune
mediators. Recently, several reports suggest a correlation
between apoptosis and autoimmunity through ineffective
clearance of self-antigens. Primary biliary cirrhosis (PBC)
is a slowly progressive, autoimmune cholestatic liver dis-
ease characterized by highly specific antimitochondrial
antibodies (AMAs) and the specific immune-mediated de-
struction of BECs. We have demonstrated that the AMA
self-antigen, namely the E2 subunit of the pyruvate dehy-
drogenase complex, is detectable in its antigenically reactive
form within apoptotic blebs from human intrahepatic biliary

epithelial cells and activates innate immune responses. Pri-
mary sclerosing cholangitis (PSC) is a chronic cholestatic
liver disease characterized by inflammation and the pres-
ence of concentric fibrosis of intrahepatic and/or extrahe-
patic bile ducts, eventually leading to cirrhosis. However,
apoptosis does not appear to play a central role in PSC.
Despite both diseases involving immune-mediated injury to
bile ducts, apoptosis occurs more commonly overall in PBC
where it likely plays a unique role.
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MCP-1 Monocyte chemotactic protein-1
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MyD88 Myeloid differentiation factor 88
(NF)–kB Nuclear factor
OGDC-E2 The E2 subunit of the oxo-glutarate

dehydrogenase complex
PAMPs Pathogen-associated molecular patterns
pANCA Perinuclear anti-neutrophil cytoplasmic

antibody
PBC Primary biliary cirrhosis
PDC-E2 The E2 subunit of the pyruvate

dehydrogenase complex
poly I:C Polyinosinic–polycytidylic acid
PSC Primary sclerosing cholangitis
Rig-1 Retinoic acid inducible gene-1
STAT4 Signal transducer and activator of

transcription 4
SSA/Ro Sjogren’s syndrome antigen A
TRAIL TNF-related apoptosis-inducing ligand
TLRs Toll-like receptors
TNF-R1 TNF-α receptor-1
TUNEL TdT-mediated deoxyuridine triphosphate

nick-end labeling
UCDA Ursodeoxycholic acid
UQCR2 Ubiquiol cytochrome c reductase

complex core protein II

Introduction

The biliary system of the liver functions to deliver bile to the
intestinal lumen. Biliary epithelial cells (BECs) form a con-
tinuous mucosal surface from the smallest biliary unit the
bile ductule, through intralobular and septal bile ducts and
finally to the large intrahepatic and extrahepatic bile ducts.
Due to the exposure of the biliary tract to microbes, BECs

are equipped to respond through several immunological
pathways including a variety of pathogen pattern recogni-
tion receptors [1–3]. Activation of pathogen pattern recog-
nition receptor-associated intracellular signaling cascades
result in the expression of several anti-microbial peptide,
cytokines/chemokines, adhesion molecules, and immuno-
globulin A (IgA), initiating epithelial immune responses
against microbial infection. However, a balance between
inflammatory responses and tolerance is a key in mucosal
environments.

Apoptosis, the major mechanism of programmed cell
death, is essential to regulate and maintain tissue growth
and homeostasis. Normally, apoptotic bodies are efficiently
cleared by neighboring tissue cells or professional phago-
cytes without inciting an inflammatory reaction [4, 5]. How-
ever, several reports suggest a correlation between apoptosis
and autoimmunity through an impairment of apoptosis or an
ineffective removal of apoptotic bodies [6–8] leading to the
release of intracellular components that are a potential
source of autoantigenic stimulation [7, 9]. The presence of
intact autoantigens within apoptotic bodies [10] and their
ability to activate innate immunity through macrophage
cytokine secretion [11] provide the strongest evidence link-
ing apoptosis and autoimmunity [12].

Primary biliary cirrhosis (PBC) is an autoimmune liver
disease characterized by progressive destruction of intra-
hepatic bile ducts with cholestasis, portal inflammation,
and fibrosis. PBC may lead to cirrhosis and its complica-
tions, and eventually to liver transplantation or death. PBC
is characterized by multi-lineage T and B cell responses
against the E2 subunit of the pyruvate dehydrogenase com-
plex (PDC-E2), which is contained in the mitochondria of
all nucleated cells [13, 14]. However, a major unanswered
question regarding the pathogenesis of PBC is the specific
targeting of small BECs despite the presence of mitochon-
dria in all nucleated cells. We reported that PDC-E2 is
preserved in apoptotic bodies from human intrahepatic bil-
iary epithelial cells (HiBECs) but not other epithelial cells
during apoptosis [15, 16]. Furthermore, the triad of HiBEC
apoptotic bodies, macrophages from patients with PBC, and
antimitochondrial antibodies (AMAs) produce inflammato-
ry cytokines and TNF-related apoptosis-inducing ligand
(TRAIL) [17]. We have proposed that the unique apoptotic
features of BECs allow the exposure of a potent intracellular
autoantigen to the PBC-associated multi-lineage autoim-
mune response that leads to the tissue-specific autoimmune
injury. Although genetic susceptibility and environmental
factors have gained much recent attention, mounting evi-
dence continues to suggest that BEC apoptosis plays an
important role in PBC pathogenesis. Primary sclerosing
cholangitis (PSC) is another liver disease likely of autoim-
mune etiology in which small as well as large bile ducts are
destroyed and leads to biliary cirrhosis. However, based
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upon in situ staining, apoptosis is much more frequent in
PBC compared with PSC [18]. This review summarizes the
current understanding of the immunophysiology and apo-
ptosis of BECs, as well as how they relate to PBC and PSC.

Basic Mechanism of Biliary Immunity

Toll-Like Receptors

Toll-like receptors (TLRs) are key responders to pathogen-
associated molecular patterns (PAMPs) and are character-
ized by a variable leucine-rich extracellular domain and an
intracellular toll/interleukin (IL)-1 receptor domain [19, 20].
The former domain responds to PAMPs, and the latter
induces the production of antiviral cytokines and inflamma-
tory cytokines/chemokines via intracellular transcription
factors such as nuclear factor (NF)–kB, mitogen-activated
protein kinases (MAPK), and interferon-regulatory factor-3
(IRF-3) followed by the initiation of inflammatory
responses. Epithelial expression of TLRs is highly regulat-
ed, reflecting the specific microenvironment and function of
each epithelial cell type. BECs express TLRs 1, 2, 3, 4, and
5, and signaling proteins myeloid differentiation factor 88
(MyD88), IL-1 receptor-associated kinase (IRAK-1), retinoic
acid inducible gene-1 (Rig-1), and melanoma differentiation-
associated gene 5 [21, 22]. Moreover, immunohistochemistry
has confirmed that TLR1-TLR5, MyD88, and IRAK-1 are
distributed diffusely in the intrahepatic biliary tree of normal
human liver [21]. Upregulation of TLRs in BECs has been
demonstrated in patients with PBC, PSC, and hepatolithiasis
[23, 24]. In addition, BECs have also demonstrated respon-
siveness to the corresponding PAMPs. Lipopolysaccharide
(LPS), a ligand of TLR4, binds to the surface of cultured
BECs and induces the production of TNF-α mRNA in an
NF–κB-dependent manner [25]. Stimulation of BEC with
polyinosinic–polycytidylic acid (poly I:C), a ligand of
TLR9, induces the activation of NF–κB and interferon regu-
latory factor (IRF3) and the production of interferon β1 (IFN-
β1) and MxA as potent antiviral responses [26]. Therefore,
BECs possess functional TLR signaling systems and partici-
pate in innate immunity.

Epithelial cells have also developed multiple strategies
for negative regulation of TLR signaling that initiate events
leading to resolution of the inflammatory responses. These
strategies include the release of extracellular soluble decoy
TLRs, interference of ligand–receptor interaction through
transmembrane negative regulators, and activation of intra-
cellular antagonists to downregulate TLR signaling [27].
Moreover, a function for some of these negative regulators
has recently been elucidated in human BECs. Upregulation
of interleukin-1 receptor-associated kinase M (IRAK-M), a
negative regulator of TLRs signaling, was demonstrated in

freshly isolated human BECs upon stimulation with TLR 2
and TLR 4 [28]. This study demonstrated endotoxin toler-
ance in the intrahepatic biliary epithelium and suggests that
the expression of IRAK-M is crucial for LPS-induced toler-
ance in BECs. It is speculated that endotoxin tolerance is
important in maintaining innate immune biliary homeostasis
and that an impaired tolerance to LPS may be associated
with the pathogenesis of biliary diseases.

Anti-microbial Peptide

Defensins and cathelicidin are anti-microbial peptides be-
longing to the innate immune system [29]. They protect the
mucosal barrier against bacteria, mycobacteria, fungi, and
viruses via mechanisms such as the disruption of microbial
membranes. However, they also participate in adaptive im-
munity through the recruitment of CD4+ T cells and imma-
ture dendritic cells [30]. Granulocytes express the highest
density of defensins, however, cholangiocytes also produce
these peptides in basal and diseased states [1, 29]. Defensins
are divided into two major groups, α-defensins and β-
defensins, based on their structure [31]. α-Defensins are
particularly abundant in neutrophils and Paneth cells of the
small intestine[31]. Of the six human β-defensins (hBD-1 to
hBD-6) that have been identified, human β-defensin 1
(hBD-1) is diffusely expressed in the cytoplasm of normal
BECs [31]. Moreover, because hBD-1 is constantly detect-
able in bile samples, hBD-1 is believed to play a role in the
constitutive antimicrobial defense of the hepatobiliary sys-
tem [1]. hBD-2 is undetected in normal BECs. However,
hBD2 is induced by bacterial and viral infections and cyto-
kines in the liver. Therefore, hBD-1 plays a constitutive role
in biliary antimicrobial defense, while the expression of
hBD-2 is induced in response to local infections and may
play a role in additional antimicrobial defenses.

Cathelicidin is expressed in normal human BECs, as
well as hepatocytes. Moreover, bile acids, including
chenodeoxycholic acid and UCDA, enhance cathelicidin
expression through the farnesoid X receptor and the vitamin D
receptor [32].

Cytokines and Chemokines

HiBECs constitutively express IL-6, IL-8, and monocyte
chemotactic protein-1 (MCP-1) [2, 33], which are important
chemotactic agents for neutrophils, monocytes, and T cells.
Treatment of HiBECs with PAMPs induces the production
of IL-6 and MCP-1 via activation of transcription factors
NF–kB and MAPK [2]. In addition, LPS induces expression
and secretion of IL-12 and TNF-α in immortalized mouse
BECs through activation of TLR4 [25]. Fractalkine is a
chemokine with both chemoattractant and cell adhesive
functions, and it is involved with its receptor CX3C
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chemokine receptor 1 (CX3CR1) in the chemoattraction and
recruitment of intraepithelial lymphocytes. LPS induces the
upregulation of fractalkine expression in cultured HiBECs,
followed by the chemoattraction of CX3CR1-expressing
mononuclear cells [34]. Shimoda et al. [35] demonstrated
the significance of fractalkine and the precise mechanism of
its production using populations of multiple intrahepatic cell
types, including endothelial cells, liver sinusoidal endothe-
lial cells, and BECs, to directly study the interaction of
fractalkine producing cells with liver-infiltrating mononu-
clear cells. Endothelial cells produced large amounts of
fractalkine upon stimulation by PAMPs. In contrast, liver
sinusoidal endothelial cells produced no fractalkine. More-
over, TLR3-stimulated BECs produced fractalkine after di-
rect contact with TLR4-stimulated autologous monocytes.
These findings suggest that cytokines and chemokines se-
creted by BECs recruit and activate immune cells such as T
cells, macrophages, and natural killer cells to protect against
biliary infection [36].

Adhesion Molecules

Normal BECs express low levels of lymphocyte adhesion
molecules such as intercellular adhesion molecule 1
(ICAM-1) and lymphocyte function-associated antigen 3
(LFA-3). However, previous study reports a lack of specific
ICAM-1 immunohistochemical staining in normal livers
[37]. ICAM-1 is critical for leukocyte migration to inflam-
matory sites. It binds to lymphocyte function-associated
antigen-1 (LFA-1) and macrophage antigen-1 expressed on
leukocytes such as neutrophils, macrophages, and lympho-
cytes [38]. BECs from patients with PBC exhibit increased
expressions of ICAM-1, with a corresponding expression of
LFA-1 on infiltrating lymphocytes [37]. The presence of the
adhesion molecule LFA-3 on the surface of BECs allows
their interaction with CD2 molecules expressed on cytotoxic
T lymphocytes and natural killer cells [39]. T cells are also
activated by CD40, a member of the TNF receptor super-
family, which is expressed on BECs [40]. The CD40–
CD40L and CD2/CD58 complexes induce production of
IL-12, which plays an important role in the cytotoxic re-
sponse of BECs. CD40 and CD40L expression in BECs are
increased, respectively, by stimulation with IFN-γ and acti-
vation of CD2 on T cells [40]. The increase in leukocyte
adhesion molecules facilitates tissue-specific migration by
the slowing down of leukocyte circulation near the damaged
epithelium, encouraging trafficking to the target site.

Secretory IgA

BECs also transport protective immunoglobulins from the
circulation into bile. The predominant immunoglobulin in
bile is IgA, although IgM and IgG are present but at much

lower levels. IgA could be protective for bile ducts by
preventing bacterial infection or inhibiting bacterial toxins
from interacting with BECs [41]. IgA is synthesized by
plasma cells around bile ducts and secreted into bile after
binding to the polymeric Ig receptor located on the baso-
lateral membranes of BECs. Aagaard and colleagues dem-
onstrated that natural IgA antibodies against a variety of
intestinal bacteria are present in bile, and after inoculation
of various antigens into the intestinal lumen or intestinal
lymphoid tissues, a consequent secretion of specific IgA
antibodies that protect from biliary tract infections is evident
in the bile of experimental animals [42]. Additionally, IgA
has been demonstrated to neutralize intracellular microbes
and their products during its transit through mucosal epithe-
lium. Immune complexes of IgA and foreign antigen in the
lamina propria may also be transported to the lumen via
secretory components, excreting pathogens to a proteolytic
mucosal environment [43].

Biliary Immunity and Apoptosis

Apoptosis of Biliary Epithelial Cells

The decision of a cell to undergo apoptosis can be influ-
enced by a wide variety of regulatory stimuli acting either as
inhibitors or inducers of apoptosis. Apoptosis contributes to
duct loss and is induced by signals such as activation of
death receptors, immune-mediated injury, oxidative stress,
infections, and toxins. Two main pathways of apoptosis
regulation have been identified: termed the intrinsic and
extrinsic pathways. The intrinsic pathway is characterized
by mitochondria dysfunction or possibly by endoplasmic
reticulum stress [44]. The extrinsic pathway is mediated
either by cell surface receptors, including Fas and TNF-a
receptor-1 (TNF-R1), or by perforin and granzyme B re-
leased from activated cytotoxic lymphocytes. Upon activa-
tion by Fas ligand (FasL) and TNF-a, both Fas, TNF-R1
recruit adaptor proteins, and aggregation of this complex
initiates cleavage of procaspase 8 into its active form.
TRAIL binds two death receptors (TRAIL-R1/death recep-
tor 4 (DR4) and TRAIL-R2/death receptor 5 (DR5)) and has
been demonstrated as a critical molecule in the extrinsic
pathways[45, 46]. Cytotoxic lymphocytes express FasL
and release granules containing granzyme B and perforin,
which allows granzyme B to enter target cells. Granzyme B
then directly cleaves critical cellular proteins and activates
procaspases [47]. At the earliest stages of apoptosis, the
phagocytes and the dying cells have to be in proximity,
which is achieved through “find-me” signals; the phago-
cytes then specifically engage the dying cells, achieved via
“eat-me” signals on dying cells and receptors for the “eat-
me” signals on phagocytes; the phagocytes then physically
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engulf the dying cells through signaling induced by engulf-
ment receptors and cytoskeletal reorganization. After inter-
nalization, actin is displaced from the phagosome, which
matures by a series of fusion and fission events with com-
ponents of the endocytic pathway [48, 49].

There is controversial evidence concerning the expres-
sion of programmed-death (PD) ligands in BECs of biliary
diseases. PD molecules are expressed on leukocytes, induce
apoptosis in the leukocyte, and may be another method of
limiting the immune response [50, 51]. Death receptor 5
(DR5) is constitutively expressed by BECs in normal con-
ditions and is significantly upregulated in BECs of some
biliary diseases, which may result in their apoptosis via
ligation by TRAIL expressed by activated cytotoxic lym-
phocytes [46]. Stimulation of BEC with poly I:C induced
the activation of NF–κB and IRF-3, followed by the pro-
duction of antiviral IFN-β1 and also enhanced apoptosis via
production of TRAIL [26]. The expression of TRAIL by
diseased BECs in PBC and PSC may be an attempt by BECs
to control the inflammatory responses in these diseases by
targeting DR5-expressing leukocytes [46]. The induction of
apoptosis in BECs by leukocytes is also important for the
clearance of pathogens and may play a role in the induction
of BECs damage in biliary diseases. CD40 binds to the
CD40L found on leukocytes such as T cells, B cells, and
macrophages. In the case of PBC, infiltrating macrophages
and T cells express CD40L, with a more pronounced ex-
pression on macrophages [52]. In the same study, cultured
cholangiocytes demonstrated constitutive expression of
CD40, Fas, and FasL. Ligation of CD40 increased FasL
expression and led to a three- to fourfold increase in Fas-
dependent apoptosis of cultured BECs, suggesting that the
binding of CD40 on BECs by inflammatory leukocytes
causes apoptosis and perhaps, the clearance of infectious
agents. Thus, apoptosis is an important mechanism in the
control of immune responses and may contribute to biliary
diseases.

Apoptosis and Autoimmunity

The clearance of apoptotic cells is a highly regulated pro-
cess, essential to avoid the outflow of intracellular contents
and to limit the immunological response against generated
antigens. Indeed, the most significant difference between the
phagocytosis of pathogens and the uptake of apoptotic cells
has traditionally been considered the immune response: A
pro-inflammatory reaction is often induced after the phago-
cytosis of necrotic cells, whereas the secretion of anti-
inflammatory cytokines follows the engulfment of apoptotic
cells [53–55]. The formation of apoptotic bodies and frag-
ments is essential during apoptosis to limit the escape of
intracellular content and to preclude any ensuing immuno-
logical responses against intracellular autoantigens with

inflammatory reactions [54, 56]. Nevertheless, apoptotic
bodies and fragments can, under some circumstances, con-
stitute a major source of immunogens in autoimmune dis-
eases that involve the targeting of ubiquitous autoantigens
[57]. Although autoantigens have no common cellular dis-
tribution or function that distinguishes them from other
molecules, a high percentage of autoantigens are specifical-
ly cleaved by caspases [58, 59] and become concentrated in
cytoplasmic surface blebs or apoptotic bodies during apo-
ptosis [10, 57]. Apoptotic cells engulfed by antigen-
presenting dendritic cells (DC) are suggested to serve as a
source of self-antigens for the induction of peripheral self-
tolerance in normal conditions [60, 61]. Moreover, apoptotic
cells are able to promote maturation of DCs by upregulat-
ing costimulatory molecules and inducing proinflamma-
tory cytokine release, while functioning as endogenous
adjuvants for the induction of specific T cell responses [62].
Further evidence supporting the presentation of neo-antigens
derived from apoptotic cells by DCs has been reported
[63–65].

Association with Immunophysiology and Apoptosis
in Biliary Disease

Primary Biliary Cirrhosis

PBC is a female-predominant, organ-specific autoimmune
disease characterized by destruction of intrahepatic small
bile duct BECs [66]. The serological hallmark of PBC is
the presence of AMAs directed against PDC-E2 located in
the inner membrane of mitochondria [14, 67, 68]. In addi-
tion, it has been reported that 23% and 57% patients with
PBC also produce autoantibodies against two other 2-oxo
acid dehydrogenase enzymes, the E2 subunit of the oxo-
glutarate dehydrogenase complex (OGDC-E2) and the E2
subunit of the branched chain 2-oxo acid dehydrogenase
complex (BCOADC-E2), respectively[13, 69–71]. Further-
more, patients with PBC who are negative for AMAs do not
have autoantibodies against PDC-E2, OGDC-E2, or
BCOADC-E2 but often have autoantibodies to nuclear auto-
antigens [70, 72–75].

Epidemiologic studies have shown that having a first-
degree relative with PBC, a history of urinary tract infec-
tions, a history of smoking, or use of hormone replacement
therapies increased the risk of PBC [76, 77]. More recently,
genome-wide case–control association studies in PBC have
identified a significant association with interleukin-12A (IL-
12A), interleukin-12 receptor, beta2 subunit (IL-12RB2),
and signal transducer and activator of transcription 4
(STAT4) polymorphisms [78, 79]. The IL-12A polymor-
phism is also associated with celiac disease [80] and
multiple sclerosis [81], and the STAT4 polymorphism is also
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found in patients with systemic lupus erythematosus and
rheumatoid arthritis [82]. The association of these pleiotropic
immune function-related genes in PBC and other autoimmune
diseases illustrates that multiple genes are shared between
clinically distinct but immune-related diseases, and that the
immune-mediated pathogenesis of PBC may be secondary to
the breaking of tolerance to the PDC-E2 epitope by environ-
mental factors such as xenobiotics [83].

Immune Response in PBC

CD4+ and CD8+ T cells and innate responses have all been
demonstrated in PBC patients and proposed as possible etiol-
ogies for the biliary injury of PBC[84]. PDC-E2-specific
autoreactive CD4+ and CD8+ T cells have been identified in
peripheral blood from patients of PBC. Furthermore, PDC-
E2-specific autoreactive CD4+ T cells are 100- to 150-fold
higher and CD8+ T cells are ten- to 15-fold higher in the liver
compared with peripheral blood in PBC patients [85–89].
Notably, the frequency of CD4+CD45RO+ memory T cells
are higher in PBC patients compared with normal controls
[37, 38], and T cell clones with PDC-E2 specificity derived
from PBC patients were all CD4+CD45RO+ T cell [39]. In
addition to the memory CD4+ T cells, memory CD8+ T
cells are increased in a mouse model of PBC [40]. Although
both CD4+ and CD8+ T cells are present within portal
tract infiltrates, there is a growing body of data that
suggest a more direct role of cytotoxic CD8+ T cells in the
biliary destruction pathway [90–92]. Compared with healthy
controls, PBC patients had an increased frequency of CD8+
effector memory T cells (CD8highTEM cells), characterized as
CD45ROhighCD57+CD8high T cells and respond specifically
to the major histocompatibility class I epitope of PDC-E2.
Histologically, CD8+CD57+ T cells accumulate around the
portal area supporting their role in the progressive destruction
of BECs [93].

Apoptosis in PBC

It is clear that mitochondrial proteins are present in all
nucleated cells, yet the autoimmune attack is directed with
high specificity to BECs. Notably, there are qualitative
differences between the metabolic processing of PDC-E2
during apoptosis of BECs compared with other epithelial
cells. We confirmed by immunoblotting that seven mito-
chondrial and four nuclear proteins were present in naive,
untreated cultures of HiBECs, human bronchial epithelial
cells (BrEPCs), human mammary epithelial cells (MaEPCs),
and keratinocytes [16]. Of interest, PDC-E2 was detectable
in its antigenically reactive form within apoptotic blebs from
HiBECs, but it was not detected in apoptotic blebs from the
three other epithelial cell lines [15, 16]. It is reasoned that
absence of glutathiolation may contribute to this unique

feature of the BEC [94]. Furthermore, we demonstrated that
other mitochondrial inner membrane proteins including
OGDC-E2, BCOADC-E2, 2,4-dienoyl coenzyme A reduc-
tase 1 (DECR1), and ubiquiol cytochrome c reductase com-
plex core protein II (UQCR2) remain intact in apoptotic
blebs from HiBECs. In addition to mitochondrial inner
membrane enzymes, Sjogren’s syndrome antigen A (SSA/
Ro) and glycoprotein 210 kD (gp210), which are nuclear
antigens, are detectable in apoptotic blebs from HiBECs
(Fig. 1) [16]. Furthermore, we tested the ability of apoptotic
blebs from HiBECs to induce cytokine production from
mature monocyte-derived macrophage from either patients
with PBC or controls in the presence or absence of AMA.
We demonstrated that only the unique triad of HiBEC apo-
ptotic blebs, macrophage from PBC patients, and AMA
produces inflammatory cytokines and TRAIL [17]. Our
observations may help close several remaining gaps in the
understanding of PBC including the mechanisms that lead to
the selective destruction of small intrahepatic bile ducts. We
posit that PDC-E2 in the apoptotic blebs is recognized by
circulating AMAs, and the resulting immune complexes
stimulate macrophages from subjects with a susceptible
genetic background. This event leads to a localized burst
of inflammatory cytokines, and the ensuing inflammation is
associated with increased apoptosis of surrounding cells,
including BECs, and perpetuation of local inflammation
with chronic damage to the biliary tract (Fig. 2). Although
much work remains to be done in this area, recent findings
suggest that BEC apoptosis may be of considerable impor-
tance for understanding PBC and that the BEC is more than
simply an innocent victim of an immune attack. Rather, it
attracts an immune attack by virtue of the unique biochem-
ical mechanisms by which it handles PDC-E2.

Several studies have investigated apoptosis of BECs spe-
cifically in PBC. There is increased DNA fragmentation,
implying increased apoptosis, in the BEC of patients with
PBC when compared with normal controls [95–97]. Fas,
FasL, perforin, granzyme B, and TRAIL expressed signifi-
cantly greater levels on BECs of patients with PBC [46, 96,
98]. In addition, the upregulation of WAF1 and p53 related
to biliary apoptosis is found in BECs of PBC [99]. TdT-
mediated deoxyuridine triphosphate nick-end labeling
(TUNEL) staining has also shown significantly greater ap-
optosis of BECs in PBC compared with PSC even when
controlled for similar degrees of inflammation [18, 46, 96,
99] (Table 1). These findings suggest that intrinsic pathways
induce apoptosis of BECs in PBC and that apoptosis of
BECs occurs more commonly in PBC than PSC.

Therapy for PBC

UDCA is well known to be a beneficial agent for the
treatment of PBC. Especially in early-stage PBC, a
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substantial proportion of patients have a favorable outcome
with UDCA treatment [100]. Long-term treatment with
UDCA in PBC patients improves biochemical liver tests,
delays histologic progression, and prolongs survival without
liver transplantation [101, 102]. However, the mechanisms
of UDCA action have not been fully clarified. It has been
postulated that the inherently greater hydrophilic nature of
UDCA prevents hepatocytes and BEC damage by replacing
more hepatotoxic hydrophobic bile acids [103]. Several
studies demonstrated that, both in vivo and in vitro, UDCA
can reduce apoptosis in BEC, hepatocytes, and non-liver
tissues [95, 97, 104]. UDCA reduces serum levels of both
solubilized FasL and TNF-α in patients with PBC. Also,
UDCA reduces not only the mitochondrial MPT in isolated
mitochondria but also interferes with alternate and upstream
molecular targets such as the E2F-1/Mdm-2/p53 pathway
[104, 105]. Reduction of apoptosis in BEC may play a role
in the therapeutic response to UDCA in PBC.

Primary Sclerosing Cholangitis

PSC is a chronic inflammatory large duct cholangiopathy
that induces fibrosis and dilatations of the intrahepatic and

extrahepatic bile ducts, leading to the formation of mul-
tifocal bile duct strictures [106]. PSC is a male-predominant
disease and is strongly associated with inflammatory bowel
disease [106, 107]. Additionally, there is an increased risk of
cholangiocarcinoma and gallbladder carcinoma. Histological
changes show concentric periductal fibrosis (onion skinning)
with progression to stricturing of large bile ducts and obliter-
ation of small bile ducts. Although it has been reported that
50% to 80% and 7% to 77% patients with PSC produce
autoantibodies against pANCA and ANA, respectively, they
have no role in the routine diagnosis of PSC [108].

Immune Response in PSC

CD4+ T cells predominate in the portal infiltrate, and CD8+
T cells predominate in the lobular infiltrate in the liver of
patients with PSC [109]. There is a greater percentage of
γδ+ T cells in peripheral blood of patients with PSC com-
pared with healthy controls. The infiltrating T cells express
the IL-2 receptor and CD45RO, suggesting that they have
an activated memory phenotype [110]. Chemokines and their
receptors have specific roles in PSC. Hepatic inflammation
upregulates mucosal addressin cell adhesion molecule-1

Fig. 1 Presence of mitochondrial inner membrane enzymes and nu-
clear antigens in apoptotic bodies of various cell types undergoing
apoptosis. Mitochondrial inner membrane enzymes; PDC-E2,
OGDC-E2, DECR1, BCOADC-E2, UQCR2, COX-IV, and ATPB.

Nuclear antigens; SSA/Ro, SSB/La, Sp100, and gp210. All 11 auto-
antigens are present in naive, unmanipulated cultures of human prima-
ry epithelial cells. PDC-E2, OGDC-E2, and DECR1 are detected in
apoptotic bleb from HiBECs only
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(MAdCAM1) and CCL25, the CCR9 ligand, and increases
recruitment of mucosal T cells. CCR9+ liver-infiltrating lym-
phocytes appear to be specifically increased in PSC compared
with PBC. Although the frequency of CCR9+ lymphocytes is
not increased in peripheral blood, approximately 20% of lym-
phocytes from PSC livers express CCR9 compared with <2%
in normal livers or PBC [111]. α4β7 and CCR9 expression is
functionally relevant because MAdCAM1 and CCL25, which
are absent from normal liver, are present on hepatic endotheli-
um in liver diseases associated with colitis and α4β7+CCR9+

lymphocytes from livers of patients with PSC bind MAd-
CAM1 and respond to CCL25 in adhesion and migration
assays [78].

Apoptosis of Biliary Epithelial Cells in PSC

Histologically, TRAIL expression in BECs has been noted to
be significantly greater in both PSC and PBC patients com-
pared with healthy controls and patients with biliary stones,
although DR5 expression was not significantly different

Fig. 2 Schema of pathogenic model in PBC. During the apoptosis of
BECs, PDC-E2 remains intact because of its lack of glutathiolation in
apoptotic blebs. The PDC-E2 present in the apoptotic blebs would be

recognized by circulating AMA, and the immune complex would then
stimulate the innate immune system in a subject with a susceptible
genetic background

Table 1 Comparison of apopto-
sis between PBC, PSC, and nor-
mal control

ND not done

PBC PSC Control Reference

DR5 + + + [46]

TRAIL ++ ++ − [46]

Fas ++ ± − [96, 112]

WAF1 +++ + ND [99]

p53 +++ +~++ ND [99]

Perforin ++ ND + [96, 98]

Granzyme B + ND − [96, 114]

TUNEL staining Overall +++ + − ~+ [18, 46, 96, 99]

Duct with inflammation +++ + − ~+ [18, 98]
Duct without inflammation ++ + − ~+
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between PSC, PBC, or controls [46]. However, Fas has been
shown to be lower in the BEC of PSC when compared with
PBC [112]. TUNEL staining score was significantly higher in
BECs from PBC than PSC and control group. Furthermore, it
was significantly higher in BECs from PBC than PSC in the
presence of similar degrees of inflammation [18]. TUNEL
staining may identified not only the apoptotic nuclei but also
the nuclei in the necrotic tissues; the staining of necrotic cells
could be explained either by the activation of an apoptotic
pathway in damaged cells or by the degradation of DNA by
lysosomal enzymes [113]. Though TUNEL staining may not
indicate the exact frequency of apoptotic cells, it is a reliable
parameter of comparison between PBC, PSC, and normal
control. This difference of apoptosis suggests that BEC apo-
ptosis may be of considerable importance for understanding
PBC and suggests different pathogenic mechanisms for bile
duct injury in PSC.

Conclusion

Biliary immunity is speculated to be associated with the
pathogenesis of biliary diseases as well as the defense
against microbial infection. The clearance of apoptotic cells
is considered as a multipurpose process that is critical to the
maintenance of tolerance. The presence of intact autoanti-
gens within apoptotic bodies and the activation of innate
immunity through macrophage cytokine secretion provide a
link between apoptosis and autoimmunity. The roles of
genetic susceptibility and environmental factors that modify
the autoantigen motif and contribute to the breakdown of
tolerance may lead to further understanding of the unique
immunophysiology of BEC during apoptosis and the path-
ogenesis of autoimmune biliary diseases.
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