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Abstract Primary sclerosing cholangitis (PSC) and auto-
immune hepatitis (AIH) are enigmatic chronic inflammato-
ry diseases of the liver, which are frequently associated
with chronic inflammatory bowel diseases. Both types of
liver disease share various distinct autoantibodies such as
atypical perinuclear antineutrophil cytoplasmic antibodies
(p-ANCA), and thus are considered autoimmune disorders
with atypical features. The discovery that atypical p-ANCA
recognize both tubulin beta isoform 5 in human neutrophils
and the bacterial cell division protein FtsZ has renewed
the discussion on the potential role of microorganisms
in the pathogenesis of both diseases. In this paper, we
review the evidence for microbial infection in PSC and AIH
and discuss new concepts how cross-recognition between
microbial antigens in the gut and host components by the
immune system along with stimulation of pattern recogni-
tion receptors might give rise to chronic hepatic inflamma-
tory disorders with features of autoimmunity.

Keywords Autoimmunity . Antibodies .

Autoimmune disease . Infection .

Primary sclerosing cholangitis . Autoimmune hepatitis .

Toll-like receptor . Regulatory Tcells

Introduction

Primary sclerosing cholangitis (PSC) is an enigmatic
cholestatic liver disease of hitherto unknown etiology
characterized by progressive inflammatory and fibrosing
destruction of intra- and extrahepatic bile ducts eventually
leading to liver cirrhosis. PSC shows a frequent association
with chronic inflammatory bowel disease (IBD) such as
ulcerative colitis and Crohn’s disease [1]. In contrast,
autoimmune hepatitis (AIH) represents a chronic inflamma-
tory disease of the liver parenchyma characterized by
periportal interface hepatitis and predominantly mononuclear
necroinflammatory infiltrates. Furthermore, there is also a
poorly understood relationship between PSC and autoim-
mune hepatitis, as both overlap syndromes and clinical
transition from frank autoimmune hepatitis to PSC have
been observed in individual patients [2, 3]. Finally, PSC
must be considered a premalignant condition leading to
cholangiocarcinoma in 10–30% of affected patients [4–6]
and may also increase the risk of colorectal cancer in
patients with IBD [1, 7]. Overall, no therapy has yet proven
effective in PSC, and orthotopic liver transplantation remains
the only treatment option increasing patient survival.

In the past, close linkage between PSC and IBD made
Boden et al. believe that PSC was the result of portal
bacteremia secondary to ulcerative colitis [8], and subse-
quently the same authors reported favorable effects of long-
term tetracycline therapy [9]. Later on, their hypothesis was
abandoned for several reasons: bacteria were not identified
in the portal infiltrates around the bile duct(ule)s, and portal
bacteremia was not confirmed in patients with ulcerative
colitis. Importantly, efficacy of long-term treatment with
tetracylines could not be reproduced [10]. Finally, portal
vein phlebitis, a histological hallmark of portal bacteremia,
is not a characteristic feature in patients with ulcerative
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colitis [11, 12] and inflammatory peribiliary infiltrates
mainly comprise mononuclear cells but only few polymor-
phonuclear cells making, conventional bacterial infection
an unlikely scenario. Given the fact that neither the etiology
nor the pathogenesis of PSC and AIH have been identified,
subsequent attempts to understand both diseases have led to
diverse hypotheses. Today, two major competing concepts
exist: the first one classifies PSC and AIH as autoimmune
diseases, whereas the other one assumes PSC and AIH as
an immune-mediated inflammatory disease [13–15]. The
hypothesis of autoimmune pathogenesis is supported by the
presence of various autoantibodies such as perinuclear
antineutrophil cytoplasmic antibodies (p-ANCA) or nuclear
antibodies (ANA) and requires loss of tolerance to self-
antigens, persistent activation of immune effector mecha-
nisms and a PSC- or AIH-specific autoantigen. However,
several clinical features particularly true for PSC, e.g., poor
responsiveness to immunosuppressive treatment and male
preponderance, are not consistent with the classical concept
of autoimmunity, making PSC a putative autoimmune
disease with atypical features. Unlike PSC, AIH usually
responds well to immunosuppressive therapy rendering an
autoimmune process in AIH likely. In contrast, the concept
of an immune-mediated chronic inflammatory disease
involves interaction between innate and adaptive immune
responses resulting in persistent tissue-specific inflammatory
infiltrates and release of inflammatory and profibrogenic
cytokines. In this paper, we propose that these two major
pathogenetic concepts of PSC and AIH need not be mutually
exclusive and set forth the idea that identification of cross-
reactivity between the microtubular protein β-tubulin iso-
type 5 and the bacterial cell division protein FtsZ, both acting
as antigens of p-ANCA in PSC, may provide a link uniting
the competing pathogenetic concepts of persistent inflam-
mation and autoimmunity in PSC.

Diagnostic significance of ANCA in AIH and PSC

Primary sclerosing cholangitis and AIH are both considered
autoimmune liver disorders because autoantibodies repre-
sent an integral part of the diagnostic armentarium. In both
diseases, ANCA are detected at high frequencies.

Antineutrophil cytoplasmic antibodies (ANCA) com-
prise a family of heterogeneous antibodies, which are
directed against different subcellular constituents of human
neutrophils or myeloid cells. They have been first detected
in patients with systemic vasculitides [16], but later on they
have also been found at high prevalence (80–96%) in
patients with autoimmune liver disorders, such as AIH or
PSC, and/or chronic inflammatory bowel diseases, such as
ulcerative colitis [17–25]. To date, indirect immunofluores-
cence microscopy is widely accepted as the standard

method for the detection of ANCA. Ethanol-fixed and/or
paraformaldehyde-fixed human neutrophils serve as antigen
substrate [26, 27]. Serum endpoint titers of ANCA equal to
or greater than 1:20 are considered positive. In general, two
distinct staining patterns can be distinguished: “cytoplasmic
ANCA (c-ANCA)” characterized by a diffuse granular
staining of the cytoplasm that are highly indicative for
Wegener’s granulomatosis and “perinuclear or p-ANCA.”
The latter class of ANCAs can be further subdivided into
so-called “classical” p-ANCA characterized by a fine rim-
like staining of the perinuclear cytoplasm that are predom-
inantly found in patients with microscopic polyangiitis and
“atypical” p-ANCA showing a broad inhomogeneous rim-
like staining of the nuclear periphery associated with
multiple intranuclear fluorescent foci (Fig. 1) [27]. Using
immune electron microscopy, we were able to demonstrate
that these intranuclear fluorescent spots correspond to
stained invaginations of the neutrophil nuclear envelope
[28, 29]. Accordingly, “atypical” p-ANCA in fact represent
antineutrophil nuclear antibodies, but not antineutrophil
cytoplasmic antibodies [30–33].

Unlike classical p-ANCA and c-ANCA that represent
valuable diagnostic and therapeutic markers in systemic
vasculitides such as Wegener’s granulomatosis or micro-
scopic polyangiitis [34], atypical p-ANCA have limited
value in the clinical management of patients with AIH and
PSC: Serum endpoint titers do not correlate with disease

Fig. 1 Microscopic fluorescence pattern of atypical p-ANCA in AIH
and PSC. Photographs were taken of ethanol-fixed neutrophilic
granulocytes. ANCA were detected with FITC-conjugated goat anti-
human IgG-secondary antibodies. The staining pattern of atypical p-
ANCA is characterized by a rim-like staining of the nuclear periphery
along with multiple intranuclear fluorescent foci. Stained invagina-
tions of the multisegmented nuclei represented the morphologic
substrate of the fluorescent intranuclear spots. Serum from a patient
with AIH was investigated for the presence of atypical p-ANCA
(serum endpoint titer 1:1280). Size bars indicate 10 µm

Clinic Rev Allerg Immunol (2009) 36:40–51 4141



activity, extent of the disease, or immunosuppressive
therapy. In addition, ANCA do not disappear after liver
transplantation or colectomy and may even become
detectable for the first time after these procedures [35–
39]. These puzzling observations have been commonly
attributed to the fact that the underlying autoantigen(s) in
AIH and PSC were unknown, and it was hoped that
identification of the ANCA autoantigens might give rise to
improved assays and better understanding of their role in
the pathogenesis. Whereas autoantigens of c-ANCA and
classical p-ANCA are well-characterized, since almost all
c-ANCA-positive sera from patients with Wegener’s gran-
ulomatosis react with proteinase 3 and myeloperoxidase
represents the predominant autoantigen of classical p-ANCA
microscopic polyangiitis [16, 40], the autoantigens of
atypical p-ANCA remained elusive until very recently.
Various proteins have been suggested as potential candi-
dates of atypical p-ANCA in autoimmune liver disorders,
including azurocidin, bactericidal/permeability increasing
protein, cathepsin G, elastase, lactoferrin [41–49]. Howev-
er, reactivity to these antigens has only been found in a
minority of sera from patients with PSC or AIH (25–35%).
As double immunofluorescence staining obtained with sera
positive for atypical p-ANCA and antibodies against
nuclear antigens suggested a nuclear antigen localization
of the antigen rather than the initially proposed reactivity
with cytoplasmic proteins [28], nuclear target proteins such
as histone H1 [50] and high-mobility non-histone chromo-
somal proteins 1 + 2 [51, 52] have also been reported as
putative target proteins of p-ANCA in PSC and AIH.
However, none of the histone proteins shows selective
expression in neutrophils, lymphocytes, or biliary epithelial
cells.

Finally, we succeeded in identifying a member of the β-
tubulin gene family with the closest match to β-tubulin
isotype 5 (TBB5) as an ANCA autoantigen reacting with
the great majority of sera [53]. Briefly, extracts of nuclear
envelope proteins from HL-60 cells were further resolved
by two-dimensional gel electrophoresis and matrix-assisted
laser desorption/ionization time-of-flight (MALDI TOF)
mass spectrometry. The spectrum of identified peptides
matched 44% of the acid amino sequence of TBB5 with
high probability scores (318 to 780, significant values >45)
on the Mascot search engine for rapid protein identification.
Detection of a unique fragment at amino acids 283–297 of
TBB5 enabled to reliably differentiate this target protein of
ANCA from other highly homologous β-tubulin family
members listed in the SwissProt data base [54, 55]. To
confirm TBB5 as ANCA autoantigen, Cos-7 cells were
transiently transfected with human TBB5 cDNA carrying
the Xpress sequence tag at the C-terminus. Ninety-four
percent of the ANCA-positive sera from patients with AIH
and PSC also reacted with recombinant TBB5. Two crucial

experiments further confirmed TBB5 as antigen of atypical
p-ANCA in AIH and PSC. The specific ANCA-specific
immunofluorescence was abolished when ANCA-positive
sera had been preabsorbed with tubulin preparations from
myeloid cells, whereas ANCA-specific immunofluorescence
was enhanced when immunoglobulins in ANCA-positive
sera were affinity-purified on myeloid-specific tubulin.

Human TBB5 shares a high degree of structural
homology with the bacterial cell division protein FtsZ, an
evolutionary precursor of β-tubulin, which is present in
almost all bacteria of the intestinal microflora [56]. This
fact prompted us to test the hypothesis that ANCA
autoreactivity in AIH and PSC might represent cross-
recognition of FtsZ with β-tubulin. Thus, FtsZ cDNA of
Escherichia coli M15 with a polyhistidine sequence tag
was overexpressed and the gene product was resolved by
two-dimensional gel electrophoresis. Reactivity of poly-
histidine-tagged FtsZ was detected with 85% of the ANCA-
positive sera; ANCA-specific immunofluorescence could
be blocked by pre-absorbing sera on recombinant FtsZ.

These novel findings once again invoke a pivotal role of
bacteria and the host’s antibacterial immune response in the
pathogenesis of PSC and AIH. It is important to note that
these novel data match with the recently renewed aware-
ness concerning bacteria as a potential cause of AIH and
PSC. Such new microbial concepts also comprise the idea
that an infectious agent may give rise to antibodies that
cross-react with distinct constituents in the host (cross-
reactivity or molecular mimicry), interfere with critical
pathways of immunoregulation, or induce antibodies that
stimulate host cell receptors. Of note, the triggering
microorganism no longer needs to be present in these
pathogenetic mechanisms once the process has been
initiated (hit-and-run concept) [57].

Microbial antigens in AIH and PSC

AIH and PSC are frequently found in association with
chronic inflammatory bowel disease. Thus, translocation of
bacteria or bacterial antigens into the portal circulation must
be considered as a potential cause of bile duct inflammation
owing to increased intestinal permeability of the inflamed
colon [13, 58, 59]. This idea is particularly supported by
animal studies where inoculation of enteric bacteria in the
portal vein caused liver inflammation similar to PSC [60].
Furthermore, experimental intestinal bacterial overgrowth
in rats resulted in portal inflammation and strictures of the
biliary tract [61, 62]. In contrast, a recent human study
failed to detect altered intestinal permeability and bacterial
overgrowth in patients with PSC [63]. Nevertheless, there is
some circumstantial evidence, that microorganisms also
cause biliary inflammation and strictures in man. A couple
of publications, mainly in patients with immunodeficiency
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syndromes, reported AIH- and PSC-like disease in associ-
ation with the presence of infectious organisms ultimately
leading to liver cirrhosis. Incriminated agents comprise
various species such as cytomegalovirus, enterococci,
brucella, cryptosporidia, microsporidia, candida, and
trichosporon species as well as atypical mycobacteria
[64–74]. Of note, these hepatobiliary infectious complica-
tions are usually not associated with detectable serum
autoantibodies and should be referred to as secondary forms
of sclerosing cholangitis, although Olsson and coworkers
reported a high prevalence of intestinal microorganisms in
explanted liver tissue from patients with PSC: positive
bacterial cultures were obtained in 21 out of 36 of the
explanted livers. However, the results of this study have to
be interpreted with caution as detection of bacteria appeared
to be correlated to endoscopic interventions performed
shortly before liver transplantation [63, 75]. Moreover,
secondary bacterial colonization caused by biliary obstruc-
tion, altered physicochemical properties of bile as a
consequence of chronic inflammation, and bacterial trans-
migration of the colonic wall in patients with ascites have
also to be taken into account.

Thus far, identification of a single causative bacterium
inducing PSC remains elusive. However, a large study
investigating reactivity of sera from patients with PSC and
healthy controls against a panel of 22 viruses, Chlamydia
species and Mycoplasma pneumoniae revealed antibodies
of the IgG, IgM, and IgA class against Chlamydia-specific
lipopolysaccharide as the only immunoserological abnor-
mality associated with PSC. The authors, however, failed
to differentiate whether reactivity was directed against
Chlamydia pneumoniae versus Chlamydia trachomatis
and concluded that a novel Chlamydia species might be
involved [57] despite the fact that viable Chlamydia
specimens were not detected in liver tissue. Thus, the
authors concluded that immunoreactivity to Chlamydia
lipopolysaccharide in PSC does not reflect ongoing chronic
infection but might be a hint that PSC might be initiated by
a transient Chlamydia infection.

While searching for an infectious agent causing hepato-
biliary disorders, Helicobacter species seemed a promising
candidate. Intestinal Helicobacter species were found to
enter the circulation especially in immunocompromised
patients, and thus could finally be detectable in liver tissue.
In animal models, intestinal Helicobacter species have
convincingly been demonstrated to translocate into the liver,
causing chronic hepatic infection associated with lympho-
cytic necrotizing hepatitis and cholangitis, hepatic adeno-
mas, hepatocellular carcinoma, and cholangiocarcinoma
[76–80].

In man, Helicobacter species have been frequently
detected in bile samples from Korean patients [81].
Moreover, Fox et al. found that patients from Chile with

chronic biliary inflammation were commonly infected by
bile-tolerant Helicobacter species such as H. hepaticus and
H. bilis [82, 83]. Nilsson and coworkers identified gene
sequences of Helicobacter species by polymerase chain
reaction (PCR) in 20 out of 24 liver biopsy samples from
patients with PSC and primary biliary cirrhosis, and later on
confirmed these data by Helicobacter-specific reactivity on
immunoblots [84, 85]. This group was also the first to
describe that the presence of Helicobacter species was
associated with particularly high-serum alkaline phosphatase
alluding to a potential clinical implication of Helicobacter
infection in PSC. Finally, morphological intact spiral and
coccoid forms of Helicobacter pylori have recently been
demonstrated by transmission electron microscopy in liver
tissue of a single patient with PSC [86]. Taken together,
Helicobacter pylori, Helicobacter rodentium, Helicobacter
pullorum, Helicobacter hepaticus, and Helicobacter bilis
have been predominantly found among other species. The
source of these Helicobacter species remains uncertain. It is
interesting to note that gene sequences obtained from
Helicobacter-specific 16s ribosomal DNA (rDNA) is most
frequently analogous to H. pylori [87, 88]. This observation,
along with the fact that most Helicobacter species are not
present in the portal circulation or in the lymphatics but
colonize the gastrointestinal tract, seems to suggest an
ascending infection from the duodenum as the most
plausible route of infection [89, 90]. The mechanisms that
protect Helicobacter species against the adverse effects of
alkaline pH and bile acids are still a matter of debate [91,
92], but differential expression of virulence factors may
enable some Helicobacter species, e.g., H. hepaticus and
H. bilis, to become bile-tolerant. In addition, biliary inflam-
mation and biliary obstruction have been shown to markedly
decrease bile pH, making colonization by Helicobacter
secondary to hepatobiliary diseases a possible scenario [93].

Nevertheless, the results of microbial studies in PSC are
still conflicting. Most studies relied on PCR-based tech-
niques such as detection of 16S rRNA. As bile acids,
intestinal acids, and highly charged mucin components are
strong inhibitors of the PCR reaction, results of most
studies have to be interpreted with caution. Moreover,
immunological assays have not been standardized. In this
context, Rudi et al. were unable to detect Helicobacter
DNA in bile samples from 73 German patients with biliary
diseases [94], and seroprevalences of antibodies against
Helicobacter pylori or hepaticus were not significantly
raised in sera from patients with autoimmune hepatitis [95].
On the other hand, Helicobacter-specific DNAwas detected
as frequently in controls as in patients with PSC or primary
biliary cirrhosis in a study of Boomkens and coworkers
[96]. Likewise, Nilsson et al. [97] reported similar
frequencies of antibodies against Helicobacter pullorum,
H. bilis, and H. hepaticus in patients with PSC and other
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autoimmune liver diseases. This lack of disease specificity
argues against a role of Helicobacter species in the
pathogenesis of PSC. Finally, attempts to culture Helico-
bacter from human bile samples have been considerably
less reliable than isolation of Helicobacter species in
experimental animals with Helicobacter-induced liver
diseases. Thus, it remains unclear whether detection of
Helicobacter DNA in bile by molecular techniques reflects
enterohepatic circulation of Helicobacter species, transient
colonization, or gives a hint to actual biliary infection as a
cause of PSC.

Despite the aforementioned somewhat controversial
results, there is conclusive evidence that antigens from
dissociated microbes might trigger autoimmune-like phe-
nomena in PSC as a result of past clinical or subclinical
infection. For instance, Helicobacter pylori can induce
autoantibodies reactive with a protein of the canaliculi in
gastric parietal cells, and in a murine model of H.
hepaticus-induced hepatitis antibodies to heat shock protein
(Hsp) 70 were also be detected [98, 99]. Such data
provide a basis for molecular mimicry, i.e., microbial
molecules share epitopes that cross-react with human
autoantigens. The identification of the bacterial cell division
protein FtsZ as antigen of p-ANCA in patients with AIH
and PSC, and cross-reactivity of p-ANCA with a tubulin
isoform of neutrophil granulocytes provides further support

for the hypothesis of molecular mimicry between microbial
antigens and human autoantigens as a mechanism contrib-
uting to the immune-mediated pathogenesis in these
diseases [53]. However, FtsZ is highly conserved across a
broad range of different microbial species. Thus, identifi-
cation of FtsZ as a pivotal antigen in PSC does not give a
hint to any particular infecting organism. Of note, biliary
inflammation may reflect abnormal immune responses to
constituents of intestinal microorganisms, which do not
necessarily require direct bacterial translocation to the
biliary tree or portal circulation. For instance, proinflamma-
tory peptides derived from colonic bacteria were sufficient
to induce histological changes resembling PSC in rats with
experimental colitis [100, 101]. Such peptides trigger
inflammation because they stimulate antimicrobial pattern
recognition receptors, e.g., Toll-like receptors (TLR).

Toll-like receptor (TLR) signaling in PSC and AIH

The immune system is endowed with an array of recognition
and defense mechanisms capable of responding to foreign
factors. These immune responses can be mediated by a set of
germline-encoded receptors, such as the Toll-like receptors
(TLRs). TLRs extra- and intracellularly recognize the
presence of a diverse range of molecular determinants specific

TLR2 TLR1 
TLR2 TLR6 TLR4

TLR11 
TLR5

TLR3

TLR7/8

TLR9 

MyD88 

TIRAP 

CD14 

TRIF

TRAM

MD2

Diacetylated 
Lipopeptides 

Triacetylated 
Lipopeptides 

Lipopoly- 
Saccharide Flagellin Uropathogenic 

E. coli 
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Fig. 2 Toll-like receptors, their ligands, and adaptor molecules. Toll-
like receptors (TLR) recognize pathogen-associated molecules.
Nucleic acid sensing TLRs 3, 7, 8, and 9 are localized in endosomes.
Specificity of TLR signaling is achieved by a couple of distinct
adaptor molecules redistributing to the intracellular Toll-IL1 receptor
(TIR) domain upon activation: MyD88 (myeloid differentiation factor
88), TIRAP (TIR-domain-containing adaptor protein), TRIF (TIR-

domain containing adaptor protein inducing interferon-beta), TRAM
(TRIF-related adaptor molecule). Myeloid differentiation protein 2
(MD2) and CD14 are needed to recognize lipopolysaccharide (LPS).
Further ligands comprise lipopeptides, flagellin, single-stranded (ss),
and double-stranded (ds) RNA and unmethylated cytosine-guanosine
DNA motifs (CpG)
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to certain microbial pathogens but normally not present in
host cells (Fig. 2). Activation of this innate branch of
immune defense can lead to various immune responses of
different cell types, ranging from production of cytokines,
chemokines, costimulatory and adhesion molecules, antimi-
crobial factors to induction of cell proliferation. Among
TLRs, at least 11 different types are known in humans, each
one referring to specific microbial ligands (Table 1).

For instance, TLR2 responds to lipoproteins, the main
cell wall components of Gram-positive bacteria. TLR2
heterodimerizes with TLR1 and TLR6, enabling discrimi-
nation between diacetylated and triacetylated lipopeptides
[102]. TLR2/TLR1 heterodimers activate dendritic cells, B
lymphocytes, natural killer cells, mast cells, and host
endothelial cells [103]. TLR2 and TLR6 collaborate in
detecting yeast zymosan [103]. In addition, components of
necrotic, but not apoptotic, cells activate fibroblasts and
macrophages via TLR2 [104]. Such endogenous ligands
have been incriminated as potential culprits both in
bacterial and aseptic arthritis [105–107]. However, it cannot
be completely ruled out that in these studies autoantigen
preparations such as heat shock protein 70 had been
inadvertently contaminated by other TLR ligands [108].

TLR4 is a critical component of the lipopolysaccharide
(LPS) receptor complex, which activates cells upon
exposure to Gram-negative bacteria. However, TLR4 also
responds to other ligands. Reports claiming endogenous
TLR4 ligands are debated controversially because low-
endotoxin preparations of such endogenous molecules
failed to confirm the initial observations [108]. Clinically,
TLR4 induces sequestration of neutrophil granulocytes in

endotoxin-induced lung injury [109], whereas impaired
TLR4 signaling can predispose to septicemia in patients
with rheumatoid arthritis after anti-TNF therapy [110].
Natural mutants of TLR4 have been identified and are
associated with impaired responsiveness to LPS [111], but
in man the TLR4 polymorphism does not predispose to
rheumatoid arthritis per se [112] and does also not affect the
outcome of bacterial sepsis [113].

TLR3, TLR7, TLR8, and TLR9 are located intracellu-
larly in endosomes and are supposed to recognize phago-
cytosed ligands. TLR3 detects double-stranded (ds)RNA
originating from single-stranded (ss) RNA or dsRNA
viruses [114, 115]. In addition, TLR3 probably also recog-
nizes secondary RNA structures, because synthetic RNAs,
mRNA, and siRNA can similarly trigger production of
type I interferons and proinflammatory cytokines. TLR7
and TLR8 both recognize viral ssRNA and distinct
synthetic guanosine analogs [103, 116]. TLR3, TLR7, and
TLR8, all activate dendritic cells to mature and to produce
proinflammatory cytokines [116]. Unmethylated cytosine-
guanosine (CpG)-DNA is a stimulatory motif of bacterial
and viral DNA, which constitutes an important ligand
to trigger TLR9 [117, 118]. The malaria pigment hemozoin,
non-CpG DNA, and DNA nanoparticles can also activate
TLR9 [119, 120], suggesting that particle-related secondary
structures rather than specific sequences are the actual
recognition structure. TLR9 resides in the endoplasmic
reticulum but redistributes to late endosomes for interac-
tion with ingested CpG-DNA [121]. In man, CpG-DNA
is a potent B-cell mitogen; it activates plasmacytoid
dendritic cells and, in complex with other proteins, induces

Table 1 Toll-like receptor
(TLR) ligands and pathogens

RSV respiratory syncytial virus,
HSPB8 heat shock protein B8,
HSP70 heat shock protein 70

Type of TLR Microbial Ligand Endogenous Ligand

TLR1 Cofactor TLR2 and/or TLR4
TLR2 Lipoteichoic acid (Gram-positive bacteria) Necrotic cells

Lipopeptides, LPS (Gram-negative bacteria) Hyaluronate
Triacyl lipopeptides (Bacteria; with TLR1) Fibronectin
Diacyl lipopeptides (Mycobacterium spp., with TLR6) Heparan sulfate

Fibrogen, HSPB8
Lipoarabinomannan (Mycobacterium spp.)
Glycolipids (Treponema spp.) HSP70
Zymosan (Fungi)
HSP 60 (Chlamydia trachomatis)

TLR3 Double-stranded RNA (Viruses) Double-stranded RNA
TLR4 Lipopolysaccharides (Gram-negative bacteria)

RSV fusion protein (Saccharomyces cerevisiae)
Mannan (Candida albicans)

TLR5 Flagellin (Gram-positive and Gram-negative bacteria)
TLR6 Co-factor TLR2
TLR7 and TLR8
(TLR8 in humans only)

Single-stranded RNA (Viruses) Single-stranded RNA

TLR9 CpG DNA (all bacteria, viruses)
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strong antigen-specific humoral and cellular inflammatory
immune responses of the Th1 type [122].

Taken together, activation of Toll-like receptors by
pathogens can activate diverse cell populations of the
immune system to initiate or enhance protective B and T
cell responses [123, 124]. However, on a susceptible
genetic background, TLR signaling induces autoimmunity,
and numerous models in experimental animals have
meanwhile documented that microbial TLR ligands can
trigger a variety of distinct autoimmune diseases such as
rheumatoid arthritis, multiple sclerosis (experimental allergic
encephalitis in mice), myocarditis, diabetes, and systemic
lupus erythematodes [125–130]. Indeed, activation of TLR
by microbial agents fulfills several requirements commonly
considered necessary to induce autoimmunity:

1) TLR triggering represents a strong stimulus to induce
production of interferons and other pro-inflammatory
cytokines, thus leading to strong local inflammatory
activity.

2) TLR ligands can also act directly or indirectly on CD25-
positive regulatory T cells (Treg), which are pivotal to
maintain self/non-self discrimination in the immune
system [131]. Of note, a study in man described
enhanced suppressor function of CD25-positive Treg
upon stimulation with the TLR5 agonist flagellin [132].
However, bacterial lipopeptides, which are potent TLR2
agonists, could temporarily suppress the function of
Treg, whereas LPS (TLR4 agonist) and CpG (TLR9
agonist) had apparently no effects [133, 134].

3) In the presence of T-cell receptor stimulation, TLR
agonists including ligands for TLR2 and TLR9
enhance proliferation and survival of T cells, whereas
at the same time they lower the antigenic threshold to
trigger antigen-specific T cell activation [135–137].

4) Finally, expression of TLRs 2 and 9 are fine-tuned on
polarized intestinal epithelial cells to maintain colonic
homeostasis by regulating the balance between toler-
ance and inflammation, and this delicate balance in
TLR expression may become disturbed quite early in
the pathogenesis of chronic inflammatory bowel
diseases frequently associated with PSC [138].

Thus, engagement of TLRs in the presence of infection
and high concentrations of TLR agonists may abrogate
suppressor functions of natural CD25-positive Treg, while
effector T-cell populations including self-reactive T cells
may become expanded. In support of this idea, recent
studies suggest that inflammatory infiltrates in PSC contain
T cells primed in the gut-associated tissue [139–141]. In
two patients with PSC, identical oligoclonality in T-cell
receptors was identified when T-cell lines were propagated
from biopsies obtained from inflamed common bile ducts
2 years apart [139]. This finding indicates persistent

recirculation of T cells to the periductal tissue. Interestingly,
the generated T-cell lines proliferated in response to human
enterocytes and exhibited enterocyte cytotoxicity. Mean-
while, the hypothesis has been developed from more
refined observations that PSC may be caused by long-lived
memory T cells primed in the gut, which then migrate to the
peribiliary space in response to aberrant expression of gut-
specific adhesion molecules and chemokines [140–143].

Our findings of bacterial FtsZ as p-ANCA antigen in PSC
nicely supplements the concept of gut-induced immune
activation in PSC by providing firm evidence that also B-
cell responses are directed against microbial constituents in
this disease. A role of intestinal bacteria in the pathogenesis of
PSC is further supported by studies in interleukin-10 deficient
mice. These mice developed a chronic inflammatory disease
of the gut and liver resembling chronic ulcerative colitis along
with ANCA-like immunoreactivity if their guts were colo-
nized by a normal intestinal microflora, but remained healthy
under germ-free conditions [53, 144, 145]. Sera from mice
with normal intestinal microflora reacted with both human
β-tubulin and recombinant FtsZ in immunoblots, whereas
sera from animals raised under germ-free conditions did not
show reactivity with any of the two antigens [53]. This
finding corroborates the idea that bacteria are indeed
necessary to induce autoimmunity in interleukin-10 knock-

Fig. 3 Role of FtsZ/TBB5 cross-recognition for the pathogenesis of
portal inflammation in AIH and PSC. (1) In predisposed individuals
intestinal microorganisms activate the immune system providing both
foreign antigen and stimulation of diverse cells via Toll like receptors.
(2) The antimicrobial immune response leads to activated T cells and
B cells but also antibodies and immune complexes. (3) Anti-FtsZ
antibodies cross-react with host tubulin beta 5 in neutrophils and give
rise to immune complexes consisting of the tubulin beta 5 autoantigen
and anti-FtsZ. These immune complexes activate further cells of the
immune system and perpetuate the immune response even when the
triggering microorganism has meanwhile disappeared. (4) T cells
primed in the gut carry gut-specific homing signals and are directed
toward hepatic portal tracts owing to the aberrant expression of gut-
homing receptors and chemokines in this area
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out model of chronic inflammatory bowel disease. In these
genetically susceptible mice, the microflora provided both a
stimulus to trigger TLRs and a microbial structure giving rise
to antibodies cross-reactive with a host protein. Both steps
are probably needed to induce autoimmunity. For instance,
application of CpG-rich olignonucleotides (TLR9 agonist) to
transgenic mice expressing the MHC class I molecule Kb
exclusively on hepatocytes was sufficient to break tolerance
and to induce Kb-specific CD8 positive T cells exerting
autoaggression against hepatocytes [146]. Experimental
autoimmune hepatitis could be maintained long-term by
repeated application of CpG-DNA but subsided after
termination of the inflammatory stimulus. Thus, induction
of TLR signaling alone appears not be sufficient to maintain
autoimmunity. It may be at this step of PSC pathogenesis
that antigenic mimicry between microbial and host constit-
uents comes into play. Once triggered in response to a
pathogen, continuous activation of self-reactive T and B cells
by the self-antigen cross-reacting with a foreign antigen is
critically important to maintain autoimmunity [147]. Fur-
thermore, inflammation, insufficient clearance of self-mate-
rial and immune complex formation between self-antigens
and cross-reactive antimicrobial antibodies may result in
uptake of circulating self-antigens that are transported to
intracellular TLRs expressed in endosomes, thus triggering
the vicious circle of immune activation and autoreactivity in
PSC and AIH.

In this context, p-ANCA in AIH and PSC might reflect
molecular mimicry between bacterial FtsZ and a member of
the β-tubulin family (Fig. 3). An abnormal immune response
to intestinal microorganisms seems to be the most likely
initial step triggering ANCA formation and autoimmunity.
Although bacterial infection from intestine is one intriguing
possibility, triggering of TLRs by microbial constituents may
be sufficient to initiate autoimmunity in a susceptible host.
Thus, the gut has to become leaky, not in an anatomical
sense but rather in an immunological sense. However, cross-
reactivity between immune responses to the causative
pathogen and self-antigens may be a pivotal factor to
perpetuate the inflammatory process. Finally, reactivity of
p-ANCA with a cell division protein abundantly present in
intestinal bacteria may explain why chronic inflammatory
liver diseases and chronic inflammatory bowel diseases are
frequently associated.
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