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Abstract Congenital neutropenia syndromes comprise a
heterogeneous group of disorders leading to increased
susceptibility to bacterial infections. Recent work has
elucidated the molecular basis of several congenital
neutropenia syndromes such as mutations in ELA2, HAX1,
GF11, and WAS. In addition, a number of complex clinical
syndromes associating congenital neutropenia have been
recognized and elucidated on a genetic level, e.g. p14-
deficiency or G6PC3-deficiency. The clinical and genetic
findings of various neutropenia syndromes are being
discussed.
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Introduction

Severe congenital neutropenia (SCN), originally described
by Rolf Kostmann in 1950 [1], is a primary immunodefi-
ciency syndrome characterized by early onset of severe
bacterial infections. Due to a paucity of peripheral
neutrophil granulocytes (<500/µl) patients are prone to
invasive infections, typically in the absence of pus

formation. “Infantile agranulocytosis”, as Rolf Kostmann
named this hereditary syndrome, has been known for more
than half a century, yet the underlying genetic mutations
have remained unknown for many decades.

Modern genetic research in the field of congenital neutrope-
nia has not only allowed a rational approach to classifying SCN
but has also shed light onmolecular mechanisms controlling the
development and function of neutrophil granulocytes.

From a clinical point of view, two major groups of
inherited immunodeficiency diseases associated with congen-
ital neutropenia can be distinguished, first, severe congenital
neutropenia without additional organ manifestations, and
second, severe congenital neutropenia associated with syn-
dromal features [2].

Here, we provide an overview of recent progress in
identifying genetic defects causing congenital neutropenia.

(a) Congenital neutropenia without syndromal features

Severe congenital neutropenia

In contrast to cyclic neutropenia, which characterized by
oscillating neutrophil counts, SCN classically shows con-
tinuously low neutrophil counts. The typical morphological
finding is a “myeloid maturation arrest” at the level of
promyelocytes, seen in conventional bone marrow smears.

Using genetic linkage studies, Horwitz and colleagues
defined mutations in the gene encoding neutrophil elastase
(ELA2) as cause of autosomal dominant cyclic neutropenia
[3]. Subsequently, sporadic and autosomal dominant cases
of SCN have also been associated with ELA2 mutations
(reviewed in [4]), suggesting that the feature of cycling
hematopoiesis may not be a strong discriminatory factor
defining subgroups of neutropenia disorders. Even though
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certain ELA2 mutations appear to be seen more frequently
in patients with cyclic neutropenia, it remains unclear, why
some ELA2 variants are associated with cyclic neutropenia
while others are associated with SCN (Table 1).

ELA2 mutations are either transmitted in an autosomal
dominant inheritance pattern or occur sporadically. Recently,
Boxer and co-workers published compelling data supporting
autosomal dominant transmission of ELA2 mutations as
cause for SCN. Five unrelated children, all affected by
severe congenital neutropenia, were found to be descendents
of a single sperm donor carrying an ELA2 mutation, whose
semen was used to impregnate five healthy mothers [5]. A
few patients with mosaicism have also been reported [6, 7].

In Caucasian patients, ELA2 mutations appear to
represent the most common genetic variant causing SCN,
accounting for approximately 50–60% of SCN [8, 9].
Neutrophil elastase is a serine protease exclusively
expressed in neutrophils and monocytes and displays
pleiotropic functions. It has direct antimicrobial activity
and also integrates inflammatory responses by proteolytic
modification of chemokines, cytokines, and cell surface
receptors (reviewed in [10]).

It is still unclear, how heterozygous mutations in ELA2
cause SCN. Benson suggested that aberrant intracellular
trafficking of mutated neutrophil elastase may explain non-
physiological enzymatic activity ultimately leading to
neutropenia [11]. Alternatively, mutated elastase may be
misprocessed and degraded via the activation of the so-
called unfolded protein response [12]. For a comprehensive
review, the reader is referred to an excellent summary on
this topic [4].

Few SCN patients have been described who have
mutations in WAS [13], the gene encoding the Wiskott–
Aldrich-Syndrome protein. While patients with Wiskott–
Aldrich syndrome have loss of function mutations in WAS
[14], patients with congenital neutropenia may have gain of
function mutations. Physiologically, inadequate activation
of WASP is controlled by a conformational change leading
to autoinhibition. Certain mutations in WAS prevent this
autoinhibitory conformation and thus lead to excessive
actin polymerisation. This altered state of the actin
cytoskeleton also implies aberrant mitosis and may lead to
chromosomal instability and myelodysplastic features [15].

It remains controversial whether the phenotype of
myeloid maturation arrest may be caused by increased cell
death of mature neutrophils and/or aberrant myeloid
differentiation. Since differentiation is controlled by tran-
scription factors, a search for dysfunctional transcription
factors involved in SCN has been initiated by several
groups. GFI1 is a transcriptional repressor and splice-
control factor of the zinc-finger family of transcription
factors and has been implicated in the differentiation of
various hematopoietic cell lineages, including neutrophils
[16, 17]. Two families with heterozygous mutations in
GFI1 and congenital neutropenia have been described [18].
GFI1 mutations act in a dominant-negative way and cause
dysregulation of several target genes such as C/EBPepsilon
[19], ELA2 [18], and the monopoietic cytokine Csf1 [20].

Further evidence for aberrant transcriptional control of
neutrophil development in SCN patients stems from an
analysis of the Wnt signaling pathway. Wnt proteins are
involved in mitogenic stimulation, cell fate specification,
and differentiation. In unstimulated cells the transcriptional
regulator β-catenin is degraded via a complex interplay of
factors, such as disheveled, glycogen synthase kinase-3β,
Axin, and adenomatous polyposis coli. In the so-called
canonical Wnt pathway, Wnt proteins bind to their receptor,
the frizzled/low density lipoprotein receptor-related protein
complex, and inhibit the degradation of β-catenin. β-catenin
accumulates in the cytoplasm and nucleus where it regulates
transcription through interaction with the lymphoid enhancer
factor (LEF-) 1 (reviewed in [21]). Skokowa and co-workers
provided evidence that in myeloid progenitor cells from
Kostmann-type SCN patients LEF-1 as well as LEF-1 target
genes, e.g. cyclin D1, c-myc. ELA2, surviving, and C/EBPα
are transcriptionally downregulated [22]. Further mechanistic
studies will have to show how decreased LEF-1 may inhibit
neutrophil differentiation.

While ELA2 and GFI1 may account for sporadic or
autosomal dominant variants of SCN, the underlying
molecular genetic defect of classical, autosomal recessive
Kostmann-type SCN remained enigmatic more than
50 years after the first description (reviewed in [23]). Using
linkage analysis and a candidate gene sequencing approach,

Table 1 Genetic causes of congenital neutropenia

Congenital neutropenia without syndromic features

SCN due to mutations in ELA2

SCN due to mutations in HAX1

SCN due to mutations in WAS

SCN due to mutations in GFI1

Congenital neutropenia with syndromic features

SCN with lymphoid hypoplasia (reticular dysgenesis) (AK2)

Glycogenosis type 1b (G6PT)

G6PC3 deficiency (G3PC3)

Chédiak Higashi Syndrome (LYST)

Griscelli Syndrome, type 2 (RAB27A)

Hermansky Pudlak Syndrome, type 2 (AP3B1)

p14 deficiency (MAPBPIP)

Shwachmann–Diamond syndrome (SBDS)

Cohen syndrome (COH1)

Barth syndrome (TAZ)

Cartilage hair hypoplasia (RPMR)

WHIM syndrome (CXCR4)
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we have identified homozygous mutations in the antiapop-
totic molecule HAX1 in patients with autosomal recessive
SCN [24]. HAX1 is known to interfere with signal
transduction and cytoskeletal control [25–27]. Furthermore,
HAX1 is a critical protein for maintaining the inner
mitochondrial membrane potential and protects myeloid
cells from apoptosis [24]. Deficiency of this key protein
destabilizes the inner mitochondrial membrane potential
and leads to SCN via increased apoptosis of myeloid
progenitors. At least two transcripts of HAX1 have been
identified. Interestingly, some patients with HAX1 defi-
ciency suffer from neurological problems, ranging from
mild cognitive problems to severe developmental delay and
epilepsy [28–31]. These differences in phenotype can be
attributed to the type of mutation in HAX1, which has two
distinct splice variants. In case the mutation affects only
isoform A, patients suffer from congenital neutropenia but
not from neurological problems. In case the mutation
affects both isoform A and isoform B, all patients show
signs and symptoms of neurological impairment, indicating
a strict genotype–phenotype correlation [32, 33].

Interestingly, not all patients with autosomal recessive
SCN have mutations in HAX1. Ongoing studies in our
laboratories suggest that there are several additional genes
involved in the pathogenesis of autosomal recessive SCN
(unpublished). Despite the phenotypical similarities in
patients with HAX1 deficiency and ELA2 mutations [34],
no common mechanism has been characterized explaining
why both of the defects lead to isolated congenital
neutropenia.

(b) Congenital neutropenia associated with syndromal
features

A subset of patients with congenital neutropenia has
additional features such as lymphoid cell dysfunction,
pigmentation defects, inner ear hearing loss, or cardiac/
urogenital anomalies. Elucidation of the underlying genetic
and molecular defects has provided fascinating insights into
the basic function of mitochondria, lysosomes, and the
endoplasmic retriculum.

Reticular dysgenesis

Reticular dysgenesis is an autosomal recessive form of
early differentiation arrest in the myeloid lineage associated
with severe combined immunodeficiency due to impaired
lymphoid development [35]. Furthermore, affected patients
suffer from sensorineural hearing loss [36]. Congenital
neutropenia in reticular dysgenesis is non-responsive to
granulocyte colony stimulating factor (G-CSF) [37]. Using
a genome linkage analysis and candidate gene sequencing
approach, mutations in adenylate kinase 2 (AK2) have been

identified by two independent groups [38, 39]. Like HAX1,
AK2 is localized in the mitochondrial intermembrane space
and may be important in mitochondrial energy metabolism
and control of apoptosis via FADD and caspase 10 [40].

Congenital neutropenia with hypopigmentation

While Chédiak-Higashi syndrome (CHS) [41, 42] and
Griscelli syndrome type 2 (GS2) [43] may only show
transient episodes of neutropenia, Hermansky–Pudlak syn-
drome type 2 (HPS2) and p14 deficiency are characterized
by constantly reduced peripheral neutrophil counts [44, 45].
All four disorders can be differentiated based on their
clinical phenotype [46]. In contrast to SCN with myeloid
maturation arrest, CHS, GS2, HPS2, and p14 deficiency
show presence of mature neutrophils in the bone marrow.

Hermansky–Pudlak syndrome was originally described
as oculocutaneous albinism and platelet storage disease
with increased bleeding tendency [41, 42]. Currently, HPS
comprises a group of at least eight distinct genetic defects
in humans (reviewed in [47]). All defective genes play a
role in intracellular protein trafficking. As a result of the
mutations, dysfunction of lysosome-related organelles
(LROs) is seen in cells from HPS patients.

Among all variants of HPS, only HPS2 is characterized
by congenital neutropenia [48–50]. The first patients, two
descendents of a consanguineous pedigree, were described
by Kotzot and colleagues in 1994 [51]. Up to date, less than
ten patients have been described in the literature [44, 48–
55]. HPS2 is caused by mutations in the AP3B1 gene which
encodes the β3A subunit of the heterotetrameric adaptor
protein (AP-) 3 complex. β3A deficiency leads to an almost
complete abolishment of the remaining AP-3 subunits, i.e.
δ, μ3A and σ3A. The AP-3 complex mediates cargo
protein selection into transport vesicles and their trafficking
to lysosomes [53, 56]. In the absence of AP-3, proteins
destined to traffic to lysosomes therefore accumulate at the
plasma membrane. It remains unknown why patients with
AP-3 deficiency are neutropenic. So far, no functional
defect could be identified in AP-3-deficient neutrophils
[44]. Interestingly, AP-3-deficient dogs show cyclic neu-
tropenia and AP-3-deficient mice appear to have no
neutrophil defect (reviewed in [47]). However, AP-3
deficiency is associated with defects of NK and NKT cells
[44, 55]. Lethal hemophagocytosis has recently been
reported in one patient [52], suggesting that defective
cytotoxicity may be clinically relevant in AP-3 deficiency.

A previously unrecognized immunodeficiency syndrome
associating growth delay, partial albinism, lymphoid defi-
ciency, and congenital neutropenia has recently been
described in four members of a large pedigree [45]. Using
a combination approach of genome wide linkage analysis

70 Clinic Rev Allerg Immunol (2010) 38:68–74



and transcriptional profiling, we identified a homozygous
mutation in the gene encoding the endosomal adaptor
molecule p14. A point mutation in the 3’-UTR leads to
decreased p14 mRNA. As a consequence of decreased p14
protein levels, neutrophils show an altered ultrastructure of
azurophilic granules and decreased microbicidal activity in
phagosomes. Furthermore, p14-deficient cells have a defect
in cytokine-receptor-mediated ERK phosphorylation and
show a marked dislocalisation of late endosomes. p14 is
ubiquitously expressed and located at the outer membrane
of late endosomes [57, 58]. The molecule acts as a scaffold
protein by interacting with MEK partner (MP) 1 to direct
the mitogen-activated protein kinase pathway. Its function
is crucial for subcellular compartmentalization of signals
[59]. Recently, a murine p14-deficient mouse model has
been generated [60]. Complete knock-out of the p14 gene
causes early intrauterine lethality. Epidermis-specific
knock-out of p14 in mice results in a severely reduced
number of epidermal skin layers, perturbed terminal skin
differentiation, aberrant epidermal growth factor receptor
degradation, and defective cellular proliferation. Affected
mice die shortly after birth [60]. These studies support the
idea that p14 is critical for cellular proliferation and
differentiation. p14-deficient patients may only survive
because of residual p14 protein levels (hypomorphic
phenotype). Of note, some patients with a phenotype of
p14 deficiency are known who do not show any mutation in
p14, suggesting that this disorder is heterogeneous.

Congenital neutropenia and glycogen metabolism

Neutrophils are exquisitely sensitive to glucose deprivation.
Two human genetic disorders have been identified in which
neutrophil granulocytes show a predisposition to accelerated
apoptosis due to disturbances of energy metabolism in the
endoplasmic reticulum. Patients with glycogenosis type 1b, a
variant of glycogenosis type 1, is not only characterized by
glycogen storage, hypoglycaemia, and lactic acidosis, but
also show a paucity of mature neutrophil granulocytes. This
disease is caused by mutations in the ubiquitously expressed
glucose-6-phosphate translocase (G6PT, encoded by the
gene SLC37A4), a transporter mediating translocation of
G6P into the endoplasmic reticulum. G6PT-deficient neu-
trophils show a significantly impaired respiratory-burst
response. Therefore, GSD1b patients are not only at risk
for severe bacterial infections due to neutropenia but may
also develop clinical symptoms secondary to poor neutrophil
function, such as inflammatory bowel disease [61].

Recently, we identified a second congenital neutropenia
syndrome associated with defective glucose metabolism. In
contrast to GSD1 and GSD1b, affected patients do not
show signs of glycogen storage or symptoms related to

hypoglycemia. Instead, there is an association of congenital
neutropenia, various developmental defects of the cardio-
vascular and/or urogenital system and increased visibility of
superficial veins [62]. There is a high degree of variation in
clinical presentation and the determinants of the wide
clinical spectrum remain unknown at the present time.
Cardiac anomalies may include atrial septal defect, cor
triatriatum or pulmonary vein stenosis, and urogenital
problems comprise urachal fistulation, renal dysgenesis, or
undescended testes. Myeloid progenitor cells are character-
ized by increased signs of the “unfolded protein response”
or ER-stress, as evidenced by ultrastructural anomalies and
increased expression of the chaperone BiP [62]. The
defective protein, G6PC3, is a paralog of G6PC1, the
classical glucose-6-phosphate, mutated in GSD1. In contrast
to G6PC1, G6PC3 is expressed ubiquitously, suggesting that
G6PC3 may in fact be the phylogenetically more ancient
variant of glucose-6-phosphatase. G6PC2 is expressed in the
pancreatic islets and has recently been implicated in diabetes
mellitus [63, 64]. In the absence of G6PC3, myeloid cells are
prone to undergo apoptosis, and we speculate that aberrant
apoptosis due to increased ER-stress may also be the cause
for defective organ development.

WHIM syndrome (warts, hypogammaglobulinemia,
immunodeficiency, myelokathexis)

Myelokathexis is defined as dysgranulopoiesis (hyperseg-
mented neutrophils, increased apoptosis) with increased
bone marrow cellularity. First described by Zuelzer in a
sporadic case [65], myelokathexis was subsequently found
to occur as an autosomal dominant trait in association with
hypogammaglobulinemia and dermal/genital papilloma
virus infections [66]. Severe infections are rare since
neutrophils can be adequately released to the periphery in
case of infections.

Hernandez and colleagues [67] identified heterozygous
mutations in the chemokine receptor gene CXCR4 in
WHIM syndrome patients. Mutant CXCR4 shows signifi-
cantly increased calcium flux in response to its ligand
stromal-derived factor-1α (SDF-1α) consistent with dysre-
gulated signaling of the mutant receptor. Likewise, SDF-1α
stimulation of neutrophils with a truncating CXCR4
mutation, but not with non-mutated CXCR4, blocked the
constitutive apoptosis seen in neutrophils from WHIM
patients [68]. Kawai and colleagues [69] investigated the
role of CXCR4 mutations in myelokathexis. They trans-
duced wild type and mutated CXCR4 in human CD34+

peripheral blood-mobilized stem cells (PBSCs) and ana-
lyzed the properties of these cells in cell culture and after
transplantation into nonobese diabetic/severe combined
immunodeficiency (NOD/SCID) mice, an elegant xeno-
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transplantation system to unequivocally assess the engraft-
ment and expansion of the transplanted human cells. NOD/
SCID mice are devoid of B and T cells and have a defect in
Natural Killer cell function. Thus, they do not reject the
xenograft. Interestingly, mutant CXCR4 transduced PBSCs
behaved like the wild-type CXCR4 transduced PBSCs in
the cell culture system but showed a better engraftment
with a significantly enhanced apoptosis and decreased
release of mature neutrophils from the BM only after
transplantation into NOD/SCID mice suggesting that the
CXCR4 mutation alone is insufficient to explain the
increased apoptosis of BM stem cells in WHIM patients.

Interestingly, not all patients with myelokathexis have
mutations in CXCR4 [70]. In particular, the WHIM
phenotype can also be transmitted as an autosomal
recessive trait, suggesting that other genes are involved in
this disorder.

Natural history, treatment, and complications

Before recombinant human granulocyte colony stimulat-
ing factor became available, most patients with SCN
succumbed to severe and recurrent bacterial infections in
infancy [70–72]. In the G-CSF era, morbidity and
mortality from infectious complications has greatly de-
creased and the quality of life has markedly improved.
Today, most patients with congenital neutropenia survive
into adulthood.

G-CSF has pleiotropic effects by orchestrating a series of
molecular events in favor of neutrophil differentiation. In
addition to its effects on differentiation, G-CSF has
antiapoptotic effects. A very recent study has shown that
G-CSF acts through Nampt/PEBF to increase intracellular
NAD1, which in combination with SIRT1 binds and
activates C/EBP-beta and leads to the so-called emergency
neutrophil granulopoies [73].

Long-term studies, facilitated by the international con-
genital neutropenia registries in Seattle, USA, and Hannover,
Germany, revealed long-term complications. There is a small
but significant risk of death secondary to infectious
complications [74]. In spite of effective G-CSF treatment,
there is a risk (0.9% per year) of SCN patients to die as a
consequence of infectious complications [74]. Thus, the
reconstitution of normal neutrophil counts may not suffice to
re-establish antibacterial immunity. ELA2-mutated patients
show abnormal expression of neutrophil elastase and other
granule-associated proteins such as myeloperoxidase, lacto-
ferrin, cathepsin-G, and human-neutrophil-peptide [75].
These abnormalities may contribute to altered neutrophil
function. More importantly, many SCN patients develop
clonal hematopoietic disorders such as myelodysplastic
syndrome (MDS) or acute myeloid leukemia (AML). After

12 consecutive years of treatment, the risk is 8% per year
[74]. Long-term studies have not shown a plateau effect, so
there is a certain likelihood that the overall risk of
developing leukemia continues to rise. The molecular
etiology of leukemogenesis remains unknown. Many SCN
patients develop somatic mutations in the CSF3R gene.
Germeshausen and colleagues followed up on CSF3R
mutations in 148 SCN patients 23 of whom developed signs
of malignant transformation [76]. Eighteen of these individ-
uals had acquired CSF3R mutations. Additionally, in 50
patients analyzed they could show an accumulation of
different CSF3R mutations over time.

CSF3R mutations appear in early hematopoietic progen-
itor cells and confer a survival advantage in myeloid cells
[77]. This observation has also been seen in murine studies.
Liu et al. [78] used a murine model in which HSC
expressed a truncating mutation of the G-CSF-R. This study
demonstrated that administration of G-CSF permitted the
outgrowth of G-CSF-Rmut stem cells in competitive repopu-
lation experiments. This selective advantage was associated
with and dependent on G-CSF induced increased activation
of STAT5. However, no autonomous G-CSF-independent
growth was observed and none of the mice developed AML
or MDS.

In spite of successful supportive treatment using recom-
binant human G-CSF, definitive and curative treatment of
SCN is currently only possible by means of allogeneic bone
marrow transplantation. Preclinical studies using transplan-
tation of genetically corrected hematopoietic stem cells are
under way, but no clinical protocol has been opened up to
date.

Conclusions and perspectives

Suspicion of congenital neutropenia should prompt a
complete diagnostic workup including molecular diagnosis.
The identification of underlying genetic defects now allows
a molecular diagnosis in many patients, a prerequisite for a
better assessment of the natural evolution and therapy-
related risks. Furthermore, genetic diagnosis is the first step
towards development of gene-based therapies. However, in
many patients with congenital neutropenia underlying
mutations are still unknown. Therefore, sustained scientific
efforts and multi-national collaborations are needed to
elucidate the genetic basis of all remaining variants of
SCN.
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