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Abstract
Satellite glial cells (SGCs) that surround sensory neurons in the peripheral nervous system ganglia originate from neural 
crest cells. Although several studies have focused on SGCs, the origin and characteristics of SGCs are unknown, and their 
lineage remains unidentified. Traditionally, it has been considered that SGCs regulate the environment around neurons under 
pathological conditions, and perform functions of supporting, nourishing, and protecting neurons. However, recent studies 
demonstrated that SGCs may have the characteristics of stem cells. After nerve injury, SGCs up-regulate the expression of 
stem cell markers and can differentiate into functional sensory neurons. Moreover, SGCs express several markers of Schwann 
cell precursors and Schwann cells, such as CDH19, MPZ, PLP1, SOX10, ERBB3, and FABP7. Schwann cell precursors 
have also been proposed as a potential source of neurons in the peripheral nervous system. The similarity in function and 
markers suggests that SGCs may represent a subgroup of Schwann cell precursors. Herein, we discuss the roles and functions 
of SGCs, and the lineage relationship between SGCs and Schwann cell precursors. We also describe a new perspective on 
the roles and functions of SGCs.
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Introduction

Dorsal root ganglia (DRG) sensory neurons can transmit 
information about the location, type, and intensity of nox-
ious stimuli to the cerebral cortex via the spinal cord, and 
play an important role in the pain pathway [1–3]. Sensory 
neurons are surrounded by a layer of satellite glial cells 
(SGCs) that support, nourish, and protect these neurons [4]. 
It has been considered that under pathological conditions, 
SGCs regulate the environment around neurons through gap 
junctions or by releasing neuronal activity modulating fac-
tors, such as adenosine 5’-triphosphate (ATP), nitric oxide, 
and tumor necrosis factor-alpha (TNF-α) [3, 5–7]. Recent 
studies have demonstrated that following nerve injury, SGCs 
around the DRG sensory neurons upregulate nestin and sex-
determining region Y-box 2 (Sox2) expression, and differ-
entiate into neurons [3, 8]. Interestingly, several markers 
specific for Schwann cell (SC) precursors or SCs were also 
found to be expressed in SGCs [9, 10]. This review aims to 
provide an overview of changes that occur in SGCs follow-
ing nerve injury and the lineage relationship among SGCs, 
SC precursors, and SCs. Specifically, our review will help 
researchers focusing on the roles and functions of SGCs.
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Identification of SGCs

SGCs are located in the ganglia of the peripheral nervous 
system, such as DRG and trigeminal ganglion (TG), and 
wrap completely around the sensory neurons. Each SGC 
is separated from its parent neuron by a gap of approxi-
mately 20 nm [11, 12]. In general, several SGCs can form 
an SGC sheath enveloping each sensory neuron, which can 
slow down the diffusion of most substances, particularly 
large molecules [11]. Studies have shown that SGCs are 
connected to each other through gap junctions and express 
a variety of ion channels, such as inwardly rectifying  K+ 
channels (Kir), voltage-dependent outward  K+ channels, 
and small-conductance  Ca2+-activated SK3 channels [13]. 
These properties of SGCs are thought to give these cells 
the ability to control over the neuronal environment.

Till date, SGCs have been identified mostly based on 
their location, morphology, and the expression of a com-
bination of specific proteins, such as glutamine synthetase 
(GS), which is widely used to distinguish SGCs from other 
cell types in the DRG and TG both in vitro and in vivo [8, 
11, 14–17]. Recently, using single-cell sequencing, Avra-
ham et al. showed that GS mRNA is expressed in many 
cell types within the DRG [9]. However, GS protein is 
specifically expressed in SGCs [8, 9, 11, 18–22]. More-
over, several in vivo studies have also shown that only 
SGCs, but not SCs, express GS protein [11, 14, 18, 22, 
23]. Accordingly, DRG and TG derived cells that express 
GS protein were identified as SGCs [20, 24–28].

The reason why SGCs express GS protein may be that 
they can convert glutamate into glutamine and partici-
pate in the rapid removal of glutamate from the perineu-
ronal space by SGCs [13]. Studies have shown that SGCs 
express glutamate transporters, such as glutamate-aspar-
tate transporter (GLAST) and glial glutamate transporter 
(GLT-1), which are responsible for the uptake of glutamate 
released by neurons into the synaptic cleft [11, 12, 29]. 
Under the action of GS, glutamate is converted into glu-
tamine and released to the synaptic cleft. Then glutamine 
is returned to presynaptic terminals of neurons through 
glutamine transporters and converted back to glutamate 
to be reused [13]. Glutamate-glutamine cycle formed 
between neurons and SGCs can effectively prevent the 
cytotoxicity caused by a large accumulation of glutamate 
and realize the repeated recycling of glutamate.

S100 proteins are also expressed in SGCs; however, they 
are not considered as the ideal markers for SGCs because 
SCs also express these proteins [11]. Fatty acid bind-
ing protein 7 (Fabp7, also known as BLBP and BFABP) 
is expressed in astrocytes, radial glial cells and neuronal 
progenitors in the central nervous system [30]. It has been 
reported that Fabp7 can participate in neurogenesis as a 

positive regulator of proliferation in neural stem progenitor 
cells and is important for dendritic growth and neuronal syn-
apse formation as well as for astrocyte proliferation during 
reactive gliosis [31–33]. In the peripheral nervous system, 
Fabp7 is usually expressed in SC precursors and immature 
SCs [34–36] and participate in regulating Schwann cell-
axon interactions [37]. However, recent in vivo studies have 
shown that in adult mice, Fabp7 is a specific marker for 
SGCs and does not label SCs surrounding axons in the DRG 
or in the sciatic nerve [9]. Thus, in adult mice, Fabp7 can be 
used to identify SGCs. Considering that SGCs might rep-
resent a subpopulation of SC precursors (For details, see 
4. The close relationship between SGCs, SC precursors, 
and SCs) and that central nervous system injury most likely 
increases the immature state of cells in the adult, additional 
markers or morphology or location information are also 
needed to identify SGCs under pathological conditions.

Following nerve injury, glial fibrillary acidic protein 
(GFAP) protein expression is upregulated in SGCs, there-
fore, GFAP protein can also be used as a marker of SGCs 
under pathophysiological conditions [38–40]. In addition, 
Kir4.1, SK3, connexin 43, and endothelial PAS domain pro-
tein 1 (Epas1) can also be used as markers of SGCs [41].

Through Kir4.1 channel, SGCs can limit the extracellular 
levels of  K+ in the sensory ganglia to maintain the neuronal 
resting membrane potential and neuronal excitability [42]. 
Studies has shown that injury suppresses Kir4.1 function in 
SGCs, which may contribute to pain [43]. Reduced Kir4.1 
permeability likely depolarizes SGCs, inducing them to 
release excitatory mediators such as ATP that can activate 
the neurons. In the rat TG, specific silencing of Kir4.1 using 
RNA interference leads to spontaneous and evoked facial 
pain-like behavior in freely moving rats [44]. These findings 
suggested that a decrease in Kir4.1 expression after injury 
reduces  K+ buffering capacity of SGCs, raises extracellular 
 K+ concentration in the vicinity of neurons and thus results 
in depolarization and hyperexcitability of neuronal somata 
to give rise to chronic pain [13]. The results of immunohis-
tochemistry showed that SGCs express Kir4.1, whereas the 
neurons, blood vessel endothelial cells and SCs do not [44]. 
Thus, Kir4.1 can be used for SGC recognition under physi-
ological and pathophysiological conditions [44–48].

SK3 immunoreactivity is described in peripheral neurons, 
which leads to the controversy of SK3 as a specific marker of 
SGC in peripheral ganglia [49, 50]. However, according to the 
results of some studies, SK3 is a specific immunomarker of 
SGCs in vivo [14, 51]. Like Kir4.1 protein, SK3 is involved in 
either directly or indirectly, in potassium ion  (K+) buffering and 
can influence the level of neuronal excitability [51]. A recent 
study that induced trigeminal neuropathic pain in rats through a 
partial transection of the infraorbital nerve reported a decreased 
pain threshold, together with a lower expression of SK3 in the 
TG of the animals that underwent the infraorbital ligation when 
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compared to control group. In addition, administration of SK3 
channel agonist (CyPPA) could significantly improve the pain 
threshold, and the pain threshold decreased after administration 
of SK3 channel antagonist (Apamin) [52, 53]. These findings 
suggest that SK3 play a pivotal role in neuropathic pain and 
may be one of the potential targets for the treatment of neu-
ropathic pain. In all, SK3 can be used to mark SGCs under 
physiological and pathophysiological conditions [9, 14, 54].

Connexin 43, a gap junction protein expressed in SGCs 
has been shown to play an important role in several pain 
models [51, 55, 56]. Accumulating evidence demonstrates 
that after peripheral nerve injury, the expression of Connexin 
43 increased in SGCs [55, 57, 58], and blockade of the gap 
junctions formed by Connexin 43 resulted in alleviated pain 
response of the mice [46, 59]. At present, Connexin 43 is 
commonly used to indicate activated SGCs after nerve injury.

Epas1, also referred to as hypoxiainducible factor (HIF)2α, 
plays an important role in tumours [60]. Recently, Epas1 was 
found to be expressed in SGCs by using single-cell RNA 
sequencing. validation by RNAscope confirmed unique expres-
sion of Epas1 in DRG SGCs, but not in sciatic nerve [41]. This 
result indicates that Epas1, as a new marker of SGCs, can 
be used to identify SGCs. In conclusion, with the increasing 
research on SGCs, the specific markers for SGCs recognition 
will be constantly discovered, andthese specific markers enable 
us to better identify SGCs and investigate their functions.

Dynamics of Molecular Signaling in SGCs Following 
Peripheral Nerve Injury

Along with changes in neurons following injury to the 
proximal or distal part of the peripheral nerve, SGCs 
also undergo characteristic changes [12]. One noticeable 
change in SGCs following injury is an increase in GFAP 
expression. Under resting conditions, GFAP protein is 
expressed at low levels in SGCs, but the expression of 
this protein increases significantly following axonal dam-
age or inflammation [38–40, 61]. It has been reported 
that GFAP protein expression in SGCs peaks between 3 
and 6 h following carrageenin injection and returns to the 
basal level at 24 h, which coincides with the normalization 
of the mechanical nociceptive threshold [62]. GFAP can 
anchor the glutamate-aspartate transporter (Glast) to the 
plasma membrane of glial cells. Glast is responsible for 
the uptake of glutamate released by neurons into synaptic 
clefts so that glutamate can be converted into glutamine by 
the enzyme GS. Therefore, increased expression of GFAP 
in SGCs could be related to the rapid removal of the accu-
mulated glutamate from the perineuronal space to prevent 
its cytotoxic effects [12, 13].

Using 5-bromo-2′-deoxyuridine (BrdU) labeling 
combined with immunohistochemistry for SGC-specific 

proteins, researchers have demonstrated that SGCs pro-
liferate following nerve injury [54]. In accordance with 
this, studies showed that following oxaliplatin injection, 
the number of activated SGCs in the DRG significantly 
increases [63], and in the monoarthritis or collagenase 
arthritis model, the arthritic rats exhibit SGC activation 
and proliferation [64, 65]. Studies also showed that acti-
vated SGCs express high levels of brain derived neuro-
trophic factor (BDNF), p75, and fibroblast growth factor 
2 (FGF2) [4, 66]. It has been proposed that increased pro-
liferation along with increased expression of growth fac-
tors in SGCs following injury contribute to recovery and 
regeneration.

The mitogen-activated protein kinase (MAPK) pathway 
plays an important role in the initiation and maintenance of 
nociceptive responses in glia and neurons of the sensory gan-
glion. MAPK pathway includes three major proteins: extra-
cellular signal-regulated kinase 1/2 (ERK1/2), P38, and c-Jun 
N-terminal kinase (JNK) [42]. Accumulating evidence dem-
onstrates that nerve or spinal cord injury leads to the profound 
activation of MAPK signaling in SGCs [67]. In CFA-treated 
TGs, the expression levels of p-ERK, p-P38, and p-JNK 
were readily observed in SGCs. Almost no p-MAPKs were 
expressed on SGCs in the vehicle group, but the expression 
levels of p-MAPKs were significantly increased in the CFA 
group. Similarly, upregulation of p-ERK has been reported 
in SGCs in animal models of local inflammation of the dura 
mater, temporomandibular joint inflammation, and migraine 
[68–70]. MAPKs phosphorylation is associated with SGCs 
activation and increased production of interleukin-1β (IL-
1β) and TNF-α [16, 25]. It has been proposed that SGCs 
exhibit the features of inflammatory cells. Similar to mac-
rophages, SGCs can be activated by monocyte chemoattract-
ant protein-1 (MCP-1) through the CCR2 receptor to produce 
high levels of TNF-α and IL-1β [12]. These inflammatory 
cytokines released from the activated SGCs can enhance the 
excitability of neurons in the trigeminal ganglion, which in 
turn may promote the development and maintenance of oro-
facial allodynia/hyperalgesia [71–73].

In addition to the above-mentioned changes, there is a 
large significant increase in the expression of gap junction, 
decrease in Kir expression, enhancement in ATP release, 
and increase in P2XR and P2YR expression in SGCs fol-
lowing nerve injury [13, 42]. These characteristic changes 
affect the ability of SGCs to regulate the environment 
around neurons and give rise to chronic pain conditions.

SGCs have the Characteristics of Stem Cells

Recent evidence has added a new aspect to the functions 
of SGCs by showing that these cells have differentiation 
potential. In DRG explant culture, it has been observed 
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that a subpopulation of cells expressing nestin and p75 
protein migrate from these explants and have the ability to 
differentiate into glial cells, neurons, and smooth muscle 
cells in vitro. Further, BrdU pulse-chase analysis showed 
that these progenitors likely originate from SGCs [74]. 
In vivo studies also demonstrated that following peripheral 
nerve injury, the protein expression of nestin and Sox2 
increases in SGCs [75–77], and proliferating SGCs can be 
transformed into doublecortin-positive cells in the DRGs 
[78]. Similarly, it has been observed that chronic pain 
induces proliferation and upregulation of progenitor mark-
ers in the Sox2- and platelet-derived growth factor recep-
tor alpha (PDGFRα)-positive SGCs [8]. Moreover, data of 
BrdU-labeling and genetic fate mappings demonstrated a 
chronic pain-induced nociceptive neurogenesis in DRG 
from Sox2-positive SGCs [8]. In line with this, our previ-
ous study showed that DRG-derived SGCs highly express 
neural crest cell markers including nestin, Sox2, Sox10, 
and p75, and could differentiate into nociceptive sensory 
neurons in the presence of VPA, CHIR99021, RO4929097, 
and SU5402 [3]. Similar results were also found in TG 
derived SGCs (our unpublished results). These findings 
confirmed that SGCs indeed have differentiation potential.

Recently, using single-cell RNA sequencing and RNA 
scope, Segal et al. found that DRG-derived SGCs can be dis-
tinguished on the basis of high levels of Epas1, as this protein 
is not expressed in diverse SC types. Furthermore, Epas1 has 
also been defined as a top marker of DRG glial precursors. In 
fact, several genes that are highly expressed in DRG-derived 
SGC clusters are also highly expressed in DRG glial precur-
sors. These results suggest that DRG-derived SGCs retain the 
gene signature of DRG glial precursors [41].

As early as 2004, researchers proposed that SGCs have stem 
cell characteristics. The authors found a cell type of embry-
onic DRG of the PNS - the satellite cell - can develop into 
oligodendrocytes, SCs and astrocytes and proposed satellite 
cells of DRG are multi potential glial precursors [79]. Subse-
quently, evidence that SGCs express stem cell markers and can 
differentiate into neurons is also constantly being discovered. 
These evidences promote our further understanding of the roles 
and functions of SGCs, showing that SGCs not only have the 
functional properties of glia, but they could also play the role 
of stem cells under pathological conditions. However, we still 
know little about the mechanism of SGCs turning into neurons 
or even specific types of neurons. Strengthening research in 
this field will help us understand the mechanism of pathologi-
cal pain and treat sensory neuron related diseases (Fig. 1).

The Close Relationship Between SGCs, SC 
Precursors, and SCs

Besides SGCs, SCs are also a much-touted cell type with 
stem cell properties in the peripheral nervous system. 

Increasing evidence suggests that SC precursors and even 
adult SCs can give rise to several cell types including those 
of parasympathetic ganglia during neurodevelopment as well 
as after injury, highlighting the broad developmental poten-
tial of these cells [80–86]. Studies showed that SC precur-
sors, unlike SCs, die when separated from axons in vitro. 
It is traditionally believed that SC precursors, which are a 
transient population and dependent on axonal contact for 
survival, are specified during embryonic day 14 (E14) and 
E15 (mouse E12 and 13), and differentiate into immature 
SCs during E15-17 and mature SCs during perinatal stages 
[87–91]. At present, there is little evidence regarding the 
persistence of SC precursors after E17/18 in rats [92].

Studies suggest a close relationship between SGCs, SC 
precursors, and SCs. CDH19, MPZ, PLP1, SOX10, ErbB3, 
and FABP7 are specific markers for SC precursors and have 
been used to identify these cells [80, 88, 89, 92–95]. Based 
on the PLP1 or SOX10 promoter, many researchers have 
investigated the progeny of SC precursors in transgenic 
mice [80, 83, 96–100]. However, recent studies showed that 
these genes are also expressed in SGCs (Table 1) [8, 9, 101, 
102]. Egr2 (also known as Krox20) is expressed in boundary 
cap cells, immature SCs, and myelinating SCs, and is not 
expressed in SGCs in vivo [10, 103, 104]. Interestingly, Egr2 
is expressed in cultured SGCs [10, 102]. George et al. [18] 
showed that SGCs are transcriptionally, morphologically, 
and functionally identical to SCs. Considering that SGCs are 
multipotent, these studies suggest that SGCs might represent 
a subpopulation of SC precursors; however, a recent single-
cell RNA-sequencing study indicated that SGCs are molecu-
larly distinct from SCs [9]. Studies also suggest that SGCs 
adopt the morphology of SCs when cultured for extended 
period of time [18, 28] and SCs exhibit, to some extent, 
plasticity upon nerve injury [84, 92] raising an interesting 
possibility concerning the lineage of SGCs with respect to 
SC precursors or SCs.

The Origin of SGCs

It is well known that SGCs, sensory neurons, and SCs origi-
nate from neural crest cells (NCCs), a transient population in 
the embryo that can give rise to multiple cell types, includ-
ing most neuronal and all glial components of the peripheral 
nervous system (Fig. 1) [104, 105]. During sensory neuron 
development, multiple signaling pathways such as Wnt, 
FGF, and Notch, induce the expression of sensory neuron-
specific transcription factors including Ngn1, Ngn2, Brn3a, 
Isl1, Runx1, Shox2 and Runx3 in NCCs leading to their 
differentiation into nociceptive sensory neurons, mechanical 
sensory neurons, and proprioceptive neurons [3, 106, 107]. 
Moreover, during SCs development, NCCs differentiate into 
SC precursors and immature SCs before finally differentiat-
ing into myelinating and non-myelinating SCs [34, 89, 108]. 
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However, unlike the detailed understanding of the develop-
ment of sensory neurons and SCs, little is known about the 
development of SGCs.

Studies suggest there are two waves of peripheral gliogen-
esis during embryonic development. For SGCs development, 
the first wave is at E11 in mice. At this time, a fraction of 
SGCs is specified directly from the migratory NCCs [102, 

109]. Another source of SGCs is the boundary cap cells, 
which are also derived from NCCs. Boundary cap cells are 
found at E10.5 at the dorsal sensory entry point and the ven-
tral motor exit point, and give rise to the remaining fraction 
of SGCs at E12.5 [102, 104].

Evidence suggests that histone deacetylases1 and 2 
(HDAC1/2) are essential for differentiation of NCCs to 

Fig. 1  The development of satellite glial cells, Schwann cells and 
sensory neurons and molecular expression at the main development 
stages. Font colors are used for easier identification of markers that 

are expressed in several lineages. The embryonic stage (E) corre-
sponds to mouse development time
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SGC lineage. In mice, NCC-specific deletion of HDAC1/2 
leads to a strong reduction in Sox10 and Pax3 expression 
in NCCs along with the loss of SGCs and SC precursors in 
the DRG and peripheral nerves [109]. In NCCs, HDAC1/2 
bind to the Pax3 promoter and induce the expression of this 
transcription factor, which was required to maintain high 
Sox10 levels and trigger the expression of Fabp7. In addi-
tion, HDAC1/2 also activate P0 transcription by binding to 
the P0 promoter. Therefore, HDAC1/2 direct the specifica-
tion of NCCs to SC precursors and SGCs by controlling the 
expression of Pax3 and the concerted action of Pax3 and 
Sox10 on their target genes [102, 109].

The time of development of SGCs is slightly later than 
that of sensory neurons, but similar to that of SC precur-
sors. Although several studies have described the process 
and mechanism of neural crest specification into peripheral 
glia, the focus of description has always been SC lineage, 
and very few studies have paid close attention to the devel-
opment of SGCs. Considering the increasing evidence that 
SGCs have stem cell characteristics and are similar to SC 
precursors, it is necessary to investigate the SGC lineage in 
the future (Table 1).

Conclusion

SGCs are the most important type of glial cells in the 
sensory ganglion. Following nerve injury, SGCs undergo 
a series of changes, leading to their proliferation, high 
expression of neurotrophins and cytokines, and activation 
of MAPK kinases. Activated SGCs regulate the environment 
around neurons, and participate in the repair process. It has 
been suggested that SGCs may have the ability to replenish 
damaged neurons, which expands the role of these cells. 
With the application of single-cell sequencing technology to 
SGCs, researchers have explored the characteristics of SGCs 
and the differences between SGCs and SCs. These studies 
have undoubtedly advanced our understanding of SGCs. 

However, based on present literature, it is still impossible 
to distinguish SGCs from SC precursors. Although several 
studies have focused on SGCs, the origin and nature of these 
cells remain unclear, and their lineage remains uncharacter-
ized. Further investigation is required to establish a criteria 
for distinguishing SGCs from SC precursors and SCs, and 
to determine the lineage of SGCs.
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