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Abstract Oxidized low-density lipoprotein (OxLDL) is a
well-known risk marker for cardiovascular diseases.
OxLDL has shown a variety of proatherogenic properties
in experiments performed in vitro. In addition, immuno-
logical studies using monoclonal antibodies have revealed
the occurrence of OxLDL in vivo in atherosclerotic lesions
and patients’ plasma specimens. Resent clinical studies have
indicated the prospective significance of plasma OxLDL
measurements; however, the behavior and metabolism of
OxLDL in vivo is poorly understood. The mechanism by
which LDL is oxidized is not clear, and the modified
structures of OxLDL are not yet fully understood, partly
because OxLDL is a mixture of heterogeneously modified
particles. Here, I discuss the recent studies on oxidative
modifications in OxLDL and its clinical and pathological
features.
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Oxidation of LDL

Low-density lipoprotein (LDL) is a major cholesterol carrier
in human plasma. Very low-density lipoprotein (VLDL) is
formed in the liver through the assembly of apolipoprotein B
(apoB) and lipid molecules in the endoplasmic reticulum.
VLDL particles are then secreted into the circulation. In the

blood flow, lipoprotein lipase hydrolyzes triacylglycerol
(TG) in VLDL, and the resulting fatty acids are delivered to
peripheral tissues. By hydrolyzing TG, VLDL is reduced in
size and increased in density, and finally, LDL is generated.
The major constituent of LDL is cholesterol (in both free
and ester forms).

Each LDL particle contains one molecule of apoB
protein. Other proteins such as apolipoprotein E (apoE),
paraoxonase, and PAF-acetylhydrolase (PAF-AH; also
called Lp-PLA2) are also present in LDL particles.
Phospholipids and free cholesterol align on the surface of
a particle, while TG and cholesteryl ester are packed in the
central core of the particle. Judging from the amino acid
sequence, apoB protein does not contain putative trans-
membrane domains, but there exist amphipathic α-helices
where hydrophobic amino acid side chains align on one
side of the α-helix cylinder and hydrophilic amino acid side
chains gather on the other side. Thus, apoB is thought to
cover the surface of the particle, rather than penetrating its
core [1, 2].

Under conditions of oxidative stress, lipid molecules
containing polyunsaturated fatty acids (PUFA) in LDL are
easily oxidized. A variety of lipid oxidation products are
formed, and subsequently, apoB protein is covalently
modified by these oxidized lipids [3, 4]. Radical chain
reactions on PUFA lead to formation of lipid hydroper-
oxides, and secondary cleavage reactions produce a variety
of aldehyde compounds such as malondialdehyde (MDA), 4-
hydroxynonenal (4-HNE), and acrolein. These aldehyde
compounds modify amino acid residues in the lipoproteins
to form various adducts (Fig. 1). For example, the ɛ-amino
group of lysine residues reacts with aldehyde compounds such
as acrolein to form a Schiff’s base. 4-HNE, a highly reactive
compound generated during lipid peroxidation reactions,
readily reacts with histidine and cysteine residues [5].
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Modified tyrosine residues such as 3-chlorotyrosine or 3-
nitrotyrosine are formed through myeloperoxidase (MPO)-
dependent reactions [6–8]. MPO, released mainly from
activated neutrophils, is an enzyme that generates hypochlo-
rous acid, which kills bacteria. MPO is also involved in
another type of apoB modification. It generates cyanate from
isothocyanate and hydrogen peroxide; lysine residues in
proteins are easily carbamylated by cyanate [9]. In addition
to chemical modifications of amino acid side chains,
cleavage of peptide chains [10] and cross-linking of
polypeptides [11] occur during radical chain reactions. Thus,
it is hard to define OxLDL structurally, since it is a mixture
of heterogeneously modified lipoprotein particles.

Copper treatment has been widely used to produce in
vitro models of OxLDL. Incubation of isolated LDL
fraction with micromolar concentrations of copper sulfate
at 37°C is a very simple way of oxidizing these fractions.
Lipid peroxidation reactions proceed after a lag period of
60–90 min. Then, marked increases in lipid peroxidation
parameters are observed, such as absorbance at 233 nm
indicating conjugated diene formation, presence of thio-
barbituric reactive substance indicating formation of small
aldehyde compounds, and agarose gel electromobility indi-
cating an increase in negative charges. Although copper-
induced oxidation of LDL does not proceed in the presence of
plasma, Cu-OxLDL has provided much information on
oxidative modifications of biological molecules. Monoclonal
antibodies (mAbs) recognizing Cu-OxLDL have been raised
in several studies (Table 1). By using these anti-OxLDL
mAbs, progress has been made in the characterization of the
oxidized materials in atherosclerotic lesions, and the bioac-
tive molecules formed in atherogenic lipoproteins.

Table 1 Three classes of monoclonal antibodies used for detection of OxLDL or related compounds

Names of mAbs Recognizing structures References

Class 1: Recognizes oxidative modifications
DLH3 Oxidized PC [12, 13]
E06 Phosphorylcholine (oxidized PC) [19]
NA59 4-HNE [21]
5F6 Acrolein-Lys adduct (Nɛ-(3-formyl-3, 4-dehydropiperidino)lysine: FDP-lysine) [23]
82D3 2-alkenal-Lys adducts (Nɛ-(5-ethyl-2-methylpyridinium)lysine: EMP-lysine) [27]
DLH2 Cross-linked protein (MDA, glutaraldehyde) [21]
MDA-lys MDA-lysine adducts [25]
MDA-2 MDA [21]
ML25 MDA [26]
Class 2: Recognizing an apoB fragment
4E6 Part of apoB that conformationally appears when at least 60 lysine residues

of apoB-100 are substituted with aldehydes
[28, 29]

Class 3: Recognizing OxLDL-binding proteins
WB-CAL-1 β2-GPI [30, 31]

Several antibodies found in the literature are listed in this table. Note that this table is not a comprehensive list of anti-OxLDL mAbs, there exist
numerous other antibodies raised by a variety of methods
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Fig. 1 Typical amino acid modifications generated during oxidative
modification of LDL. Amino acid side chains of lysine, cysteine,
histidine, and tryptophan residues are depicted and modified with
various lipid oxidation products and oxidants such as cyanate
(HOCN). Tyrosine residues are modified by the action of myeloper-
oxidase (MPO)
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Anti-OxLDL antibodies

A number of immunological studies have been con-
ducted on OxLDL, and mAbs against OxLDL have been
raised and utilized. These mAbs are divided into three
categories. One group of mAbs recognizes chemically
modified structures originating from oxidized lipids, the
second recognizes an apoB fragment that changes its
conformation during oxidation of LDL, and the third
recognizes non-LDL proteins forming tight complexes with
OxLDL in plasma.

An anti-OxLDL mAb, DLH3, was produced by immu-
nizing mice with a homogenate of human atheroma [12].
DLH3 recognizes oxidized phosphatidylcholine (OxPC),
including 1-palmitoyl-2-(9-oxononanoyl) PC (also called
POVPC; Fig. 2) [13]. OxPC containing aldehyde group can
bind to proteins to form adducts, and both free OxPC and
conjugated forms are antigenic to DLH3 mAb. Immuno-
histochemical examinations using DLH3 demonstrated that
OxPC-modified proteins, very likely OxLDL, are abundant
in human atherosclerotic lesions [12, 14]. In addition,
accumulation of OxPC in various diseased tissues were
observed using DLH3. OxPC has been shown to present in
hepatocytes in the livers of patients with nonalcoholic
steatohepatitis [15], retinas from those with age-related
macular degeneration [16], chondrocytes from the cartilages
with osteoarthritis [17], and injured spinal cords in CD36
knockout mice [18].

Palinski et al. raised an antiphosphorylcholine mAb,
E06, as one of the natural antibody clones from an apoE
knockout (apoE-KO) mouse, which is an animal model
widely used for hypercholesterolemia and spontaneous
atherosclerosis [19]. E06 readily binds to OxPC and OxLDL;
however, it recognizes the phosphorylcholine moiety of
OxPC. Interestingly, they found that the amino acid sequence
of the variable region of the E06 antibody is identical to that
of a well-characterized antibody for tuberculosis, T15 [20].
This observation raised the possibility that the biological
responses related to OxLDL, such as scavenger receptor-
mediated endocytosis and autoantibody-dependent clearance
of OxLDL, could be a part of the defense system against
infectious diseases and xenobiotics.

As described above, various aldehyde compounds gener-
ated during lipid peroxidation reactions are capable of forming
adducts with proteins. mAbs recognizing other oxidized
lipids, such as 4-HNE or acrolein, have been used to detect
OxLDL and other oxidized materials accumulating in
atherosclerotic lesions [21–27]. Immunohistochemical
examinations on human atheromatous lesions using anti-
bodies against various lipid peroxidation products have
reported accumulation of lipid peroxidation epitopes in foam
cells in the lesions, but not in the extracellular spaces,
suggesting that the antigens were removed from the tissues

by macrophages through scavenger receptor-mediated uptake
of OxLDL and the antigens deposited in the cells [12, 21].

Some antibodies recognize specific fragments of apoB
protein [28, 29]. Because these antibodies do not bind to
native LDL, the epitope regions of apoB normally face the
inside of the particle but become exposed to the outside
when LDL is modified. Such conformational changes could
occur after either chemical or oxidative modifications.
Actually, the antibodies bind to OxLDL, MDA-LDL, and
acetylated LDL, suggesting that this type of mAb may not
be specific to oxidative modifications.
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Fig. 2 Typical OxPC products generated in OxLDL. PONPC 1-
palmitoyl-2-(9-oxononanayl) PC, POVPC 1-palmitoyl-2-(5-oxovaleroyl)
PC, PGPC 1-palmitoyl-2-glutaroyl PC, PEIPC 1-palmitoyl-2 eicosaiso-
prostane PC, KOdiAPC keto-hydroxy dicarboxylic acid PC
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Antiphospholipid antibody syndrome (APS) is known as
an autoimmune disease with thromboembolic complica-
tions. It was thought that patients with APS have antibodies
that bind to phospholipids such as cardiolipin, but it turned
out that most of the antiphospholipid antibodies recognize
several phospholipid-binding proteins. Kobayashi et al.
clearly demonstrated that β2-glycoprotein I (β2-GPI)
bound to negatively charged phospholipids and OxLDL
and that antiphospholipid mAbs raised from APS model
mice recognize such complexes containing OxLDL [30–
32]. C-reactive protein (CRP), a major acute phase protein
in the circulation, binds to OxLDL through recognition of
the phosphorylcholine moiety formed during oxidative
modifications [31–33]. They showed that mAbs against
β2-GPI or CRP, in combination with anti-apoB mAbs, are
useful in detecting plasma OxLDL. Thus, antibodies that
recognize some proteins forming complexes with OxLDL
in the plasma can behave like anti-OxLDL mAbs.

OxPC

OxPCs have been studied extensively to date, partly
because they are known bioactive compounds. The phos-
pholipid fraction separated from the minimally modified
LDL induces MCP-1 expression in endothelial cells,
induction of heme oxygenase-1 in human aortic endothelial
cells, enhances interleukin 6-induced hepatic paraoxonase
expression, and modulates Toll-like receptor responses [34–
37]. Three active compounds were isolated and identified as
1-palmitoyl-2-(5-oxovaleroyl)-PC (or POVPC), 1-palmitoyl-
2-glutaroyl-PC (PGPC), and 1-palmitoyl-2-epoxyisoprostane-
PC (PEIPC; Fig. 2) [38, 39]. Podrez et al. extensively studied
OxPC products which can act as ligands for CD36 scavenger
receptor [40]. They found that a series of OxPC products
containing α,β-unsaturated carbonyl groups bind strongly to
CD36. Recently, it was proposed that some OxPCs could
form conjugated products from two molecules of OxPC
through aldol condensation reactions [41].

Another important property of OxPC in lipoproteins is
that it can be hydrolyzed by some enzymes. PAF-AH
hydrolyzes not only PAF but also PC analogs containing a
hydrophilic short chain moiety at the sn-2 position [42].
POVPC, which has a five-carbon aldehyde-containing acyl
group, is a good substrate for this enzyme. There is some
controversy as to whether PAF-AH plays a protective role
in atherogenesis by hydrolyzing OxPC or rather acts as a
proatherogenic factor by releasing lysoPC and oxidized
acyl chains [43]. Recent studies reported that PAF-AH
could be a good marker for vulnerable atherosclerotic
plaques, since PAF-AH is released from inflammatory
cells and produces lysoPC and oxidized fatty acid deriva-
tives [44]. More studies including epidemiological obser-

vations are needed to elucidate the pathological roles of
PAF-AH.

Plasma OxLDL

The anti-OxPC mAb DLH3 has also been utilized to
measure OxLDL in human plasma. OxLDL present in the
human circulation was detected with high sensitivity by
sandwich enzyme-linked immunosorbent assay (ELISA). In
this system, LDL fractions were separated by ultracentrifu-
gation from each plasma sample. DLH3 mAb precoated in
the microtiter wells recognizes OxPC adducts in OxLDL,
and OxLDL particles captured in the wells are detected by
anti-apoB antibodies and alkaline phosphatase-conjugated
second antibodies [45]. Plasma OxLDL levels increased in
patients with cardiovascular diseases such as acute myo-
cardial infarction (AMI), and the increases correlate with
the severity of the disease symptoms [46]. Increased plasma
OxLDL levels were also observed in patients with acute
phase cerebral infarction [47]. In addition to vascular
diseases, increased OxLDL levels were found in patients
with carotid arteriosclerosis and those receiving hemodial-
ysis, patients with lecithin–cholesterol acyltransferase defi-
ciency [45, 48–50].

Other mAbs also have been utilized for ELISA mea-
surement of plasma OxLDL. Witztum et al. used the
antiphosphorylcholine mAb E06 and a chemiluminescence
detector to develop a dual sandwich ELISA system [51,
52]. In this procedure, two sandwich assays are performed
for each plasma sample to determine relative concentrations
of OxLDL and LDL separately, because LDL concentration
in plasma varies between individuals. Finally, they calcu-
lated the OxLDL/apoB ratio, i.e., number of oxidized
modifications per an apoB-containing particle. This value
obtained with E06 procedure is, in part, similar to that
obtained with DLH3 procedure, as both procedures detect
the ratio of oxidized products in LDL. They reported a
significant increase in the OxLDL/apoB ratio in patients
with AMI, those with receiving percutaneous intervention
treatment and those receiving hemodialysis [53–55].

Tanaga et al. [56] reported that plasma levels of modified
LDL in patients with cardiovascular diseases were higher
than those in nonpatient subjects measured using a compet-
itive ELISA kit using an anti-MDA mAb, ML25 [26]. MDA
is a lipid peroxidation product generated from PUFA during
oxidative modification of LDL. MDA easily binds to the
ɛ-amino group of lysine residues to form adducts such as
Schiff’s base.

Measurement of modified LDL in human plasma samples
using a second class of anti-OxLDL mAb, those recognizing
an apoB fragment, was also reported [57]. This procedure is
based on a simple competition ELISA, in which a known
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amount of 4E6 mAb is pre-incubated with plasma samples,
and then, the remaining mAb are allowed to bind to
precoated OxLDL in microtiter wells. In this assay, the
values obtained are the concentrations of plasma OxLDL.
Increased concentration of OxLDL in patients with AMI
was observed using this measuring system [58]; however,
recent reports pointed out that the OxLDL/LDL ratio rather
than OxLDL concentration was a potentially useful predictor
for cardiovascular diseases [59]. An OxLDL-measuring kit
based on 4E6 mAb is commercially available from Mercodia
Inc. (Sweden). Since only one mAb is used, it should be
noted that the antigen detected may not necessarily be an
oxidatively modified apoB.

Plasma OxLDL as a predictive marker

A subject of much discussion is whether OxLDL formed in
vivo can act as a cause of atherosclerosis or whether it is
generated as a result of lesion formation. It is still difficult
to answer this question, but recent progress with in vivo
OxLDL studies has provided new evidence suggesting that
OxLDL can be used to predict future atherosclerotic events.
AMI patients had increased OxLDL levels at the acute
phase, which was three times higher than the level in
control subjects, and these levels had decreased almost to
the basal level at discharge from the hospital. Naruko et al.
followed more than 100 patients with AMI after their
discharge from the hospital and found that the patients who
suffered from restenosis during the following 6 months had
higher OxLDL levels at the time of discharge than the
patients without restenosis (1.03±0.65 ng/5 μg LDL vs.
0.61±0.34 ng/5 μg LDL) [60]. Plasma OxLDL levels could
reflect the balance between oxidative stresses facilitating
LDL modifications and the clearance rate of OxLDL from
the circulation [61, 62]. It can be speculated that high
OxLDL levels at the acute phase of AMI could be caused
by massive release of OxLDL from the ruptured plaques,
whereas high OxLDL levels during the stable phase may
indicate that the patients have strong sources of OxLDL
production. These sources include exposure to strong
oxidative stresses and presence of unstable plaques some-
where in the circulatory system that releases OxLDL from
the lesions.

Although the presence of OxLDL has been established
in lesions and patients’ plasma, it is not clear whether OxLDL
causes atherosclerotic lesion formation or is a result of lesion
development. Previous studies on immune systems and
OxLDL suggested a proatherogenic property of OxLDL
in vivo. It is reported that mice lacking humoral immunity,
but not cellular immunity, develop larger atherosclerotic
lesions than control mice [63]. It is well known that there
are autoantibodies against OxLDL in plasma. Shoji et al.

reported a reciprocal relationship between plasma OxLDL
levels and plasma anti-OxLDL autoantibody levels in
healthy people [64], suggesting that autoantibodies have
a role in enhancing the clearance of OxLDL from the
circulation. Splenectomy experiments provided further evi-
dence on the role of anti-OxLDL antibodies and the
proatherogenic property of OxLDL. Removal of the spleen
from an apoE-KO mouse led to worsening of atherosclerotic
lesions. Injection of B cells from apoE-KO mice, but not T-
cells, reversed the effect of spleen removal on atherogenesis
[65]. Very recently, it has been demonstrated that hepatic
overexpression of LOX-1, a scavenger receptor, by adeno-
virus administration reduced plasma OxLDL levels and
attenuated atherosclerotic lesion development [66]. These
observations strongly suggest that changes in plasma
OxLDL levels would affect development of atherosclerotic
lesions.

OxLDL structures in vivo

As outlined above, OxLDL is composed of heterogeneous-
ly modified lipoprotein particles, which makes its structural
analysis very difficult. Immunological methods have so
far only successfully detected a specific part of all the
modifications using specific mAbs. On the other hand,
comprehensive structural analysis of modified lipoprotein
particles by liquid chromatography–mass spectrometry (LC-
MS)/MS analysis offers a novel approach of identifying
OxLDL structures.We introduced an on-membrane procedure
of tryptic digestion of proteins for the preparation of LC-MS/
MS samples [67]. It is not easy to separate or recover apoB

Table 2 Modified amino acid residues in native LDL fraction and
copper-induced OxLDL

Native LDL
His (+16) H2245, H2253, H3960
Kynurenine (Trp (+4)) W1114
MP-Lys (+76) Lys293
Copper-induced oxLDL
His (+16) H375, H569, H1113, H1864, H2245,

H2253, H3281, H3960
Trp (+16) W556, W1114, W4087
Kynurenine (Trp (+4)) W556, W1114, W2659, W4087
HNE-His (+156) His3281
MP-Lys (+76) Lys293

The sites of modified amino acid residues and types of modifications
were analyzed by the LC-MS/MS technique (cited with permission
from Obama et al. [67], copyright Wiley-VCH Verlag GmbH & Co.
KGaA). Kynurenine is a fluorescent amino acid formed from
tryptophan through oxidative cleavage of the indole ring.
MP-Lys Nɛ -(3-methylpyridinium)lysine (an acrolein-Lys adduct)
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on polyacrylamide gels, because the apoB protein is
enormous (over 500 kDa) and largely hydrophobic. Thus,
apoB is not a suitable protein for processing via the
conventional in-gel digestion technique used to prepare
tryptic fragments of the samples. We separated the LDL
fraction from human plasma by ultracentrifugation, and an
aliquot of LDL was blotted onto polyvinylidene difluoride
membranes. When delipidation and tryptic digestion were
performed on the membranes, the efficiency of tryptic
digestion and recovery of the resulting peptides were greatly
improved, so that the sequence coverage of apoB protein on
LC-MS/MS analysis was more than doubled. Therefore, it
enabled determination of the site of oxidative modification in
such a huge protein.

It is interesting to note that there are only a few highly
susceptible sites of oxidation in apoB. Several modified
peptides have been found in the native human LDL
fraction. Since the estimated amount of OxLDL present in
native LDL is approximately 1/5,000–1/10,000, these
modified peptides can be attributed to minute amounts of
OxLDL present in human plasma. There are some acrolein-
modified lysine residues (MP-lys) in the native LDL
fraction (Table 2). In addition, oxidized tryptophan residues
are formed in OxLDL. More importantly, the sites of
modification in the native LDL fraction do not overlap
those in copper-oxidized LDL. This supports the idea that
copper-mediated oxidation does not occur under in vivo
conditions.

MPO is one plausible candidate for the in vivo oxidant
responsible for OxLDL formation. Podrez et al. reported
that MPO-dependent oxidative modification of LDL could
occur even in the presence of 50% serum [68], whereas
serum is known as a potent antioxidant under in vitro
conditions. MPO is mainly released from activated neu-
trophils, and a recent report demonstrated that neutrophils
accumulate in atherosclerotic lesions [69].

LDL modification with carbamylation of the ɛ-amino
group of lysine residues through MPO action has been
reported [9]. Amino groups can be easily carbamylated by
cyanate, which is generated from isothiocyanate and
hydrogen peroxide in the presence of MPO. Carbamylated
LDL has been shown to induce foam cell formation of
mouse peritoneal macrophages and apoptosis of endothelial
cells. The carbamylated lysine residues increased in plasma
specimens from patients with cardiovascular diseases.
Since isothiocyanate is abundant in cigarette smoke, the
proatherogenic effect of smoking can be explained, at least in
part, by this type of LDL modification.

Elucidation of OxLDL structures is certainly important
for understanding the mechanisms of OxLDL formation
under in vivo conditions. Recent progress in LC-MS/MS
approaches could provide more powerful tools to address
this issue.

Conclusion

Immunological techniques, especially ELISA detection of
OxLDL in the circulation, provide evidence for the
presence of in vivo OxLDL and its relationship to
cardiovascular diseases. Recent studies have demonstrated
that plasma OxLDL has a predictive potential for secondary
prevention. OxLDL could lead to atherosclerotic lesion
formation. To address this issue, more studies on the time-
course behavior of OxLDL in vivo, its structural analysis,
and the molecular mechanisms of OxLDL generation are
needed.
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