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Abstract
Mesenchymal stem cells (MSCs) have demonstrated considerable potential in tissue repair and the treatment of immune-
related diseases, but there are problems with homing efficiency during MSCs transplantation. Exercise, as an intervention, 
has been shown to have an important impact on the properties of MSCs. This review summarizes the effects of exercise on 
the properties (including proliferation, apoptosis, differentiation, and homing) of bone marrow-derived MSCs and adipose-
derived MSCs. Studies indicated that exercise enhances bone marrow-derived MSCs proliferation, osteogenic differentia-
tion, and homing while reducing adipogenic differentiation. For adipose-derived MSCs, exercise enhances proliferation 
and reduces adipogenic differentiation. In addition, studies have investigated the therapeutic effects of combined therapy of 
MSCs transplantation with exercise on diseases of the bone, cardiac, and nervous systems. The combined therapy improves 
tissue repair by increasing the homing of transplanted MSCs and cytokine secretion (such as neurotrophin 4). Furthermore, 
MSCs transplantation also has potential for the treatment of obesity. Although the effect is not significant in weight loss, 
MSCs transplantation shows effects in controlling blood glucose, improving dyslipidemia, reducing inflammation, and 
improving liver disease. Finally, the potential role of combined MSCs transplantation and exercise therapy in addressing 
obesity is discussed.
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Introduction

Mesenchymal stem cells (MSCs) are fibroblast-like cells that 
can be extracted from various tissues such as bone mar-
row, adipose tissue, and umbilical cord [1]. They possess 
the capacity to self-renew and differentiate into osteoblasts, 
adipocytes, or chondrocytes [1]. MSCs secrete proteins, 
cytokines, and microRNAs, which exert effects such as 
inflammation modulation and immune regulation [2]. Con-
sequently, MSCs are utilized for tissue regeneration, wound 
healing, and treatment of various diseases (e.g., bone and 

nervous system disorders) [3]. However, MSCs transplan-
tation as a means of treating diseases still faces numerous 
challenges and hurdles, including the low survival rate and 
the efficiency of homing [4]. Homing refers to the process 
of MSCs migrating to damaged tissue, and MSCs will exert 
therapeutic effects after successfully homing to the dam-
aged tissue [5, 6]. However, it is reported that after MSCs 
are injected into mice with fracture, most of the MSCs will 
be trapped in the lungs and migrate to the fracture site after 
8 – 9 days [7]. Although MSCs home to the fracture site, 
less than 3% of MSCs survive 5 weeks after the fracture 
[7]. Administering a higher dose of MSCs could potentially 
offset the observed low survival rates. Nonetheless, this 
approach is associated with high costs and an elevated risk 
of adverse effects. Therefore, it is necessary to investigate 
optimal strategies to enhance the therapeutic efficacy of 
MSCs injections.

Exercise is recognized as a means of altering the biologi-
cal properties of MSCs, as it can enhance their proliferation 
and osteogenic differentiation while reducing adipogenic dif-
ferentiation of MSCs cultured in vitro [8–10]. Some previous 
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studies have also demonstrated that treatment combined with 
exercise is beneficial to enhance the therapeutic effects of 
MSCs in various diseases [11]. This may be related to the 
fact that exercise can activate MSCs to secrete immune 
regulatory factors that promote tissue repair, while exercise 
also improves homing efficiency [11–13]. For example, in 
neurological disorders such as spinal cord injury (SCI), the 
combined treatment of MSCs transplantation and exercise 
has demonstrated enhanced neuroprotective effects and 
maintenance of motor function [12]. These results may be 
attributed to the exercise-induced increase in neurotrophin 4 
[12]. In the acute myocardial infarction model, the combined 
treatment preserved left ventricular function greater than a 
single treatment [13]. Exercise also activated the stromal 
cell-derived factor 1 (SDF-1)/ CXC chemokine receptor type 
4 (CXCR4) axis, which may enhance MSCs homing [13].

In addition to neurological, musculoskeletal, and cardio-
vascular disorders, there is increasing evidence suggesting 
the therapeutic potential of MSCs transplantation in address-
ing metabolic-related diseases, such as obesity and type 2 
diabetes mellitus (T2DM) [14]. MSCs transplantation has 
been shown to ameliorate dyslipidemia, regulate blood 
glucose levels, and reduce inflammation in animal models 
[15–17].

In this review, we focus on bone marrow-derived MSCs 
(BMSCs) and adipose-derived MSCs (ADMSCs) and sum-
marize the effects of exercise on the properties of MSCs. 
We also summarize the combination effects of MSCs trans-
plantation and exercise on diseases, and the therapeutic effi-
cacy of MSCs transplantation for obesity. Additionally, will 
explore the role of exercise in the future of MSCs treatment 
for obesity.

Effects of Exercise on Bone Marrow‑derived 
MSCs (BMSCs) and Adipose‑Derived MSCs 
(ADMSCs)

In this review, animal and cell studies were included to 
investigate the effects of exercise on BMSCs and ADMSCs. 
The exercise protocol in animal studies comprised tread-
mill running (8 studies), climbing exercise (1 study), and 
low-magnitude mechanical signals (LMMS, 1 study). Cell 
experiments, on the other hand, use mechanical stress and 
irisin pretreatment to simulate the effects of exercise. The 
exercise protocol and main findings from the included stud-
ies are summarized in Table 1 and Fig. 1.

Effects of Exercise on the Proliferation and Viability 
of BMSCs and ADMSCs

Exercise has been shown a tendency to enhance the prolif-
erative capacity of BMSCs and ADMSCs. The number of 

colony-forming units (CFU) of BMSCs was higher in mice 
running on a treadmill for 5 weeks (21 ± 2) than in seden-
tary mice (16 ± 3) (p < 0.05) [8]. Additionally, an 8-week 
treadmill exercise protocol resulted in an increased number 
of CFU for both BMSCs and ADMSCs in rats [9]. Ocarino 
et al., reported that 12-week treadmill running increased the 
viability of BMSCs in ovariectomized rats [18]. A moderate-
intensity treadmill running program increased the viability 
of BMSCs, while low- and high-intensity exercise did not 
induce significant change [10]. Except for treadmill running, 
6-week of LMMS also increased the number of BMSCs in 
mice [19].

Conversely, some studies have indicated that exercise 
does not affect the proliferation or viability of MSCs. Baker 
et al., found a 29% increase in the number of CFU in bone 
marrow-isolated cells after 10 weeks of treadmill running, 
but this difference was not statistically significant [20]. It is 
important to note that in this study, the bone marrow-isolated 
cells were c-kit-positive and Sca-1-positive, indicating they 
may be hematopoietic stem cells rather than MSCs [20, 21]. 
Hell et al., adhered to the same exercise program as Ocarino 
et al., yet failed to observe an increase in the BMSCs' viabil-
ity, which could be attributed to the utilization of a differ-
ent animal model (normal vs. ostopenic) [18, 22]. Climbing 
a 100 cm meshed-wire tower, which is a different form of 
exercise than running, did not increase the number of CFU 
in mice BMSCs [23].

Exercise appears to enhance the proliferation and viability 
of MSCs. Yet the duration of exercise, which can vary from 
4 to 10 weeks, and the type of exercise, such as treadmill 
running, LMMS, and climbing, can affect the benefits that 
are reported [8–10, 18–20, 22, 23].

Effects of Exercise on the Apoptosis of BMSCs 
and ADMSCs

Following the transplantation of MSCs, a high apoptotic rate 
has been observed, potentially diminishing the therapeutic 
efficacy of MSCs [7]. The effect of exercise on apoptosis 
of MSCs is not yet clear. BMSCs (passage 4) from rats that 
exercised on a treadmill were cultured in osteogenic dif-
ferentiation medium for 21 days and the expression level 
of Casp3 mRNA was analyzed [22]. When comparing the 
BMSCs of the exercise group with age-matched control 
group, the exercise group demonstrated a significant upregu-
lation of Casp3 mRNA expression (p < 0.05) [22]. De Lisio 
et al., reported that exercise preconditioning can reduce the 
MSCs apoptosis and increase the survival rate in an animal 
model subjected to radiation exposure [24].

Moreover, the anti-apoptotic capability of MSCs not only 
depends on exercise but may also be influenced by exerkines 
released during exercise. In a study by Yan et al., mice 
ADMSCs were pretreated with or without irisin (a myokine 
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released by muscles during exercise, 100 ng/ml) for 48 h 
[25, 26]. The ADMSCs were then washed to remove irisin 
and exposed to H2O2 (200 µM, 6 h) [25]. To assess apopto-
sis, protein expression levels of cleaved caspase-3 and TdT‐
mediated dUTP nick‐end labeling analysis were performed 
[25]. The findings indicate that irisin pretreated ADMSCs 

had a higher anti-apoptotic capacity, suggesting that exercise 
may affects the apoptosis of MSCs [25].

On the other hand, no significant differences were observed 
between BMSCs and ADMSCs in terms of the exercise-
induced alterations in apoptosis. BMSCs and ADMSCs were 
isolated from both sedentary and exercised rats and cultured 

Table 1   Effects of exercise on bone marrow-derived and adipose-derived mesenchymal stem cells (MSCs) properties

↑ increase, ↓ decrease, ↔ no change, AD adipose-derived, BM bone marrow-derived, CD cluster of differentiation, LMMS low-magnitude 
mechanical signals, Pref-1 preadipocyte secreted factor-1, Sca-1 stem cell antigen-1

Exercise type Exercise 
intensity

Exercise time 
& duration

MSCs origin 
& Characteri-
zation

Effects Reference

Proliferation Osteogenic 
differentia-
tion

Adipogenic 
differentia-
tion

Apoptosis

Treadmill run-
ning

14 m/min (1st 
wk) to 24 m/
min (10th 
wk)

45 min/day, 
3 days/wk, 
10 wk

Mice BM 
(Sca-1−, 
Lin−, CD45−. 
CD31−, 
CD51+)

↑ ↑ ↓ N/A Maredziak et al., 
2015 [8]

19.3 m/min 60 min/day, 
8 wk

Rat BM & AD 
(CD11b−, 
CD45−, 
CD79+, 
CD90+)

↑
(BM & AD)

↑ (BM)
 ↔ (AD)

↓
(BM & AD)

 ↔ 
(BM & AD)

Liu et al., 2017 
[9]

15 m/min 30 min/day, 
5 days/wk, 
12 wk

Rat BM 
(CD45−, 
CD73+, 
CD54+, 
CD90+)

↑ ↑ N/A N/A Ocarino et al., 
2008 [18]

15 m/min 30 min/day, 
5 days/wk, 
12 wk

Rat BM 
(CD45−, 
CD73+, 
CD54+, 
CD90+)

 ↔  ↑ N/A ↓ Hell et al., 2012 
[22]

Low: 8 m/min
Moderate: 

18 m/min
High: 28 m/

min

50 min/day, 
6 days/wk, 
5 wk

Mice BM 
(adherence to 
plastic)

N/A ↑
(Moderate)

N/A N/A Zhang et al., 
2017 [32]

18 m/min 50 min/day, 
6 days/wk, 
6 wk

Rat BM 
(adherence to 
plastic)

N/A ↑ N/A N/A Zhang et al., 
2020 [33]

Low: 15.2 m/
min

Moderate: 
19.3 m/min

High: 26.8 m/
min

60 min/day, 
5 days/wk, 
8 wk

Rat BM 
(adherence to 
plastic)

↑ ↑
(Moderate)

N/A N/A Liu et al., 2018 
[10]

14 m/min (1st 
wk) to 24 m/
min (10th 
wk)

45 min/day, 
3 days/wk, 
10 wk

Mice BM 
(c-kit+, Sca-
1+)

 ↔  ↑ ↑ N/A Baker et al., 
2011 [20]

Climbing 61—73 m/day 11—13 min/
day, 2 to 4 
wk

Mice BM 
(adherence to 
plastic)

 ↔  ↑ N/A N/A Mori et al., 2003 
[23]

Mechanical 
Stimulation

LMMS, 0.2 g, 
90-Hz signal

15 min/d, 5 days/
wk, 6 wk

Mice BM 
(Sca-1+, 
Pref-1+)

↑ ↑ ↓ N/A Luu et al., 2009 
[19]
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until 80% confluence [9]. Subsequently, the cells were exposed 
to a hypoxia and serum-deprived environment (serum-free 
Dulbecco's Modified Eagle Medium, chamber conditions 
with oxygen concentration of 3%) for 24 h [9]. To evaluate 
apoptosis, flow cytometry was used to compare the number 
of Annexin V+/propidium iodide- MSCs, while the activity 
of caspase-3 was assessed using a colorimetric assay [9]. The 
finding indicated no significant difference in the anti-apoptotic 
capability of BMSCs and ADMSCs from sedentary or exercise 
rats [9]. It was noted that BMSCs secreted more bone morpho-
genetic protein 2 under hypoxia and serum-deprived condition, 
which suggesting BMSCs isolated from exercised rats could 
be good source for bone repair applications [9].

Due to inconsistent findings in previous studies, the 
effects of exercise on MSCs apoptosis remain unclear. The 
effect of exercise on apoptosis seems to vary depending on 
the origin of MSCs [9, 25]. Future research needs to provide 
more evidence on the effect of exercise on MSCs apoptosis, 
and it is necessary to determine the role exercise plays in 
apoptosis during MSCs transplantation.

Effects of Exercise on the Differentiation Capacity 
of BMSCs and ADMSCs

Exercise is known to strengthen bones and reduce body 
fat [27, 28]. These changes are linked to exercise-induced 

changes in MSCs [29]. MSCs can differentiate into oste-
oblasts and adipocytes, contributing to bone and adipose 
tissue formation. Exercise influences this differentiation 
process.

Osteogenic Differentiation

Many studies proved that exercise increased the differ-
entiation of BMSCs into osteoblasts [8–10, 18–20, 22, 
23, 30–33]. BMSCs isolated from mice that trained on a 
treadmill for 10 weeks had higher levels of alkaline phos-
phatase (ALP), osteopontin, and osteocalcin compared 
to BMSCs from sedentary mice, showed more Alizarin 
Red S-positive BMSCs [8, 20]. Similarly, BMSCs isolated 
from rats subjected to treadmill running for 8 – 12 weeks 
show elevated levels of ALP activity and Alpl mRNA 
expression, as well as an increased number of mineralized 
nodules (at day 21 of osteogenic differentiation) compared 
to BMSCs from sedentary rats [9, 22]. However, there was 
no change in osteogenic differentiation of ADMSCs after 
exercise [9]. Following cell culture in osteogenic differ-
entiation medium, the number of ALP+CFU was higher in 
BMSCs from trained mice than sedentary mice [32, 33]. 
In particular, moderate-intensity exercise was more effec-
tive than low- and high-intensity exercise in enhancing 
ALP+CFU [10, 32]. Even in an osteopenia model, exercise 

Fig. 1   Effects of exercise on 
bone marrow-derived and 
adipose-derived mesenchymal 
stem cells properties. ADMSCs, 
adipose-derived mesenchymal 
stem cells; ALP, alkaline phos-
phatase; BMP2, bone morpho-
genetic protein 2; BMSCs, bone 
marrow-derived mesenchymal 
stem cells; C/EBPα, CCAAT/
enhancer-binding protein alpha; 
OCN, osteocalcin; OPN, osteo-
pontin; PPARγ, peroxisome 
proliferator-activated recep-
tor gamma; Runx2, runt-related 
transcription factor 2 protein 
coding gene
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can also increase the osteogenic differentiation capacity 
of BMSCs [18]. Moreover, Mori et al., has demonstrated 
that climbing exercise can also enhance the osteogenic 
differentiation capacity of BMSCs [23].

The observed enhanced osteogenic differentiation 
capacity of MSCs might be related to exercise-induced 
mechanical signals that are transmitted to the extracel-
lular matrix and initiate intracellular signaling cascades 
[34]. These mechanotransduction processes involve the 
activation of pathways such as p38 mitogen-activated 
protein kinase and WNT/β-catenin, through cell surface 
integrins, ultimately converting these mechanical stimuli 
into biochemical signals that promote osteogenic lineage 
commitment [34].

Previous studies have confirmed the change in osteogenic 
differentiation markers following exercise or mechanical 
stimuli. These studies showed that exercise enhances osteo-
genesis by increasing the osteogenic protein (runt-related 
transcription factor 2, Osterix) and osteogenesis-related 
genes (Runx2, Col1a1, Alpl and Bglap) [9, 10, 30, 31].

Adipogenic Differentiation

Some studies reported that exercise reduced the adipogenic 
differentiation capacity [8, 9, 19, 20, 31]. Maredziak et al., 
and Baker et al., (employing identical exercise protocol) 
reported that treadmill training for 10 weeks reduces the 
adipogenic differentiation capacity of mice BMSCs as 
measured by Oil Red O (exercise < sedentary) [8, 20]. Liu 
et al., found that an 8-week treadmill training can inhibit 
the adipogenic differentiation capacity of rats BMSCs and 
ADMSCs, and the gene expression levels of Pparg (peroxi-
some proliferator-activated receptor coding gene) and Cebpa 
(CCAAT/enhancer-binding protein alpha coding gene) in 
exercise group were lower than sedentary group [9].

The same results with animal studies were obtained in 
a cell culture study that mimicked exercise by applying 
mechanical stimulation to cells [31]. After 10 days of strain 
stimulation, rats BMSCs showed fewer Oil Red O-positive 
cells than the unstimulated group [31]. Moreover, the pro-
tein and mRNA expression of PPARγ and C/EBPα in the 
strain-stimulated group were lower than unstrained group 
[31]. PPARγ and C/EBPα proteins are known to be the key 
transcription factors in adipogenic differentiation of MSCs 
and play critical roles in adipogenesis [35]. Possibly due to 
the change in these adipogenic differentiation makers, MSCs 
reduced adipogenic differentiation.

In animal studies, LMMS (acting as an exercise mimic) 
alone inhibits the adipogenic lineage and promotes MSCs 
toward the osteogenic lineage [19]. This highlights that 
mechanical stimulation plays a role in the regulation of 
MSCs differentiation that occurs due to exercise.

Effects of Exercise on the Homing of BMSCs 
and ADMSCs

The migration of MSCs across vascular endothelial cells to 
target tissue (damaged site) is known as MSCs homing [6]. 
Since MSCs release cytokines at the site of damage, it is 
essential that injected MSCs have high homing efficiency to 
the damaged region. MSCs homing is facilitated by inflam-
mation, hypoxia, and SDF-1/ CXCR4 axis activation [36, 
37].

Exercise can also serve as a way to promote the homing 
of MSCs. Previous studies have demonstrated that perform-
ing aerobic exercise before surgical procedure-induced acute 
myocardial infarction can activate SDF-1/CXCR4 axis [13]. 
Treadmill exercise (10 weeks, 5 times/week, 60 min/time) 
increases the expression of inflammatory factors in heart 
tissue of female spontaneously hypertensive rats, thereby 
enhancing the regenerative capacity of ADMSCs and facili-
tating cardiac function recovery [13]. Furthermore, pretreat-
ment of ADMSCs with irisin (100 ng/ml, 2 days) promoted 
their homing to the myocardium via CSF/CSF2RB axis in 
a model of ischemia–reperfusion injury [25]. This evidence 
suggests the potential for exercise to increase homing effi-
ciency. However, conflicting results have been reported. De 
Lisio et al., showed that more MSCs did not homing to the 
bone marrow in mice exposed to radiation after aerobic exer-
cise compared to sedentary mice [24].

Due to conflicting findings, a definitive association 
between exercise and MSCs homing has yet to be estab-
lished. Future research may explore whether exercise influ-
ences MSCs homing through different pathways. In addi-
tion, previous studies have only investigated the effects of 
exercise preconditioning on the efficiency of injected MSCs 
homing, and little is known about the effects of exercise 
simultaneously or post-MSCs transplantation [13, 24, 25].

Summary of the Effects of Exercise on BMSCs 
and ADMSCs

Exercise improve proliferation, osteogenic differentiation 
and reduce adipogenic differentiation of MSCs and these 
effects may relate to exercise intensity. Moderate-intensity 
exercise may be optimal for enhancing the properties of 
MSCs [9, 10]. Exercise at low-intensity may fail to provide 
the necessary mechanical stimulus, while excessively high-
intensity could potentially lead to bone tissue damage and 
cell death, thereby negating the beneficial effects on MSCs 
characteristics [10]. Most research has used exercise train-
ing protocols lasting 5 to 12 weeks, with a total of 30 to 
60 sessions. Despite this, there remains a significant gap 
in understanding the impact of varying exercise durations 
and frequencies on MSCs. It is imperative to conduct addi-
tional studies to elucidate the optimal exercise regimen that 
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can effectively enhance the properties and functionality of 
MSCs.

Therapeutic Effects of Combined 
Mesenchymal Stem Cells (MSCs) 
Transplantation and Exercise

Research on the combined MSCs transplantation and exer-
cise had primarily focused on investigating their therapeutic 
effects on bone, heart tissue and nervous systems. The prin-
cipal findings of studies examining the combined effects of 
MSCs transplantation are outlined in Table 2.

Bone Health

Exercise can enhance cartilage repair following BMSCs 
transplantation [38]. Osteochondral defects were induced 
through surgery in the center of the femoral groove of rats, 
and 4 weeks later, rats received injections of BMSCs (1 × 106 
cells in 50 µL PBS) into the right knee and 50 µL PBS into 
the left knee. Two days post-injection, the exercise group 
started treadmill running for 2 to 8 weeks [38]. The combi-
nation of BMSCs transplantation and treadmill running led 
to improved cartilage repair scores, as observed in the sec-
ond week [38]. Notably, the independent effects of BMSCs 
transplantation or exercise became apparent in the fourth 
week [38]. Moreover, the percent area stained with type 
II collagen was highest in the BMSCs transplantation and 
exercise combined group at week 4, but similar results were 
obtained at week 8 in the BMSCs transplantation group or 
exercise group [38]. This indicates that while the early com-
bination of BMSCs transplantation and exercise has ben-
eficial effects on cartilage repair, these effects may reduce 
over time [38].

Cardiac Disorders

Exercise boosts the therapeutic effects of MSCs in myocar-
dial infarction (MI) [39]. After inducing MI in rats, the com-
bined therapy of BMSCs injection (1 × 106 cells/animal via 
tail vein) and a 12-week exercise program improved exercise 
capacity and cardiac function while reducing left ventricular 
collagen content [40]. A 5-week exercise program combined 
with BMSCs treatment also improved exercise capacity 
and left ventricular ejection fraction in MI mice [41]. In 
this study, the combined treatment increased the number 
of Ki67+ cells (a marker of proliferation) in the myocar-
dial infarct area, supporting that exercise may enhance the 
retention of injected BMSCs in the heart and stimulate car-
diomyocytes to enter the cell cycle [41]. Additionally, the 
study observed the effect of acute exercise on the therapeutic 
effect of BMSCs, revealing that injected BMSCs after acute 

exercise were retention in the infarcted area of ​​the myocar-
dium, which may be related to the activation of the SDF-1/
CXCR4 axis by exercise, thereby enhancing the homing 
ability of MSCs [13, 41].

In addition to treadmill exercise, swimming has also been 
shown to enhance the therapeutic effects of MSCs, particu-
larly when exercise preconditioning is performed [42, 43]. 
Prior to inducing MI in Fisher-344 rats, a 9-week swimming 
exercise program contributed to the preservation of ADM-
SCs in the myocardium and improved cardiac remodeling 
[42, 43]. Furthermore, the swimming and ADMSCs com-
bined treatment showed synergy effects for MI treatment. 
This was attributed to exercise preconditioning, which fos-
tered a pro-angiogenic and pro-inflammatory environment 
in the myocardial microenvironment [42, 43].

On the other hand, Lavorato et al., reported that BMSCs 
treatment restored the time-course of [Ca2+]i transient in 
cardiomyocytes, while exercise restored the contractile time-
course and amplitude of [Ca2+]i transient in cardiomyocytes 
[44]. However, the therapeutic effects were not enhanced 
when combined with BMSCs and exercise [44].

Nervous System Disorders

SCI is a neurological disease in which damage to the spinal 
cord occurs due to external force [45]. MSCs transplantation 
has demonstrated efficacy in spinal cord repair, and exercise 
stans as the effective approach for improving motor function 
in individuals with SCI. Some studies have examined the 
effect of combining MSCs transplantation with exercise in 
SCI condition [12, 46].

In a study by Massoto et al., and his colleagues mice were 
transplanted with BMSCs (or culture medium as control) 
on the 7th day following surgery to induce SCI, and the 
exercise group performed treadmill running on the 14th day 
post-surgery [12]. In the combined therapy group (MSCs 
transplantation and exercise), the preserved white matter 
area and the level of myelinated fibers were higher than in 
the other treatment groups, and motor function was shown 
to be significantly improved [12]. Improvements in nerve 
regeneration ability and motor function through combined 
therapy are related to an increase in neurotrophin 4 level 
[12]. The immunomodulatory effect of MSCs and exercise 
are thought to release neurotrophin 4, which is known to 
promote nerve development [12, 47].

Similarly, in another study, after inducing SCI mice, 
followed by transplantation of BMSCs, treadmill running, 
or a combination of BMSCs transplantation and treadmill 
running [46]. After receiving BMSCs, the motor function 
improved following eight weeks of treadmill running [46]. 
Also, there was enhanced protection of axons and myelin, 
improved synaptic function, increased secretion of neuro-
trophic hormones, inhibited scar formation, and neuronal 
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preservation [46]. Through in vitro experiments, the authors 
propose that the combination therapy of BMSCs transplanta-
tion and exercise enhances SCI recovery by activating the 
PI3K/AKT/mTOR pathway [46].

A combination of ADMSCs and exercise (wheel running) 
therapy has been reported to improve motor function recov-
ery and mitigate SCI-induced hyperalgesia and hypoalgesia 
at the early stage of SCI recovery [48]. These effects may be 
related to the therapy-induced downregulation of lba1 and 
GFAP expression in the lumbar spinal cord dorsal horn [48].

In the sciatic nerve injury model, the combined therapy 
of swimming (30 min/day, 7 days) and MSCs transplanta-
tion shows different effects depending on water tempera-
ture [49, 50]. Sprague–Dawley rats received sciatic nerve 
transection surgery, and then BMSCs were transplanted, 
and swimming (30 °C) was started 12 h after surgery [49]. 
Combining transplantation of BMSCs with swimming 
can recover motor function as measured by sciatic func-
tion index, ankle activity, vertical locomotor activity, and 
electrophysiological studies [49]. However, these recov-
eries were greater than BMSCs transplantation alone but 
not greater than swimming alone [49]. Rats with a crush 
model of sciatic nerve injury underwent the same protocol 
(swimming and BMSCs) but the average water temperature 
was 16.5 °C [50]. In this study, the combination of BMSCs 
transplantation and cold-water swimming showed greater 
recovery effects on motor function than swimming alone or 
BMSCs transplantation alone [50].

The combined therapy of ADMSCs transplantation and 
exercise demonstrated a notable recovery in motor function 
in a Parkinson's disease (PD) model [51]. Following the 
induction of PD model in Wistar rats through 6-hydroxy-
dopamine injection, and treadmill running exercise (16 m/
min, 60 min/day, 5 days/week, 5 weeks) was performed, 
along with a single injection of ADMSCs [51]. Motor func-
tion was evaluated using the foot fault walking task, which 
showed a significantly higher total number of foot-slip in 
both untreated group and ADMSCs group compared to 
the sham, while there was no difference between exercise 
group and combined (exercise + ADMSCs) group compared 
to sham [51]. In other words, exercise can improve motor 
function in the PD model and can be considered an adjuvant 
intervention to treat PD with MSCs transplantation [51].

One study reported the effects of BMSCs and exercise 
combined therapy in Alzheimer's disease animal model. In 
this study, Alzheimer's disease was induced in Wistar rats 
using an intracerebroventricular injection of Amyloid-β [52]. 
Two weeks after the induction, treadmill exercise (25 m/min, 
30 min/day, 4 days/week, 4 weeks) and BMSCs injections 
(1 × 106 cells/animal via tail vein) were performed [52]. The 
result showed that the combined therapy improved memory 
function, enhanced BMSCs migration and neurogenesis 
in the hippocampus, protected the pyramidal cells from Ta
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apoptosis in hippocampus, and increased antioxidant capac-
ity and serum level of brain-derived neurotrophic factor [52].

In summary, the combination of MSCs transplantation 
and exercise can effectively treat various diseases. Current 
research trends indicate that injecting MSCs into the site 
of injury is more common than intravenous injection. This 
could be attributed to the potential for intravenous injections 
to result in MSCs becoming trapped in the lungs instead 
of homing to the tissues requiring repair [5]. Furthermore, 
both forced exercises (treadmill running or swimming) and 
voluntary exercises (wheel running) significantly enhance 
the therapeutic effects of MSCs. Exercise preconditioning 
improves the microenvironment, which helps to increase the 
retention rate of MSCs, thereby enhancing their therapeutic 
effects [42, 43].

Nonetheless, to successfully apply these research find-
ings to clinical practice, it is necessary to further investigate 
the mechanisms underlying MSCs and exercise combina-
tion therapy. This includes determining the best injection 
method, types of exercise, and optimal timing for exercise 
to achieve the best therapeutic outcomes.

MSCs and Obesity

Effects of Obesity on MSCs

Previous studies have demonstrated that obesity induces 
chronic inflammation, leading to an increase in the number 
of MSCs within adipose tissues while concurrently dimin-
ishing the migration and proliferation capacities of MSCs 
[53–55]. Treating BMSCs with tumor necrosis factor-α 
(TNF-α), an inflammatory factor highly expressed in obesity, 
increases CXCR4 expression and causes MSCs to migrate 
to adipose tissue [53]. When comparing ADMSCs from 
obese mice to those from lean mice, obese mice ADMSCs 
exhibited decreased proliferative capacity and diminished 
migratory ability [54]. Furthermore, the decreased prolifera-
tive capacity of ADMSCs due to obesity is associated with 
reduced telomerase activity, leading to genomic destabiliza-
tion, telomere shortening, and cellular senescence [56, 57]. 
Additionally, the upregulation of cell cycle regulators such 
as p16, p21, and p53 mRNA expression in the obese state 
may induce apoptosis in ADMSCs [54, 55].

There is conflicting evidence in the studies on the effects 
of obesity on MSCs ability to differentiate into osteogenic 
and adipogenic lineages. Shu et al., reported that BMSCs 
isolated from 12-week diet-induced obesity (DIO) mice 
exhibited elevated expression levels of bone formation-
related genes such as Runx2 (runt-related transcription 
factor 2), Sp7 (osterix), and Bglap (osteocalcin), as well as 
adipogenesis-related genes including Pparg, Cebpa, Cebpb, 
and Cebpd compared to the lean control group [58]. da Silva 

et al., reported that the protein expression levels of C/EBPα 
and PPARγ in BMSCs isolated from 10-week DIO mice 
were found to be higher compared to those in BMSCs iso-
lated from lean mice [59]. This is probably attributed to the 
elevated levels of TNF-α in the bone marrow due to obesity, 
leading to an inflammatory bone marrow microenvironment 
that promotes adipogenic differentiation of BMSCs [59]. On 
the contrary, Wu et al., revealed that BMSCs produced from 
obese mice had lower osteogenic and adipogenic differentia-
tion capacities than those derived from lean mice [60]. Also, 
authors found that obese mice had stronger osteogenic and 
adipogenic differentiation capacity in subcutaneous adipose-
derived stem cells and infrapatellar fat pad-derived stem 
cells than lean mice [60].

Based on the findings of prior studies, it is conceiv-
able that chronic inflammation induced by obesity impacts 
MSCs, and this influence may vary depending on the tissue 
of origin.

The Therapeutic Effects of MSCs Transplantation 
on Obesity

Numerous ongoing studies are dedicated to unraveling the 
potential of MSCs in ameliorating obesity and obesity-
related complications. Most studies investigating the effects 
of MSCs transplantation on obesity used ADMSCs, and only 
some used BMSCs. A potential reason for the preference 
for ADMSCs versus BMSCs could be that the ADMSCs 
tend to secrete more insulin [61]. The main results of papers 
related to the effect of MSCs transplantation on obesity are 
summarized in Table 3.

The Impact of MSCs Transplantation on Body Weight 
and Body Composition

Weight loss is crucial for addressing obesity, but the effects 
of MSCs transplantation on DIO and T2DM animal models 
are inconsistent [15–17, 62–75]. Out of 17 studies investigat-
ing the impact of MSCs transplantation on body weight, 35% 
of the studies showed a reduction in body weight following 
the MSCs transplantation [17, 62–66], and 65% of the stud-
ies showed either no change in body weight or no superior 
effect compared to alternative treatments [15, 16, 67–75].

The impact of MSCs transplantation on body weight 
appears to be related to the injection method, injection 
times, and the genetic modification of MSCs. It seems that 
intraperitoneal injection (IP) is a more effective method for 
inducing weight loss. Specifically, administering IP injec-
tions two or more times can effectively reduce weight gain 
induced by a high-fat diet [17, 62, 63]. Moreover, genetically 
modified MSCs have been shown to effectively reduce high-
fat diet-induced weight gain. Such as neuregulin 4-overex-
pressing human ADMSCs, metformin-pretreated human 
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ADMSCs, and carnitine palmitoyltransferase 1A-expressing 
human ADMSCs, all of which have demonstrated the ability 
to induce weight loss [64–66].

Other studies have reported that MSCs transplantation 
improved body composition even without causing weight 
loss. Jaber et al., demonstrated that IP of human-ADMSCs in 
DIO mice reduced the percentage of fat mass, even though it 
did not lead to significant weight loss [15]. Domingues et al., 
reported that transplanting human-ADMSCs overexpress-
ing Sod2 or Cat (catalase) into DIO mice reduced adipo-
cyte area more effectively than null-human ADMSCs [68]. 
Additionally, Xie et al., observed a reduction in fat mass and 
an increase in lean mass two weeks after human-ADMSCs 
transplantation through tail vein injection in DIO mice [72]. 
Furthermore, ADMSCs transplantation resulted in decreased 
weight and adipocyte area in epididymal adipose tissue and 
inguinal subcutaneous adipose tissue [72]. Similar effects of 
ADMSCs injection were also observed in a DIO + strepto-
zotocin-induced T2DM mouse model. Wang et al., reported 
that injecting ADMSCs from normal, T2DM, or db/db mice 
into T2DM mice effectively reduced adipocyte size [71].

MSCs-induced weight loss or improved body compo-
sition may be related to increased uncoupling protein-1 
expression or M2 macrophage in white adipose tissue [68, 
72]. Increased uncoupling protein-1 can induce heat release 
and enhance energy expenditure, while increased M2 mac-
rophages have been shown to be effective in improving obe-
sity [76, 77].

The Impact of MSCs Transplantation on Lipid Profile

MSCs transplantation seems to be effective in improving 
dyslipidemia. Obesity can result in the excessive accumula-
tion of body fat, leading to dyslipidemia and an increased 
prevalence of cardiovascular diseases. Thus, it is important 
to focus on the prevention and management of dyslipidemia 
associated with obesity. Liu et al., transplanted human-
ADMSCs into db/db mice and found that ADMSCs through 
activated adenosine monophosphate-activated protein 
kinase and hormone-sensitive lipase improved dyslipidemia 
and reduced weight [63]. Lee et al., transplanted human-
ADMSCs into DIO mice, and the result showed that MSCs 
treatment improved lipid profile and liver fat accumulation, 
which means ADMSCs transplantation induced upregulation 
of Pparg and downregulation of Ppara in the liver, which is 
associated with increased fatty acid uptake and lipogenesis, 
as well as decreased triglyceride storage in the liver [17].

Daltro et al., observed that the total cholesterol levels 
decreased in the group that received BMSCs transplantation 
compared to levels before transplantation [75]. However, this 
reduction in cholesterol levels does not appear to be solely 
attributed to the effect of MSCs transplantation. Because 

the high-fat diet was withdrawn at the same time as MSCs 
transplantation [75].

The Impact of MSCs Transplantation on Blood 
Glucose and Insulin

The transition from obesity to T2DM occurs due to a grad-
ual decline in insulin secretion accompanied by a gradual 
increase in insulin resistance and is also associated with 
glucose dysregulation [78]. Insulin sensitivity and disturbed 
blood glucose homeostasis in obesity and T2DM have been 
demonstrated to improve with MSCs transplantation [15–17, 
62–71, 74, 79, 80]. The improvement in insulin sensitivity 
and fasting blood glucose levels can probably be ascribed 
to the protective effects on pancreatic β-cells [67]. Particu-
larly, studies have demonstrated that ADMSCs transplan-
tation increases pancreatic β-cells mass in both DIO mice 
and T2DM mice [67, 71]. This protects these cells from 
inflammation by reducing the mRNA expression of Tnf-α 
and Adgre1 [67, 71]. Moreover, the transplantation of MSCs 
decreases pro-inflammatory factors such as IL-6, IL-1β, and 
TNF-α, while concurrently increasing the levels of anti-
inflammatory factors such as IL-10 [15–17, 62, 64–74].

The Impact of MSCs Transplantation on Liver

MSCs transplantation in obese animals also has notable 
effects on the liver [16, 17, 64, 67–69, 71, 73, 74, 80]. Stud-
ies have demonstrated that ADMSCs transplantation effec-
tively reduced liver fat accumulation and triglyceride levels 
[16, 17, 67, 68], while also alleviating liver fibrosis and stea-
tosis [17, 71, 73, 74].

Limitations of MSCs Transplantation on Obesity 
Treatment

The existing research findings suggest that MSCs trans-
plantation, particularly ADMSCs, has a therapeutic effect 
on improving obesity and obesity complications. However, 
the protocols employed in the investigations (cell-derived 
tissue, number and frequency of injections, injection site, 
observation period after injection, etc.) are different, making 
it challenging to compare results between studies. Therefore, 
there is a need to establish an optimal protocol for the treat-
ment of obesity in future investigations.

On the other hand, it is necessary to find ways to enhance 
the therapeutic potential of MSCs for obesity, as some 
studies have shown that transplanted MSCs exhibit lower 
survival and proliferation rates, which may reduce the 
effectiveness of obesity treatment [81]. Recently, genetic 
modification was used to enhance the therapeutic poten-
tial of MSCs. For example, before MSCs transplantation it 
was treated by Sod2 or Cat, to upregulate antioxidants, or 
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neuregulin 4 (a factor that can regulate lipogenesis in the 
liver) was overexpressed in ADMSCs to improve insulin 
resistance and other obesity-related metabolic disorders [65, 
68].

Side Effects and Adverse Events in MSCs 
Treatment

Several reviews have previously summarized the side effects 
and adverse events linked to MSCs transplantation [82, 83]. 
These reviews point out that although MSCs transplantation 
has shown great potential in several diseases, its applica-
tion still carries various risks [82, 83]. The side effects and 
adverse events may include immune rejection, fever, and 
cancer.

Autologous or allogeneic MSCs can be used for MSCs 
treatment. Autologous MSCs has advantage in reducing the 
risk of immune rejection. However, the donor’s health state 
may exert an influence on the therapeutic efficacy of MSCs. 
For example, inflammation caused by obesity can lead to 
reduced proliferative capacity in MSCs [54]. Furthermore, 
MSCs isolated from T2DM patients exhibit enhanced char-
acteristics such as apoptosis and autophagy, which may 
reduce their therapeutic efficacy [84]. Although MSCs lack 
major histocompatibility complex class II molecules, which 
makes them hypoimmunogenic and makes them commonly 
utilized in allogeneic MSCs treatment, some studies sug-
gest that allogeneic MSCs treatment can still induce immune 
response [2]. Fever represents a commonly observed adverse 
event after MSCs treatment, potentially associated with 
immune response [82]. Therefore, it is necessary to consider 
some strategies to reduce the potential immune response.

To perform gene editing and expand a sufficient number 
for transplantation, MSCs in vitro culture are often used. 
However, with the increase in the number of cell divi-
sions, the accumulation of mutations within the cells also 
increases, thereby elevating the risk of oncogenic mutations 
[85].

Although many studies have reported side effects associ-
ated with MSCs treatment, few studies on MSCs and exer-
cise combined treatment have reported such side effects. 
Future research should focus on whether MSCs and exercise 
combined treatment may elicit any side effects.

Future Research

Exercise is known to be an effective approach for improving 
obesity, as it leads to reductions in body fat mass, improve-
ments in insulin resistance, and alleviation of inflammation 
[28, 86, 87]. Under normal conditions, exercise has been 
shown to enhance the proliferation, differentiation, and 

migration of MSCs. However, it is also unknown whether 
exercise may have the potential to restore MSCs function 
impaired by inflammation under obese conditions. Further-
more, while weight loss through MSCs transplantation alone 
may be challenging, exercise has been demonstrated as an 
effective means to achieve this goal and enhance the quality 
of life in obese individuals [88]. Nonetheless, there remains 
a lack of research investigating the combined therapy of 
exercise and MSCs transplantation for improving obesity.

Conclusions

Exercise can impact the properties of MSCs through 
mechanical signaling. The improvement in proliferation, 
osteogenic differentiation, and homing of MSCs induced 
by exercise suggests potential for improving the homing 
efficiency of transplanted MSCs. However, conflicting 
research findings relate to various exercise protocols, origin 
tissue of MSCs, and cell culture protocols. More research 
is needed to determine the specific effects of exercise on 
MSCs, and for this purpose, experiments considering the 
differences between MSCs in vivo and in vitro should also 
be performed.

MSCs transplantation plays a pivotal role in treating bone, 
cardiac, and neurological disorders, and exercise serves as 
a factor to enhance that role. Exercise increased the hom-
ing efficiency of transplanted MSCs and promoted cytokine 
secretion, resulting in better therapeutic effects.

In obesity, the properties of MSCs change, leading to a 
propensity for adipose tissue differentiation. Despite these 
changes, MSCs transplantation has demonstrated efficacy in 
addressing obesity. Several studies have shown that improv-
ing blood glucose levels, dyslipidemia, insulin resistance, 
inflammation, and liver diseases without significant altera-
tions in body weight. Exercise represents another approach 
that can help improve the quality of life of obese patients, 
improve body weight, blood glucose, and dyslipidemia, and 
perhaps also enhance the effectiveness of obesity treatment 
along with MSCs transplantation. In the future, it will be 
necessary to confirm the treatment effect more clearly on 
obesity by combining exercise and MSCs transplantation.
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