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Abstract
Vascularization is a major hurdle in complex tissue and organ engineering. Tissues greater than 200 μm in diameter cannot rely
on simple diffusion to obtain nutrients and remove waste. Therefore, an integrated vascular network is required for clinical
translation of engineered tissues. Microvessels have been described as <150 μm in diameter, but clinically they are defined as <1
mm.With new advances in super microsurgery, vessels less than 1 mm can be anastomosed to the recipient circulation. However,
this technical advancement still relies on the creation of a stable engineered microcirculation that is amenable to surgical
manipulation and is readily perfusable. Microvascular engineering lays on the crossroads of microfabrication, microfluidics,
and tissue engineering strategies that utilize various cellular constituents. Early research focused on vascularization by co-culture
and cellular interactions, with the addition of angiogenic growth factors to promote vascular growth. Since then, multiple
strategies have been utilized taking advantage of innovations in additive manufacturing, biomaterials, and cell biology.
However, the anatomy and dynamics of native blood vessels has not been consistently replicated. Inconsistent results can be
partially attributed to cell sourcing which remains an enigma for microvascular engineering. Variations of endothelial cells,
endothelial progenitor cells, and stem cells have all been used for microvascular network fabrication along with various mural
cells. As each source offers advantages and disadvantages, there continues to be a lack of consensus. Furthermore, discord may
be attributed to incomplete understanding about cell isolation and characterization without considering the microvascular archi-
tecture of the desired tissue/organ.
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Introduction

One of the aims of tissue engineering is to create replacement
parts for damaged tissue and organs. This achievement would

have profound clinical implications, especially in the disci-
plines of reconstructive surgery, transplant medicine and vas-
cular surgery. Over 110,000 patients are currently waiting for
an organ transplant and thousands of others could benefit from
a vascularized composite allograft [1]. However, clinical
translation of engineered tissue has been limited by the insuf-
ficient diffusion of oxygen and nutrients [2] into the graft. At
diffusion distances greater than 150–200μm, tissue constructs
without a perfusable vascular network undergo rapid cell
death and necrosis [3]. Therefore, in order to achieve success-
ful implantation, the engineered replacement mandates rapid
perfusion and integration with the recipient vasculature [4].
This typically requires a surgical anastomosis between the
vascularized construct and recipient vasculature. Parameters
such as size of the vascular connection and perfusion rate can
affect patency [5]. Therefore, an engineered construct that
contains a vascular tree from the capillary level (~5 μm diam-
eter) to one that permits surgical anastomosis (~1 mm diame-
ter) wound be welcomed. Advances in microvascular engi-
neering would also be embraced by any medical or surgical
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field in which microvascular dysfunction is present, such as
diabetic retinopathy [6], microvascular myocardial angina [7],
and critical limb ischemia. For example, it is estimated that
1% of Americans over 50 years will develop critical limb
ischemia [8]. While surgical advances have reduced the inci-
dence of patients that ultimately require amputation, they are
not feasible in all situations. This is particularly true when the
blood flow limiting pathology occurs in the microvascular
segment, as typically seen in diabetic patients [9].

Current approaches for vascularization rely on a variety of
cell sources and approaches [10], with endothelial cells (EC)
being a foundation. However, as ECs are significant in the
rejection of allografts [11], it is imperative that cells used for
microvascular engineering are compatible with the planned
recipient. Therefore, cell sourcing must account for immuno-
genicity, in addition to other factors such as ease of isolation,
reliable characterization, and vasculogenic/angiogenic poten-
tial. This has led to the investigation of mature endothelial
cells, endothelial progenitor cells (EPCs), and other stem cell
sources for the formation of microvascular networks in tissue
engineered constructs and the treatment of critical ischemia.

Microvascular Development, Angiogenesis,
and Revascularization

Embryologically, vascular development occurs through the
processes of vasculogenesis and angiogenesis (Fig. 1) [12] .
Vasculogenesis is the process of vessel formation in the early
stage of development during which de novo blood vessels are
formed from endothelial progenitor cells [13]. The lateral and
posterior mesoderm in the gastrulating embryo express vascu-
lar endothelial growth factor receptor-2 (VEGFR2), the recep-
tor for VEGF, which is the most crucial signal for embryonic
vascular formation [14]. This receptor tyrosine kinase is
encoded by the KDR (kinase insert domain receptor) gene,
which is also known as fetal liver kinase-1 (FLK-1). The
VEGFR2 expressing cells cluster to form hemangioblastic
aggregates [15]. The peripheral cells (angioblasts) flatten

and differentiate into ECs, while the central cells form hema-
topoietic precursors. These progenitor cells migrate in re-
sponse to endoderm derived signals, such as FGF (fibroblast
growth factor) and BMP4 (bone morphogenic protein), to the
sites of vascularization [16]. Following this, the ECs rapidly
anastomose to form capillaries/primary vascular plexus and
serve as a scaffold for the circulation. After the onset of heart-
beat and blood flow, the capillary plexus is rapidly remodeled
into a functional circulatory system [14]. Angiogenesis begins
on embryonic day 8.5 in the mouse yolk sac [17, 18] and
occurs through a coordinated series of events where vascular
sprouts grow from specialized endothelial “tip cells” in re-
sponse to angiogenic stimuli [19]. Initially, local destruction
of the basement membrane occurs, followed by sprouting,
proliferation, and alignment of endothelial cells into a tube.
Angiogenesis is responsible for vascular remodeling through
both sprouting and intussusceptive mechanisms with VEGF
maintaining a critical role. Once the definitive vascular net-
work is established, ECs remain quiescent until physiological
or pathological events occur that require neovascularization.
Neovascularization is achieved by both vasculogenesis
(EPCs) and angiogenesis (adult ECs) [20] through gene ex-
pression, transcriptional factors, and microRNA (miRNA)
regulation. Growth factors, cytokines and proteins play a ma-
jor role in endothelial differentiation (Table 1; Figure 2) with
VEGF and it’s receptors (VEGFR1 and VEGFR2) indispens-
able for blood vessel development and remodeling [46].
However, numerous signals/proteins are involved including
Notch, Ephrin, Sonic hedgehog, and angiopoietin (Ang)-Tie.
Notch signaling regulates both cellular proliferation and de-
velopment, and in association with delta-like 4 (Dll4) modu-
lates sprouting angiogenesis [47] via tip cells [48]. Ang-Tie is
an EC specific signaling system that is necessary in both em-
bryonic vascular development and regulation of postnatal an-
giogenesis [49]. Transcription factors regulate these critical
gene expressions to modulate angiogenesis (Table 2). The
ETS (E26 transformation-specific) transcription factor family
plays a significant role in angiogenesis by targeting genes
such as von Willebrand factor (vWF), Endoglin, Ang-Tie,

Fig. 1 Vasculogenesis and angiogenesis: Two distinct mechanisms of blood vessel formation. Vasculogenesis gives rise to the primitive vascular plexus
during embryogenesis. Stimulated by tumors and hypoxic conditions, angiogenesis remodels and expands the vascular network [12]
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VEGFR2, eNOS (endothelial nitric oxide synthase), and VE-
cadherin [72]. For example, the ETS transcription factor Erg is
required for endothelial tube formation through its association
with VE-cadherin [36].

Gene expression is also controlled by miRNAs, which are
small non-coding RNA molecules containing approximately
17-25 nucleotides that negatively regulate gene expression
either by reducing translational efficiency or transcript degra-
dation. A singlemiRNA has the ability to regulate hundreds of
genes and affect the downstream transcriptome and proteome.
Therefore, they have a profound ability to affect multiple bi-
ological processes, such as development, differentiation and
growth. Recent studies have highlighted their involvement in
vascular development (Table 3), with many studies focusing
on their involvement in the VEGF signaling pathway.
MicroRNAs affect vascular development by playing substan-
tial modulatory roles, both at the ligand level and further
downstream through intracellular signaling pathways, such
as phosphoinositide-3-kinase (PI3K) and MAPK/ERK [87].
Their importance in embryonic angiogenesis has further been
verified though Dicer-knockout mice which die mid-gestation
[88]. However, miRNA involvement has also been suggested
in post-natal vascular pathologies, including critical limb is-
chemia. Spinetti et al. have suggested that miRNA-15a and
miRNA-16 impair circulating proangiogenic cell function and
are increased in patients with critical limb ischemia [89].
Additionally, the authors further demonstrated that ex vivo
inhibition of these miRNAs improved post-ischemia blood
flow and muscular arteriole density in a murine model of
critical limb ischemia [89]. Therefore, it is not surprising that
miRNA modulation has emerged as a technology to facilitate
vascular engineering [90], both in vivo and ex vivo. However,
as the vascular system is diverse in size, architecture, and

functionality, multiple engineering approaches may need to
be considered in a coordinated fashion Table 4.

Histology and Anatomy

The vasculature can be apportioned between the microvascu-
lature and the macrovasculature. The microvasculature cannot
be seen with the naked eye and is typically defined anatomi-
cally as having a luminal diameter <150 μm and functionally
as regulating the total peripheral resistance in the vascular tree
[102]. This includes arterioles, capillaries, and venules.
Arterioles originate from arteries to arborize into capillaries
which coalesce into venules that drain into veins. All constit-
uents of the vascular tree are lined by endothelial cells (tunica
intima) with varying degrees of stromal cells. Arterioles (100
to 300 μm diameter) have muscular walls (tunica media) that
consist of a few layers of smooth muscle cells surrounded by a
collagen layer (tunica adventitia). Capillaries (5 to 10 μm
diameter) only have a single EC layer without any other dis-
tinct layers. This allows efficient material exchange between
the blood and interstitium. Venules (7 μm to 1 mm diameter)
contain a middle layer of muscle/elastic tissue and an outer
layer of connective tissue. The ECs in capillaries and venules
are enveloped by pericytes which are located in the basement
membrane. Pericytes regulate microvascular morphogenesis
and homeostasis while exhibiting some mesenchymal stem/
progenitor cell functionality [103]. However, these cellular
behaviors and interactions are also profoundly affected by
the surrounding extracellular matrix (ECM).

The ECM is a structural support system that provides a
matrix for cell adhesion and serves as a storage depot for
growth factors [104]. Therefore, it is not surprising that it

Table 1 Proteins described in the literature that play important roles in
angiogenesis, sprouting, and vascular development.The coordinated
action of these proteins are essential in the regulation of both
vasculogenesis and angiogenesis. #For example, during the early stages

of sprouting angiogenesis the secretion of VEGF from tissues results in
KDR activation in nearby vessels. The endothelial cell exposed to the
highest concentration of VEGF becomes a Btip cell^ followed by the
expression of DLL4 and Notch

Proteins References Role

VEGF [19, 21] Angiogenesis, Sprouting, Vascular Development

VEGFR1, VEGFR2 [22–24] Angiogenesis, Sprouting

Tie1, Tie2 [25–27] Angiogenesis, Sprouting, Vascular Development

ID3 [28] Angiogenesis, Sprouting

eNOS [29, 30] Angiogenesis, Sprouting,

AKT1 [31–33] Angiogenesis, Sprouting, Vascular Development

CD31 [34, 35] Angiogenesis

VE-Cadherin [36, 37] Angiogenesis, Sprouting

Notch, DLL4 [38, 39] Inhibits angiogenesis

KDR/Flt1 [40, 41] Angiogenesis, Vascular Development, Sprouting

ANGPT1 [33, 42, 43] Angiogenesis, Sprouting

ANGPT2 [44, 45] Vascular Development, Sprouting
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plays a large role in coordinating the angiogenic process
through pro- and anti-angiogenic factor regulation , matrix-
degrading proteases, and cell-ECM interactions [105]. The
ECM is synthesized by fibroblasts and includes structural pro-
teins (e.g. collagen), adhesive glycoproteins (e.g. fibronectin,
laminin), glycosaminoglycans (e.g. hyaluronan), and proteo-
glycans (e.g. heparin sulfate) [104, 105]. It can broadly be
subdivided into the interstitial matrix and the extracellular
basement membrane, with the former consisting of collagen,
fibronectin, elastin, and proteoglycans and the latter consisting
of collagen IV, laminin, entactin, and heparin sulfate which
binds to VEGF [106]. These ECM molecules/fragments can
function in either a pro-angiogenic (e.g. collagen I, fibronec-
tin, laminin-1) or anti-angiogenic fashion (e.g. arresten,
endostatin) [106]. Angiogenesis occurs in ischemic tissues
when oxygen sensing mechanisms detect a level of hypoxia
that requires new blood vessel formation to satisfy metabolic
demands. The most common form occurs in stages through a
sprouting mechanism (Fig. 3) as follows: enzymatic degrada-
tion of the capillary basement membrane, endothelial cell pro-
liferation, directed migration, tubulogenesis, vessel fusion;
and pericyte [107], smoothmuscle, and fibroblast stabilization
[108]. This coordinated activity is orchestrated by the me-
chanical forces in the ECM along with cell-cell and cell-ma-
trix interactions, bound proteins, and soluble growth factors.
For example, αVβ3 integrin present on ECs allows for bind-
ing to ECM vitronect in which augments the EC

responsiveness to soluble factors, such as VEGF [104]. This
intricate interplay allows for varied angiogenic responses de-
pending on the initiating factors and anatomic site.

Variability in the microcirculatory bed across different tis-
sues and organs is secondary to differences in cellular compo-
sition leading to adaptable physiology. For example, the mi-
crocirculation of the skin is distinct from that seen in the pan-
creatic islets as the skin microvasculature contains a large
number of post-capillary venules that aid in preventing un-
wanted external elements from entering the body and thermo-
regulation [109]. The endocrine pancreatic islets are arranged
around a central capillary that allows blood to first pass
through centrally located β-cells and initiate an insulin re-
sponse to circulating glucose prior to encountering α-cells
and δ-cells that are responsible for appropriate counter-

Table 2 Key transcription factors
described in the literature that
play important roles in
angiogenesis, sprouting and
vascular development .The
discovery of genes important in
vasculogenesis and angiogenesis
has enabled the identification of
transcriptional mechanisms
required for their expression

Transcription Factors References Role

HIF-1α [50] Angiogenesis

SP-1 [50] Angiogenesis

ETS family: ETV2, TEL, ETS1, ETS2, FLI1, ERG, ELF1,
NET, NRF2/GABP, ELF2/NERF2, ELF3/ESE1

[36, 51–63] Endothelial Differentiation

Angiogenesis, Sprouting

NF-κB [64] Angiogenesis

SCL/tal-1 [65] Vascular Development

FOXO1 [66] Angiogenesis

FOXO3a [66] Angiogenesis

Vezf1 [67] Endothelial Differentiation

MEF2 [68] Vascular Development,
Sprouting

HESR1 [69] Endothelial Tube Formation

NPAS4 [70] Sprouting

HoxB5 [71] Sprouting

Table 3 Key miRNAs described in the literature involved in
angiogenesis, sprouting and tube formation. Improved understanding of
vascular development has allowed for the identification of miRNAs
involved in RNA silencing and post-transcriptional gene regulation

miRNAs References Role

miR-1224 [73] Angiogenesis

miR-93 [74] Tube formation

miR-505 [75] Angiogenesis

miR-329 [76] Inhibits angiogenesis

miR-126 [77, 78] Vascular integrity and angiogenesis

miR-130a [79] Angiogenesis

miR-210 [80] Tube formation

miR-296 [81] Angiogenesis

miR-221, miR-222 [82–84] Inhibits tube formation

miR-17-92 [81] Angiogenesis

miR-27b [85] Angiogenesis

Let-7b [86] Angiogenesis

�Fig. 2 STRING analysis of functional protein association networks
in vasculogenesis: Key proteins and transcription factors that are
involved in vasculogenesis were identified by a literature search.
Protein-protein interactions were evalauted using STRING analysis.
The interactions between proteins and transcriptional factors within major
Biological Processes (GO) such as vasculature development (blue color),
blood vessel development (red color) and morphogenesis (green color)
are highlighted
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regulatory hormone secretion [110]. These subtle differences
in microvascular anatomy and cell subtype are paramount in
the regulation of blood flow to diverse tissues and organs.
Therefore, specific cellular starting materials will be required
to generate the desired microvascular bed for the engineered
replacement tissue.

Cell Source and Type

ECs and mural cells (pericytes and smooth muscle cells) are
the mainstay of engineering strategies, as they play essential
developmental roles of the vascular tree [111]. However, var-
ied cell sources have been utilized with each having innate
advantages and disadvantages in microvascular network
assembly.

Endothelial Cells

ECs typically express von Willebrand factor, vascular endo-
thelial (VE)-cadherin, and platelet endothelial cell adhesion
molecule-1 (PECAM-1/CD31) [112]. They are instrumental
in diapedesis, vascular tone, and smooth muscle cell prolifer-
ation [113]. As they are ubiquitous to the entire vascular tree,
they have been investigated extensively for in vitro vascular
engineering. It has long been appreciated that vascular graft
failure is mediated by platelet initiated thrombosis and miti-
gated by an intact EC monolayer [114]. However, grafts less
than 6 mm are still unreliable and not routinely used in clinical
practice [115]. This limitation is problematic for the develop-
ment of engineered and immediately perfusable tissues as they
require the integration of vessels ranging from 5 μm to 1 mm
to permit both physiologic functionality and the ability for
surgical anastomosis. However, there have been substantial

Table 4 Representative studies of human derived cellular starting materials for microvascular engineering applications/investigations. Adult ECs along
with multipotent and pluripotent stem cells have been cultured in various scaffolds and conditions to demonstrate in vitro and in vivo possibilities

Cell Type Cell Source Phenotype Scaffold In vitro/in vivo outcome Ref

ECs Umbilical Cord CD31, VE, vWF Matrigel Angiogenesis-promoting effect of thrombin in vivo and the
induction by thrombin of the angiogenic phenotype of
endothelial cells in vitro in the absence of other cell types
such as smooth muscle cells, pericytes, and inflammatory cells.

[91]

Fibrin HUVECs/fibroblast loaded fibrin or collagen-fibrin
composite microbeads, authors demonstrated that
endothelial networks formed with anastomosis between
microbeads.

[92]

Dermal CD31 PLLA Matrigel Differentiated into functional microvessels within 7 to 10
days in SCID mice. Became invested by perivascular
smooth muscle α-actin–expressing mouse cells 21 days
after implantation.

[93]

ESCs Peripheral Blood PECAM-1 Matrigel After six passages, cells displayed CD34 and FLK-1
markers. After a week of animal implantation an ESC-EC
coated scaffold integrated with the host vasculature and
had evidence of perfusion.

[94]

PLLA PLGA Addition of embryonic fibroblasts increased the levels of
vascular endothelial growth factor expression in the
construct and prevascularization improved
vascularization, blood perfusion and survival of the
constructs after implantation.

[95]

iPSCs Fibroblasts Reprograming using
Oct3/4, Sox2, Klf4,
and c-Myc

Matrigel iPSC derived ECs demonstrated CD31, VE-Cadherin, and
endothelial nitric oxide synthase (eNOS) similar to
HUVECs but with increased CD34 and CD133
expression.

[96]

Fibrin iPSC-ECs formed mature capillary-like vessels, however,
they revealed a five-fold reduction in capillary network
creation when compared to HUVECs.

[97]

PEG PEG hydrogels functioned as a synthetic ECM and allowed
for stable capillary lumens over a two-week period.

[98]

EPCs PB CD34 Collagen Fibronectin Network formation and cord-like structures in vitro. [99]
BM CD133, CD34, VEGFR2,

VE-cadherin, E-selectin,
and vWF

Fibronectin Enhanced angiogenesis when co-cultured in the presence of
mesenchymal stem cells.

[100]

Adipose CD31, CD34, VEGFR2 Matrigel Adipose derived EPCs (adEPCs) formed capillary-like
structures in Matrigel and enhanced the capability of
HUVECs to form capillary-like tubes.

[101]
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advances in in vitro microvascular engineering, especially
with the generation of prevascularized tissues. Both
macrovascular and microvascular endothelial cells have been
utilized for this purpose. Differences do exist between them
and are further amplified depending on the tissue source. As
such, macrovascular cells include those originating from the
pulmonary artery, coronaries, aorta, saphenous vein, umbilical
cord, and dermis. Likewise, microvascular cells from virtually
all these locations are available as well. Human umbilical vein
endothelial cells (HUVECs) are the most widely used type of
macrovascular cell for the purpose of forming a
neovasculature. HUVECs have been demonstrated to undergo
self-assembly into capillary structures in a variety of studies,
especially when used in the presence of a basement-mem-
brane matrix, such as Matrigel [91]. Although Matrigel is
useful for microvascular engineering and study, its disadvan-
tages are its sarcoma cell origin and lot-to-lot variability [116].
These factors may limit its potential for clinical translation and
other scaffolds have been established using HUVECs.
Nakatsu et al. described a fibrin gel based bead assay where
Cytodex (Sigma-Aldrich, St. Louis, MO) beads were coated
with ECs prior to being embedded in a fibrin gel that was
subsequently coated with fibroblasts [117]. The fibroblasts
provide the soluble factors that allow for angiogenesis. This
model has been replicated with various EC and feeder cell
sources and has been used extensively in the study of micro-
vascular engineering. Rioja et al., described a modular ap-
proach to microvascular engineering where HUVECs/fibro-
blast loaded fibrin or collagen-fibrin composite microbeads
were embedded in a fibrin hydrogel (Fig. 4a) [92]. The authors
demonstrated that endothelial networks formed and anasto-
mosis between microbeads was established. However, in or-
der to recapitulate the desired native microvascular anatomy, a

patterning strategymay need to be employed that can optimize
incorporation and physiologic function. Baranski et al., uti-
lized a micropatterning technique to organize HUVECs into
cords which following implantation acted as a guide for cap-
illary formation [119]. When implanted with hepatocytes,
prevascularized constructs with cords integrated and survived
better than constructs that had randomly organized microvas-
cular networks [119] . However, even with this approach it
takes 5 to 14 days for mature capillaries to develop, which is
still suboptimal to prevent necrosis of the innermost cell mass.
Angiogenic integration of a prevascularized construct follow-
ing implantation still requires progression through several
stages as follows: enzymatic degradation of the capillary base-
ment membrane, endothelial cell proliferation, directed migra-
tion, tubulogenesis, vessel fusion, and pericyte stabilization
[107]. Specifically, the initial step of angiogenesis is con-
trolled ECM degradation by matrix metalloproteinases
(MMPs) that are secreted by ECs and other cells. As angio-
genesis occurs in the microvasculature, differences in the ex-
pression of MMPs has been demonstrated between microvas-
cular and macrovascular ECs, with substantially more MMP9
being secreted by microvascular cells [120]. Therefore, it may
be worthwhile to revascularize grafts with microvascular cells
to hasten angiogenic integration. It is also known that micro-
vascular cells are critical to the formation of new blood vessels
through sprouting mechanisms and may not require exoge-
nous pro-angiogenic growth factors when used in specific
co-cultures [121]. This may have significant implications for
engraftment and rapid perfusion of prevascularized tissues
upon implantation. Dermal microvascular endothelial cells
(DMVECs) represent a type of microvascular cell that have
been used extensively [93]. However, there have been con-
cerns that mature ECs lack significant regenerative potential

Fig. 3 Sprouting angiogenesis: After stimulation with angiogenic
factors of a quiescent vessel (a), basement membrane degradation,
pericyte detachment, and loosening of endothelial cell junctions occur
(b). Endothelial cells begin to proliferate, migrate, and take part in

forming an immature capillary structure and depositing a new basement
membrane (c). Finally, pericytes are recruited thereby providing
stabilization of the new vessel (d) [106]
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[122], autologous sources may be problematic to obtain in
ample quantities, and that phenotype expression is tissue de-
pendent [123, 124]. These concerns have prompted the exam-
ination of other cell sources for microvascular engineering.

Embryonic Stem Cells

Embryonic stem cells (ESCs) were first reported in the mouse
in 1981 followed by identification in humans in 1998 [125,
126, 127]. ESCs are located in the inner cell mass of the
embryo [126] and are true pluripotent stem cells. As such,
they can proliferate indefinitely and differentiate into any cell
type while imparting low immunogenicity. These characteris-
tics makes them especially appropriate for tissue engineering
strategies, including microvascular replacement [128].
Levenberg et al., described the differentiation of human
ESCs into endothelial cells in 2002 [94]. Following the for-
mation of embryoid bodies (EBs), cells expressing PECAM-1
were isolated and sorted. After six passages, cells displayed
CD34 and FLK-1 markers similar to that seen in HUVECs.
Cords with lumens developed following seeding onto
Matrigel. Furthermore, after a week of animal implantation
an ESC→EC coated scaffold integrated with the host vascu-
lature and had evidence of perfusion [94]. In a follow-up study
the same group utilized ESC derived ECs to engineer
vascularized skeletal muscle [95]. This was accomplished by
co-culturing human ESC→ECs with mouse skeletal myoblast

cells and mouse embryonic fibroblasts on a highly porous,
biodegradable polymer scaffold. It was shown that the addi-
tion of fibroblasts increased the expression of VEGF and pro-
moted microvessel stability following a month-long in vitro
culture. Animal implantation demonstrated vigorous anasto-
mosis with the host vasculature which was similar to that seen
with HUVECs. Most interestingly, the vessels were complete-
ly integrated with the differentiating skeletal muscles fibers
[95]. While the therapeutic advantages of ESCs are sizable,
it is unfortunate that their downsides may be greater. The
mechanisms that regulate ESC pluripotency and differentia-
tion are still poorly understood with the contribution of vari-
ous transcription factors, cofactors, chromatin regulators, and
noncoding RNAs still imprecise [129]. Additionally, as ESCs
are derived from the inner cell mass of a pre-implantation
embryo, there are significant ethical concerns with cell retriev-
al. These considerations significantly hinder the potential for
clinical translation. As such, other stem cell and progenitor
cell sources are continuously being explored.

Induced Pluripotent Stem Cells

Advances in cellular reprograming has led to the detection of a
noteworthy alternative cell source for therapeutic vasculariza-
tion, induced pluripotent stem cells (iPSCs). iPSCs have the
capacity for pluripotency and self-renewal, much like ESCs
[130]. When initially described by Yamanaka in 2006, they

Fig. 4 Various cell sources for
microvascular engineering:
Microvascular bioengineering
from various cell types: a
HUVECs labeled with UEA-1
(red) were loaded onto
microbeads (green) and
demonstrated sprouting at 14 days
[92], b iPSC→ECs were cultured
for 3 days on PEG hydrogels and
stained for CD31 (green), VE-
Cadherin (red) and DAPI (blue)
[98], c human adipose derived
EPCs (CD34+/CD31-) loaded
with CellTracker Red (Thermo
Fisher, Eugene, OR) cultured on a
3D collagen gel demonstrating
tube formation at 24 hours (our
laboratory unpublished work) and
d cross section of microvascular
fragments seeded onto a porous
scaffold and stained with
hematoxylin and eosin [118]
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were generated frommouse embryonic or adult fibroblasts (so-
matic cells) through the introduction of four transcription fac-
tors; OCT 3/4, SOX2, KLF4, and c-MYC via integrative ret-
roviral delivery [130, 131]. The subsequent year, production
using human fibroblasts was described using the same tran-
scription factors [132], while a separate group used OCT4,
NANOG, SOX2, and LIN28 [133] for reprogramming. These
early efforts were hampered by low reprogramming efficiency,
viral integration, and severe genomic modifications [134].
However, since then programming efficiency has been im-
proved and the use of DNA-free vectors [135], non-integrating
vectors, or vector excision has mitigated the incorporation of
viral transgenes [136], improving safety. As such, the use of
iPSCs has expanded across multiple disciplines, including mi-
crovascular engineering. Ikuno et al., utilized human iPSC
lines for differentiation into endothelial cells. The authors uti-
lized a 2D monolayer serum-free culture system and ordered
differentiation using stage-specific stimulation with VEGF and
cAMPwhile removing non-responder cells early in the process
[96]. iPSC derived ECs demonstrated CD31, VE-Cadherin,
and endothelial nitric oxide synthase (eNOS) similar to
HUVECs but with increased CD34 and CD133 expression.
CD34 and CD133 are markers of both ECs and multipotent
progenitor cells; therefore, it is not surprising that they were
expressed on iPSC derived ECs. Additionally, these cells ex-
hibited tube forming ability and morphology similar to the
gold-standard HUVECs [96] when cultured on Matrigel.
However, their propensity for capillary morphogenesis has also
been evaluated in fibrin-based scaffolds. Bezenah et al.,
employed a coated bead approach to assess the ability of
iPSC→ECs to form microvascular networks in fibrin 3D cul-
ture in the presence of fibroblasts [97]. However, the authors
discovered that although iPSC→ECs formed mature capillary-
like vessels they also a revealed a five-fold reduction in capil-
lary network creation when compared to HUVECs. The au-
thors concluded that differences in EC phenotypes must be
better understood, especially when considering iPSCs for clin-
ical use [97]. Zanotelli et al., encapsulated human iPSCs de-
rived ECs in peptide-functionalized polyethylene glycol (PEG)
hydrogels to engineer a microvascular network in vitro using
either well-culture or a microfluidic device (Fig. 4b) [98]. The
PEG hydrogels functioned as a synthetic ECM and allowed for
stable capillary lumens over a two-week period. The in vitro
differentiation of iPSCs to ECs has been described using a
variety of selective medias [137] and platforms. For example,
Kurokawa et al., have shown microvascular development in an
organ-on-a-chip platform using iPSC→ECs and polydimethyl-
siloxane [138].

Adult Stem Cells

For decades angiogenesis through vascular sprouting and in-
tussusception followed by vascular myogenesis was believed

to be the sole mechanism for the development of new vascular
networks [139]. Since the 1930s, endothelial/capillary-like
formations were observed in leukocyte cultures [140]; these
and other reports suggested uncharacterized circulating pre-
cursor cells with roles in blood vessel formation. In 1997,
Asahara et al., described the first putative isolation of bone-
marrow derived, circulating endothelial progenitor cells from
human peripheral blood using surface marker CD34 and a
polyclonal antibody to endothelial cell marker VEGFR-2
[141]. Since then, EPC isolation has been widely reported
from human and other animal sources, including bonemarrow
and adipose tissue (data from our lab; Fig. 4c and Fig. 5).
However, despite great interest and ongoing work, significant
controversy has surrounded the precise definition and function
of EPCs. It is now widely accepted that EPCs represent het-
erogeneous cells that exhibit differing functions depending on
isolation and culture methodology. A comprehensive account
of this still unfolding story and specific cell makers is left to
dedicated reviews [140, 141, 142–155]. The acknowledged
CD34+/VEGFR-2+ EPC initially isolated by Asahara incorpo-
rated en-masse into sites of neovascularization due to induced
ischemia, whereas CD34-/VEGFR-2- cells only rarely incor-
porated [140]. By 2000, Gehling et al., reported that CD133+

cells from granulocyte colony stimulating factor-mobilized
peripheral blood differentiated to exhibit various endothelial
markers when cultured with VEGF and stem cell growth fac-
tors [156], implicating CD133 as a strong selective marker for
EPC identification. Also, in 2000, Peichev et al., reported that
a small subset of CD34+/AC133+/VEGFR-2+ cells were
found in several different hematopoietic sources. When incu-
bated with VEGF, FGF-2, and collagen, these cells differenti-
ated into CD133-/VEGFR-2+ mature endothelial cells, sug-
gesting that EPCs with angioblast potential may be marked
selectively through CD133 [157]. In 2005, Romagnani et al.,
reported CD34+ cells also expressing either CD133 or CD14
additionally express embryonic stem cell markers Nanog and
Oct-4. Accordingly, they proliferated in response to stem cell
growth factors, and could differentiate into endothelial cells,
adipocytes, osteoblasts, and neural cell lineages [158]. To
date, there is no exclusive EPC marker, and it is impossible
to differentiate immature EPCs from primitive hematopoietic
stem cells due to overlapping surface markers [140].
However, ‘early’ EPCs and ‘late’ EPCs have been distin-
guished, with the former being spindle-shaped with peak cul-
ture growth at 2-3 weeks and secreting many angiogenic and
neuroregulatory cytokines prior to dying after approximately
four weeks in culture. These ‘early’ EPCs have been charac-
terized as being myeloid angiogenic cells – hematopoietic
lineage and the ‘late’ cells being endothelial colony forming
cells (ECFC) [155]. ECFCs appear as cobblestone-shaped
cells after 2-3 weeks in culture which can be maintained for
up to 12 weeks [140]. Clinically, ECFCs are characterized by
a high proliferative potential and vasculogenic capacity as was
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recently documented by Reid et al. in a model of ischemic
retinopathy [159]. Despite nomenclature discrepancies, their
potential application in the formation of new blood vessels has
spawned much enthusiasm among researchers and clinicians.
Recently, Liang et al., utilized human bone marrow derived
EPCs which expressed CD133, CD34, VEGFR2, VE-
cadherin, E-selectin, and vWF to demonstrate enhanced an-
giogenesis when co-cultured in the presence of mesenchymal
stem cells (MSCs). The effects were mediated through PDGF
(platelet derived growth factor) and Notch signaling [100].
Liu et al., used cell sheets to co-culture EPCs and MSCs
which proved advantageous for integration into an irradiated
field [160]. In this study, EPCs emerged as cobblestone colo-
nies in primary culture and expressed CD31, VE-Cadherin,
and VEGFR2 [160]. In addition to surface marker expression
the source of EPC isolation may affect vasculogenic potential.
For example, it has been suggested that adult peripheral blood
derived EPCs may have lower vasculogenic potentials when
compared to other sources [161]. However, Melero-Martin et
al., demonstrated that postnatal EPCs have an inherent
vasculogenic ability when co-cultured withmesenchymal pro-
genitor cells [162]. The authors utilized both cord blood de-
rived EPCs and adult peripheral blood EPCs which were pu-
rified by CD31 selection and formed EC colonies with a cob-
blestone appearance. EPCs expressed CD31, CD105, CD44,
CD29, and VEGFR2 but failed to express CD90 and CD45
with flow cytometry characterization. In the presence of mes-
enchymal stem cells (60%), EPCs from either source demon-
strated robust vascularization [162]. MSCs are known as

being able to differentiate into pericytes through EC influ-
ences and paracrine effects [163]. However, the isolation and
culture of EPCs from blood is time consuming and inefficient.
In 2004, Planat-Benard et al., described using adipose tissue
for EPC isolation, with their procedure being the same as for
isolation of MSCs from adipose [164]. In 2013, Hager et al.,
described using magnetic activated cell sorting with CD133,
CD34, and CD31 cell markers to isolate EPCs from human
lipoaspirate [165]. Zhou et al., showed that adipose derived
EPCs (adEPCs) formed capillary-like structures inMatrigel [].
Other groups have differentiated ADSCs into EPCs by
pretreating them with endothelial media for three days then
subjecting them to laminar shear stress [166]. These cells had
significantly increased expression of endothelial markers and
formed tube-like structures in Matrigel. However, some stud-
ies reject this theory suggesting that ADSCs do not differen-
tiate into EPCs, but rather the SVF including EPCs [167].
Amerion et al., showed that rat adEPCs change morphology
over time [168], which is consistent with other studies describ-
ing early and late EPCs [169]. They showed that cells grew
more rapidly after seven days in endothelial induction medi-
um, which led to formation of a cell sheet after three weeks.
VEGFR2 expression was significantly increased in the early
stage and continued; whereas, TIE-2 (tyrosine kinase with
immunoglobulin-like and epidermal growth factor-like do-
mains 2) signaling increased in the third week and other genes
had fluctuating expression. Our laboratory has demonstrated
that human adipose derived EPCs can organize into tubule
formation within 24 hours in 3D collagen culture (Fig. 5)

Fig. 5 Human adipose tissue
isolated endothelial progenitor
cells: EPCs (CD34+/CD31-)
cultured on 3D collagen scaffolds
in endothelial microvascular
media (MV media) demonstrated
vasculogenesis. a Live imaging
was performed using an Evos FL
Auto (ThermoFisher) microscope
with arrows showing early tube
formation (A1) and excessive
growth at 21 hours (A2). b A
Cytodex 3 microcarrier bead
coated with EPCs for 12 hours
and cultured in collagen
demonstrating sprouts (arrows) at
72 hours using live imaging and
z-stack reconstruction. c EPCs
stained with CellTracker dye and
coated on Cytodex 3 beads
demonstrating network/tube
formation (arrows) after six days
in 3D collagen culture
(Unpublished work from our lab)
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without any pretreatment. ECM production appears to be vital
to the structural integrity of engineered tissues including the
stabilization of the microvascular network. It has been shown
that EPCs demonstrate superior ECM deposition and assem-
bly when compared to mature ECs and should be considered
for microvascular engineering [170]. The importance of ECM
deposition for microvascular network stabilization can further
be witnessed that co-culture with mural cells offers significant
advantages.

Mural and Perivascular Cells

The absence of pericytes is a limiting factor in maintaining
engineered microvessels in culture for an extended period.
However, pericytes themselves are a rare occurrence and their
isolation and characterization is imprecise. First discovered in
the late 19th century as contractile cells surrounding the endo-
thelium of small blood vessels, the term “pericyte” was as-
cribed by Zimmerman in 1923 [103]. Since then their wide-
ranging importance has been documented in vascular devel-
opment, stabilization, maturation, and remodeling [171],
along with ECs. Transforming growth factor beta 1
(TGF-β1) has been shown to play a central role in the
pericyte-EC interaction, especially in regards to mesenchy-
mal→mural cell differentiation and the suppression of EC
proliferation and migration [172]. Additionally, recent studies
have suggested pericyte similarities to multipotent stem cells
and progenitor cells [173]. Validated pericyte markers include
PDGFR-β, NG2 (chondroitin sulfate proteoglycan 4), CD13
(alanyl aminopeptidase), α-SMA (alpha-smooth muscle ac-
tin), and desmin. However, these markers are dependent on
multiple factors and are dynamic in their expression [103].
Angiopoietin-1 (ANG1) is expressed on pericytes and its in-
teraction with the TIE-2 receptor on ECs provides vessel sta-
bilization and maturation. Therefore, its importance to vascu-
larization of engineered tissues has been probed [174]. Morin
et al., used human brain pericytes and HUVECs to fabricate
aligned microvessels in a 3D fibrin gel by day three [175]. The
authors noted that both pericytes and a defined medium were
required to achieve a highly interconnected microvasculature
with the presence of pericytes increasing the total vessel
length [175]. Chen et al., used pericytes with HUVECs in
Matrigel to generate capillary like structures [176]. The au-
thors isolated microvascular pericytes (CD146+/CD34-/45-/
56-) from human skeletal muscle. Pericytes were combined
with an equal number of HUVECs in either 2D or 3D culture.
Co-culture with pericytes significantly improved and hastened
microvascular formation in both culture conditions [176].
Cultured pericytes exhibited sustained high inflammatory
gene expression, including HIF-1α (hypoxia-inducible factor
1-alpha). HIF-1α is a subunit transcriptional factor that has
been demonstrated to play a significant role in angiogenesis.
The peri-endothelial location of pericytes is frequently

confused with other adjacent mesenchymal cells including
vascular smooth muscle cells and fibroblasts. Secondary to
the difficulty in pericyte isolation and the importance of
supporting cells in the developing microcirculation other
perivascular cells have been used for microvascular engineer-
ing endeavors.

The utility of fibroblasts in microvascular tissue engineer-
ing has been well documented. They are ubiquitous in con-
nective tissue and therefore are located throughout the body.
Since they are responsible for the generation of extracellular
matrix and collagen, they contribute to the structural support
of tissues, including the vascular tree. Additionally, they have
been shown to be vital to angiogenesis through the secretion
of soluble mediators, such as tissue inhibitor of metallopro-
teinase-1 (TIMP-1) [177]. However, unlike pericytes, they are
relatively easy to isolate and are present in large numbers. This
has led to their extensive investigation in tissue engineering
endeavors. Chen et al., co-cultured normal human lung fibro-
blasts (NHLFs) and HUVECs in fibrin gels to generate in vitro
prevascularized constructs [178]. Furthermore, a high density
of fibroblasts accelerated functional anastomosis following
animal implantation by 2-3 days. Costa-Almeida et al., co-
cultured human dermal fibroblasts with ECs and showed that
they promoted vascularization, which was thought to be due
to their higher expression of α-SMA and podoplanin as well
as increased synthesis of ECM [179]. Newman et al., also
showed that fibroblast-derived ECM components play a crit-
ical role in EC lumen formation via expression of five genes:
collagen I, procollagen C endopeptidase enhancer I, secreted
protein acidic and rich in cysteine, TGF-β-induced protein Ig-
h3, and insulin growth factor-binding protein 7 [180]. Other
groups have also shown that growth factors and matrix pro-
teins from fibroblasts modulate EC sprouting into capillary
networks in vitro [181, 182].

Likewise, MSCs have also been shown to support vas-
cular tube formation. They can serve as a source of
vasculogenic growth factors and have the ability to differ-
entiate into mural cells via communication with ECs [183].
HUVECs cultured with BM-MSCs versus fibroblasts
showed a higher number of cell junctions and slower ves-
sel formation with a higher number of branches, simulating
physiological vessel growth [184]. Pill et al., showed that
MSCs from both adipose and bone marrow promotes
tubulogenesis in co-culture with ECs, although via distinct
mechanisms [185]. Verseijden et al., showed that
prevascularized HUVEC/ADSC constructs resulted in sig-
nificantly higher vessel formation after in vivo implanta-
tion in mice [186]. Melero-Martin et al., showed combina-
tion of EPCs and MSCs from blood or bone marrow
allowed rapid formation of functional anastomoses in vivo,
which remained patent at four weeks [163]. Rao et al.,
found that a high ratio of EC:BM-MSCs (5:1) led to unsta-
ble vessel formation compared to lower ratios [187]. Other
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groups have also shown that both BM-MSCs [188–190]
and ADSCs [191–193] co-cultured with ECs support vas-
cular formation.

Microvascular Fragments

The uncertainty of cellular isolates and their correct ratios for
microvascular engineering has led to an interest in the utility
of multicellular vessel segments. Hoying et al. reported that
microvascular fragments (MF) isolated from adipose tissue
undergo expansion and sprouting when placed in a collagen
gel [194]. These features have been demonstrated in mouse,
rat, and human sources [195]. MF retrieval relies on the iso-
lation of intact short vessel segments that includes arterioles,
capillaries, and venules. In addition to luminal ECs, these
fragments are rich in smooth muscle cells, progenitors, and
perivascular cells. By containing native cell ratios, MFs elim-
inate the uncertainty of recombining the correct cellular por-
tions (e.g. ECs, MSCs, fibroblasts) in vitro while offering a
simpler isolation protocol than that of individual cells. This
can be appreciated where the retrieval of cell subpopulations
from adipose tissue involves extensive collagen digestion but
MF isolation only requires a fraction of time [196]. Although,
it has been demonstrated that angiogenic MFs can be isolated
from a variety of tissues [197], the ubiquity and accessibility
of adipose tissue has made it a preferred choice. Specifically,
MFs can be obtained from patients via minimally invasive
liposuction techniques that can performed under local anes-
thesia in a clinic setting. In culture, MFs have been shown to
release proangiogenic mediators, such as VEGF [118], poten-
tially obviating the need for exogenous angiogenic
supplementaion. Furthermore, they have demonstrated the
ability for inosculation and perfusion following animal im-
plantation. Laschke et al. demonstrated that the incorporation
of adipose derived MFs into porous scaffolds contributed to
enhanced inosculation following implantation (Fig. 4d) [118].
Shepard et al. engineered prevascularized cardiac patches in
vitro using microvascular fragments which demonstrated in-
osculation with the coronary microcirculation in a mouse
myocardial infarct model within seven days [198]. It is has
also been suggested that MFs demonstrate substantial plastic-
ity with microvessels of arterial identity being able to give rise
to both arterial and venous phenotypes [199] despite the lu-
minal dimensions becoming somewhat uniform in culture
with an average diameter of ~23 μm [200]. While the main-
tenance of native cell ratios in a multicellular fragment is
advantageous, the large size of MFs may limit their utility in
additive manufacturing technologies, such as vascular
bioprinting. Furthermore, directed manipulation with
miRNAs may prove cumbersome in a multicellular fragment
[201]. However, continued investigation of MFs is warranted
to determine if their heterogeneous cell populations offer an

advantage to the in vitro recombination of ECs and mural cells
for microvascular engineering.

Cell Seeding

Cell-based therapies were the earliest approaches in healing
damaged tissue in which single cell suspensions were injected
into defect areas to help regeneration and organ recovery.
However, this approach has limitations such as difficulties in
retaining cells at the target site [202]. As microvascular dys-
function is generally not limited to a confined region, as is the
case in diabetes [203], direct cellular injections for microvas-
cular regeneration may not prove beneficial. Additionally,
engineered tissues need to rapidly integrate upon implanta-
tion. Therefore, other approaches have been developed to op-
timize engraftment upon implantation.

In Vitro Prevascularization

Prevascularization is a concept in which engineered tissue has
an established microvasculature prior to implantation facilitat-
ing vascular integration and perfusion prior to the onset of
hypoxia induced cell damage. Current strategies generally rely
on random cell/spheroid seeding, cell sheets, and bioprinting
technologies.

Seeding cells onto scaffolds has been widely used for in
vitro prevascularization, using all the cellular sources outlined
above. The scaffold chosen must consider material biocom-
patibility, biodegradability, mechanical properties, and scaf-
fold architecture. Numerous scaffold materials have been uti-
lized in tissue engineering with the general goal of imitating
the native ECM [204] required for native cell function. Most
of the scaffolds used in microvascular engineering endeavors
can be broadly grouped as hydrogels. Hydrogels are a group
of natural (e.g. polysaccharide or polypeptide-based) or syn-
thetic (e.g. polyethylene glycol, polyacrylamide) polymeric
materials whose hydrophilic structure allows them to hold
large amounts of water [205]. Natural hydrogels such as fi-
brin, collagen, and alginate have all been used as ECMmimics
in tissue engineering. Fibrin is formed during wound coagu-
lation and is used extensively in clinical applications for he-
mostasis. It can either be obtained whole or separately in its
fibrinogen and thrombin components which can increase tun-
ability of its final application. While useful in angiogenic as-
says, its susceptibility to protease mediated degradation

�Fig. 6 Cylindrical scaffold fabrication approach for microvascular
engineering: a Schematic diagram adopted from Tung et al. [209],
demonstrating HUVEC culture on a degradable cylindrical PLGA
scaffold for microvessel formation. b Cylidrical PLGA scaffolds were
made from a PDMS mold that had been generated using soft-
lithography. c HUVEC-cultured cylindrical scaffold stained for F-actin
(red) and nucleus (blue) using 3D confocal microscopy [209]
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mitigates its utility in in vitro prevascularization approaches.
Collagen based hydrogels have a deep history in 3D culture
applications [206] with Matrigel being extensively used in
microvascular engineering as it best resembles the complex
ECM found in living tissues. It is unique in that in addition to
collagen type IV it contains laminin, entactin, and various
other proteoglycans and growth factors [206]. While it robust-
ly supports cell growth and vascular network formation it is
derived from mouse sarcoma cells, thereby potentially limit-
ing clinical translation. This has led to a variety of other col-
lagen sources being investigated (e.g. type 1 bovine) [207]
that can be fashioned in different concentrations allowing for
mechanical stability at the expense of porosity. To further
expand the hydrogel-based scaffold platform, sourcing has
also transitioned from natural to synthetic sources such as poly
ethylene glycol (PEG), dimethacrylate, methacrylated gelatin
[208] and poly(lactide-coglycolide) [209]. Scaffolds have
been fashioned in various patterns to reproduce microcircula-
tory architecture [208] and into cylindrical shapes (Fig. 6)
[209]. Likewise, scaffolds have also widely been used as a
platform for cell seeding and random tubulogenesis. While
each scaffold has its own advantages and disadvantages, the
materials which best resemble native ECM have fragile me-
chanical properties which complicate the transfer of in vitro
prevascularized constructs into an in vivo model. This further
muddles the cell seeding process in addition to the optimal
ratio of vascular and mural/stromal cells remaining ill-defined
[210]. Furthermore, the ability to precisely control the com-
plex microvascular architecture is not possible yet.

Cell sheet engineering is a new scaffold-free method that
overcomes the drawbacks of scaffold-based techniques [211].
In this method, cell aggregates can be harvested without pro-
teolytic enzymes, allowing cells to be manipulated without
disrupting their native ECM [212, 213]. Intact cell sheets,
including the deposited ECM, can be harvested using
thermoresponsive hydrogels, such as poly n-isopropyl acryl-
amide (PNIPAAm) and methylcellulose (MC), simply by
changing the temperature. In these systems, cells adhere and
proliferate on the substrate at 37°C and when the temperature
is decreased to room temperature, confluent cells can be re-
leased as an intact sheet. MC and PNIPAAm hydrogels have
been utilized in many studies for cell sheet fabrication.
Shimizu et al., showed that cell sheets can be stacked to create
a thick construct with vascularity [214]. Sekiya et al., showed
that layered EC sheets produced lumens and vascular struc-
tures [215]. Asakawa also showed that stacked cell sheets of
HUVECs and dermal fibroblasts created vascular networks
[216]. Another study described vessel formation in a five-lay-
er myoblast sheet construct by stacking HUVECs and myo-
blast cells [217]. They observed the anastomosis of the endo-
thelial network in the stacked construct to host vessels after
transplantation in vivo. These studies clearly indicate the po-
tential for cell sheet engineering techniques in microvascular

endeavors. While manipulation of the engineered microvas-
cular network may prove more stable with this approach, it
offers limited benefit over traditional scaffold cell seeding
with regards to controlling the vascular architecture.

Bioprinting is one of the recently described techniques that
allows direct fabrication and preparation of complex 3D vas-
cular networks [218]. Themajor advantage of this technique is
the ability to fabricate a complex tissue construct with fine
spatial control over the cell pattern and requisite growth factor
deposition [219] with both scaffold-based and scaffold-free
techniques. In bioprinting, living cells are delivered in a
bioink, which forms the initial ECM following either extru-
sion-, droplet-, or laser-based bioprinting. Ideal bioinks re-
main stable during the bioprinting process while exhibiting a
viscosity in the range of 10-150 mPa, which eases deposition
and prevents nozzle clogging [220]. Natural biopolymers such
as gelatin, collagen, agarose, alginate; and synthetic materials
such as poly ethylene glycol have been used as bioinks [221].
Bioinks with thermally reversible gelation, such as gelatin-
based hydrogels, are preferred due to their ability to demon-
strate both solid and semisolid states [222]. Kolesky et al.,
used a cell laden ink composed of gelatin and fibrinogen to
bioprint thick vascularized tissues which could eventually be
perfused with growth factors to promote osteogenic differen-
tiation of human MSCs in situ [222]. Byambaa et al., devel-
oped a bone-like construct by arranging individual bioprinted
rods including VEGF-functionalized gelatin-methylated rods
and hMSC laden gels loaded with silicate nanoparticle cylin-
der rods in the form of a pyramidal construct [223]. Ozbolat
and co-workers introduced co-axial bioprinting to directly ex-
trude perfusable vasculatures in the range of 1 mm in external
diameter, which was then further advanced by other groups
[224–227]. While patterned vascular formations can be
formed, bioprinting still lacks the resolution to print an intact
vasculature from the capillary level (~5μm diameter) to one
that permits reliable surgical anastomosis (~1mm diameter).
Therefore, without the ability for rapid perfusion
prevascularized scaffolds still suffer from some degree of is-
chemia following implantation. To limit this, it may be bene-
ficial to incorporate growth factors into the implanted con-
struct or recipient sites.

Angiogenic factors play critical roles in vascularization af-
ter implantation when incorporated into biomaterial scaffolds
[2, 123, 228, 229]. Angiogenic growth factors accelerate vas-
cularization by activating and stimulating ECs/ EPCs, which
results in migration of these cells toward the factor gradient.
These factors not only cause vascular organization and net-
work formation, but they have great impact on vessel matura-
tion by recruiting mural cells and stabilizing the implanted
ECs [229]. The main growth factors involved in upregulating
angiogenesis and vascular formation include: VEGF, basic
fibroblast growth factor and hepatocyte growth factor
(HGF). Other cytokines such as platelet-derived growth
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factor, TGF-β, and angiopoietin also affect angiogenesis indi-
rectly and are involved in the stabilization of newly formed
vessels. The major drawback of these factors is that they are
not highly stable and have high degradation rates in vivo,
which makes delivery challenging. Therefore, spatial and tem-
poral release of cytokines is essential. Immobilizing these fac-
tors within the scaffold and tissue engineered construct is a
promising approach which can provide fine control over the
delivery of angiogenic growth factors [123, 229]. In one study,
Poldervaart et al., investigated temporally controlled release
of VEGF from gelatin microspheres which resulted in
prolonged release of VEGF for three weeks in vitro [230]. In
another study, Campagnolo et al., investigated how conjugat-
ing polycaprolactone (PCL) constructs with heparin binding
peptide increases accumulation of vascular endothelial growth
factor [231]. Growth factor incorporation may prove useful in
further augmenting the potential of cell stacking and
bioprinting technologies for functional microvascular
creation.

In Vivo Prevascularization

In vivo prevascularization is an approach where the
engineered construct is implanted into well vascularized tissue
in order to induce ingrowth of surrounding blood vessels into
the scaffold prior to final transfer into the defect site [232].
Inducing vascularization in vivo using arteriovenous loops
(AVLs) was first described by Erol in 1980 [233]. In this
technique, grafts (e.g. skin) are implanted adjacent to a large

caliber vascular conduit (1-3 mm) that has been fashioned into
a loop shape. Following a week of implantation, the AV-loop
has inosculated the implanted graft through vascular ingrowth.
The entire AV-loop/graft can now be transferred into a desired
remote site with the AV-loop permitting a direct anastomosis
to the final vascular bed. This approach has been used clini-
cally when there is no free-flap option to reconstruct challeng-
ing wounds [234]. AVLs have also be used to lengthen the
vascular pedicle [235], decrease risk of thrombotic events at
the anastomosis [236], and reduce ischemia time [237], which
all improve the chance of tissue transfer survival. This has
prompted its utility in the vascularization of prevascularized
engineered tissue, utilizing either autogenic or allogenic vas-
cular grafts. For this purpose, tissue constructs and arteriove-
nous loops are placed into a chamber which could be empty or
filled with ECM.After vascular formation the construct can be
surgically anastomosed at the site of the defect [238]. Arkudas
et al., used an AVL model to asses vascular formation of
sintered 45S5 Bioglass [239]. They observed a dense network
of capillaries three weeks after implantation in the medial
thigh of rats. In another study by Beier et al., hydroxyapa-
tite-beta tri-calcium phosphate (HA/β-TCP) constructs were
vascularized by implanting ceramic constructs placed in an
AVL into the groins of merino sheep after six and 12 weeks
[240]. A drawback of this strategy is the number of operations
that are needed to complete the process. However, when inte-
gra ted wi th cel lu la r based s t ra tegies and novel
microfabrication techniques, it may demonstrate utility in the
rapid perfusion of an engineered microvasculature.

Fig. 7 Direct surgical anastomosis of engineered cardiac tissue: The
AngioChip is a citric acid-based scaffold that suppports the assembly of
parenchymal cells (e.g. cardiac, hepatic) adjacent to a perfusable,
branched 3D microchannel network that can be coated with endothelial
cells. Furthermore, the AngioChip can be surgically anastamosed for

rapid perfusion. Schematic diagram adopted from Zhang et al. [241]
demonstrating surgical anastomosis of the AngioChip cardiac tissue on
the rat femoral vessels in the configuration of an artery-to-artery graft (a)
and artery-to-vein graft (b) exhibiting a rapidly perfused engineered
microcirculation
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Conclusions

Tremendous advances in stem cell biology, materials science,
and additive manufacturing have drastically propelled the
field of tissue engineering recently. A major limiting factor
towards clinical translation remains vascularization and im-
mediate or near-immediate perfusion. However, endothelial
cell-based co-cultures or microvessel fragments have demon-
strated significant potential in replicating the vasculogenic
process. It is interesting that with both approaches adipose
tissue has emerged as a substantial donor depot for cellular
based strategies for microvascular engineering. Advances in
in vitro prevascularization strategies have led to more rapid
perfusion upon implantation. This has led to promising plat-
forms such as vascularized organ-on-a chip with direct surgi-
cal anastomosis (Fig. 7) as was recently detailed by Zhang et
al. [241]. The authors of this study highlighted the importance
of a cross-disciplinary collaboration with input frommaterials
science, cell biology, additive manufacturing, and surgery.
This is particularly exciting as it represents a step forward in
the clinical translation of engineered tissues. However, it is
likely that both the vasculogenic and angiogenic processes
of engineered tissue will need to be optimized for large vol-
ume tissue transfer or the correction ofmicrovascular dysfunc-
tion. In clinical surgery, it is well established that a period of
warm ischemia greater than four hours will lead to significant
tissue necrosis and poorer patient outcomes. Therefore, we are
not only challenged with the task of striving for perfusion
within this time frame but in also fabricating a microcircula-
tory bed that will function appropriately for the engineered
tissue or organ.

Adult ECs along with multipotent and pluripotent stem
cells have been cultured in various scaffolds and conditions
to demonstrate in vitro and in vivo possibilities
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