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Abstract
Mesenchymal Stem Cells (MSCs) are a heterogeneous population of fibroblast-like cells which maintain self-renewability and
pluripotency to differentiate into mesodermal cell lineages. The use of MSCs in clinical settings began with high enthusiasm and
the number ofMSC-based clinical trials has been rising ever since. However; the very unique characteristics ofMSCs that made them
suitable to for therapeutic use, might give rise to unwanted outcomes, including tumor formation and progression. In this paper, we
present a model of carcinogenesis initiated by MSCs, which chains together the tissue organization field theory, the stem cell theory,
and the inflammation-cancer chain.We believe that some tissue resident stem cells could be leaked cells from bonemarrowMSCpool
to various injured tissue, which consequently transform and integrate in the host tissue. If the injury persists or chronic inflammation
develops, as a consequence of recurring exposure to growth factors, cytokines, etc. the newly formed tissue from MSCs, which still
has conserved their mesenchymal and stemness features, go through rapid population expansion, and nullify their tumor suppressor
genes, and hence give rise to neoplastic cell (carcinomas, sarcomas, and carcino-sarcomas). Considering the probability of this
hypothesis being true, the clinical and therapeutic use of MSCs should be with caution, and the recipients’ long term
follow-up seems to be insightful.
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Introduction

Stem cells are clonogenic cells that have two distinctive fea-
tures: multipotency and self-renewal capacity [1]. The surge
of studies on stem cells emerged by the discovery of a subset
of bone marrow residing haematopoietic stem cells (HSCs)
which give rise to all blood cell types [2]. Later on, studies
by Friedenstein and colleagues reported that the bone marrow
stroma can generate mesodermal cell lineages following het-
erotopic transplantation in mice; an observation suggestive of
the presence of non-haematopoietic multipotent precursor
cells within the bone marrow [3]. These precursors were a
subset of fibroblast-like cells that could be easily isolated by
their ability to adhere plastic surfaces and were shown to have

hallmarks of stemness [4]. As a result , the term
BMesenchymal Stem Cell (MSC)^ was assigned and accepted
to refer to these newly identified precursor cells [5].

Bone marrow has been considered the main source of
MSCs (bmMSCs), for many years. However; these stem cells
are present in many other adult and fetal tissues (with few
exceptions) [6]. In an attempt to standardize the definition of
an BMSC^, the International Society for Cellular Therapy
(ISCT) proposed the concept of essential minimal criteria for
MSCs in culture [7]. The four minimal defining criteria for
MSCs are: 1) adherence to plastic under standard tissue cul-
ture conditions, 2) expression of CD105, CD73, CD90, 3)
lack of expression of CD45, CD34, CD14/CD11b, CD79/
CD19 and HLA-DR surface markers, and 4) differentiation
into adipocytes, osteoblasts and chondroblasts in vitro [7, 8].

MSCs: From Bench to Bedside

It didn’t take long for MSCs to become a subject of clinical
research as potential therapeutic modalities in medicine, most-
ly because of their immunoregulatory and tissue regenerative
properties [9], as well as simplicity of isolation and expansion
[10]. The use of MSCs in clinical settings began with high
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enthusiasm and the number of MSC-based clinical trials has
been rising since 2004 (Fig. 1a), and till now, there has been
over 750 registered clinical trials in different phases aimed at
evaluating the potential of MSC-based cell therapy worldwide
(Fig. 1b). A number of these trials have shown efficacy of
these cells in the treatment of conditions like: GvHD,
Crohn’s disease, rheumatoid arthritis, ischemic stroke, myo-
cardial infarction, chronic heart failure, type 1/2 diabetes
mellitus, spinal cord injury, bone fractures/defects, chondral/
osteochondral defects, cirrhosis, amyotrophic lateral sclerosis,
and cerebral palsy [11].

However, it is important to note that not all MSC-based
clinical trials have met their primary endpoint of efficacy
and claims of benefit may be biased by strong commercial
interests [12]. The very unique characteristics of MSCs that
made them suitable cells to be used in clinical trials, might
give rise to complications and unwanted outcomes, including
tumor initiation, progression and metastasis.

Until 2007, most published data were in favor of anti-tumor
properties of MSCs [13, 14], but a turning point was encoun-
tered when Karnoub and colleagues showed that co-injection
of humans MSCs with breast cancer cell lines accelerated
tumor growth, and metastasis [15]. Their observations led to
further studies scrutinizing anti-tumor vs. tumor promoting
properties of these cells [16]. From studies published thus
far, it is assumable that MSCs might be among the important
players in favor of tumor growth and progression.

MSCs’ Role in Cancer Progression

Tumor microenvironment can be considered as a swamp
hosting many anti-tumor and tumor promoting factors such
as MSCs. The active migration of endogenous and exogenous
MSCs to tumor sites has been demonstrated in several models
[17–19]. Upon arrival to tumor microenvironment, MSCs ex-
hibit tumor promoting characteristics, due to direct and indi-
rect signals they receive in the new milieu. These cells has
been shown to increase proliferation, mobility, dormancy [20]
and resistance to therapy [21] in neoplastic cells, by
transdifferntiation to cancer associated fibroblasts (CAFs)
[21–24], promotion of angiogenesis and lymphangiogenesis

[25–28], stimulation of epithelial-to-mesenchymal transition
(EMT) [29–32], suppressing tumor immune responses [21],
induction of stemness in cancer cells [33–38] and probably
acting as tumor initiating cells [39, 40].

Bearing these in mind, the question of whether the clinical
application of MSCs would help cancer development/
progression will be raised. There are studies demonstrating
that this assumption could be right. For instance, several mu-
rine and human studies have shown the donor origin of CAFs
in tumors of transplant recipients. In 2008, for the first time,
Mishra et al. showed that human bone marrow–derivedMSCs
become activated and resemble CAFs on prolonged exposure
to conditioned medium from MDA-MB231 human breast
cancer cells [24]. Further studies by Spaeth [41] and Quante
[18] provided additional evidence for transdifferentiation of
donor MSCs to CAFs in recipients’ tumors. Interestingly, in
2009, Worthley and colleagues reported Y-chromosome pos-
itive CAFs in female patients with gastric cancer and rectal
adenoma, with a history of bone marrow transplants from
male donors [42].

Tumor promoting functions of transplanted MSCs via an-
giogenesis has been attributed to their ability to secrete angio-
genic factors such as VEGF and TGF-beta [27, 28, 43],
transdifferentiation to pericytes [44, 45]/endothelial cells
[46], and recruiting endothelial progenitors [47]. Moreover,
studies have shown that MSCs increase mobility, migration
and consequently metastasis capacity of neoplastic cells [36,
48–51]. These observations have been linked to the ability of
MSCs to induce EMT in neoplastic cells [30, 31, 35].
Furthermore their role in tumor progression by suppressing
immune responses has been shown by several studies (sub-
mitted review). In the subsequent sections of this paper, we
will review and discuss the possible roles of MSCs in induc-
tion of stemness in cancer cells, and their role as tumor initi-
ating cells.

MSCs’ Induction of Stemness in Cancer Cells

Cancer stem cells (CSCs) are rare immortal subpopulation of
cells within tumors that can both self-renew and give rise to

Fig. 1 a Number of registered
clinical trials of MSC-based
therapy. b Clinical phases of
MSC-based therapy. (https://
clinicaltrials.gov/)
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diverse cell types in tumor milieu [52, 53]. Presumably, tu-
mors’ resistance to therapy and recurrence can be attributed to
the quiescent nature of these cells [54]. MSCs supply an ad-
vantageous tumor microenvironment for the maintenance of
CSCs by secreting a variety of cytokines and formation of
tumor cell hybrids by entosis or fusion [52, 53, 55–57].

Cabarcas and colleagues demonstrated that MSCs can pro-
mote cancer stemness through NF-κB pathway and secretion
of CXCL12, IL6, and IL8 [58]. Moreover, it has been shown
that MSCs promote undifferentiated state in neoplastic cells
by producing BMP antagonist, Gremlin-1 [59], BMP2,4 [60],
IL-6 [38, 61], CXCL1, CXCL7, CXCL8 [62], CCL5 [63],
CXCR2 ligands (CXCL1, 5, 6, 7, 8) [64], activation of the
JAK2-STAT3 pathway [65], FOXD1-ALDH1A3 Signaling
[66] and through repression of FoxP2 expression [67].
Induction of stemness in cancer cells by MSCs has been
shown in ovarian [60, 68], breast [64, 67], gastric [69], colon
[62], and brain neoplasms [70].

Interestingly, El-Badawy and colleagues demonstrated
that indirect co-culture of cancer cells and MSCs causes
MSCs to acquire some properties of CSCs upon exposure
to cancer cell-secreted factors and displayed properties of
cells with enhanced sphere formation capacity [34]. This
observation raises the question that whether MSCs used for
therapeutic purposes can give rise to tumor initiating cells.

MSCs as Tumor Initiating Cells

In 2008, Berger and colleagues reported an osteosarcoma of
donor origin in a patient who had received allogenic bone
marrow transplant for β-thalassemia, 17 years earlier [71].
The isolated neoplastic cells expressed MSC markers at very
high levels [71] and hence, one can assume that MSCs
transplanted along with hematopetic stem cells had given rise
to the osteosarcoma in the recipient. Amore direct observation
of engrafted MSCs transition to tumor initiating cells was
published by Qian et al. [72]. They reported a sarcoma of
donor origin (K3 cell line), found on the tail of a female rat
after injection with male rat bone bmMSCs [72]. Considering
these observations in addition to the capacity of MSC
transdifferntiation to different cell lineages, it is presumable
that engraftedMSCsmay give rise to a variety of neoplasms in
the recipient.

Spontaneous Tumoral Transformation
of MSCs

Several studies have demonstrated that Mouse MSCs
(mMSCs) are predisposed to acquisition of transformation
events after long-term in vitro culture favoring clonal selection
of transformed cells [73]. These observations prompt the

concern that in the human settings, the ex-vivo expansion of
human MSCs (hMSCs) before clinical application may also
cause spontaneous neoplastic transformation after long-term
culture.

MSCs as the Cell of Origin for Sarcomas

Sarcomas are heterogeneous mesenchymal malignancies aris-
ing from the bone, cartilage, muscle, peripheral nerves, adi-
pose and fibrous connective tissues [74]. The definite cells of
origin for sarcoma subtypes remain unclear [74]; however,
there is increasing evidence suggesting that they probably
arise from mesenchymal pluripotent stem cells [39, 74].

For instance, a growing body of evidence indicates an
MSC origin for Ewing’s sarcoma. About 85% of Ewing’s
sarcomas harbor translocations resulting in the fusion of the
EWS gene with FLI1 gene [75]. EctopicEWS-FLI1 expression
in mMSCs results in transformation of these cells to Ewing
sarcoma-like cells in vivo [76, 77]. Furthermore, the knock-
down of EWS-FLI1 expression in Ewing’s Sarcoma results in
conversion of the tumor cells to MSCs [78]. By the same
token, both spontaneous and induced MSC models for osteo-
sarcoma have been shown [79–82] and in both osteosarcoma
cells and transformed MSCs, aberrations in genes encoding
P53 pathway components have been identified; and targeted
mutation in p53 of mMSCs causes development of osteosar-
coma [81, 83].

Boeuf and colleagues have reported that less differentiated
chondrosarcomas have more similarity with MSCs, while
more differentiated ones were more similar to chondrocytes
[84]. This observation suggests that chondrosarcoma forma-
tion could be the result of deregulated MSC differentiation to
chondrocyte. In case of synovial sarcomas, which are often
characterized by the presence of SS18-SSX1, SS18-SSX2 or
SS18-SSX4 chimerical genes [85], it has been shown that si-
lencing of the fusion gene expression in neoplastic cells in-
duces the expression of mesenchymal markers [86].
Additionally, the expression of SYT-SSX1 in hMSCs induces
a transcriptional profile very similar to the Synovial sarcoma
cells [87].

In mouse models of Liposarcoma, the expression of FUS-
CHOP in both bone marrow and adipose-derived mMSCs
gave rise to Liposarcoma like tumors [88, 89]. Furthermore;
some subtypes of Rhabdomyosarcomas are formed by the
expression of either PAX3-FKHR or PAX7-FKHR fusion
genes in MSCs, pushing MSC differentiation towards a myo-
genic lineage while inhibiting terminal differentiation [90].

All these observations suggest that multipotent and long-
lived MSCs may act as the tumor initiating cells for some
sarcomas upon the expression of specific fusion genes and it
is presumable that engrafted MSCs may give rise to a variety
of sarcomas in the recipient. On the other hand, and taking into
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account the cell fate conversions, these engrafted MSCs may
give rise to carcinomas and Carcinosarcomas of donor origin
in the recipient as well. In general, the changes from one cell
type to another are observed during embryonic development,
tumor formation/progression and somatic cell reprogramming
[91]. In vitro and in vivo studies have shown that MSCs have
the capacity to differentiate into all three embryo cell lineages
(ectoderm, mesoderm and endoderm) in special media [92].

MSCs as the Cell of Origin
for Carcinoma-Sarcomas

Carcinosarcomas (also known as sarcomatoid carcinomas) are
biphasic neoplasms composed of malignant epithelial and
mesenchymal elements. They can arise in diverse organs, such
as the respiratory system [93–95], guts [96–99], gall bladder
[100], pancreas [101], spleen [102], peritoneum [103], skin
[104, 105], ovary [106], fallopian tubes [107], uterine [108],
urinary system [109, 110] and adrenals [111].

Several hypotheses have been proposed on the basis of
carcinosarcomas’ pathology seen in different organs (Fig. 2)
[112]. Convergence theory (multiclonal theory) suggests that
two independent tumors with separate epithelial and mesen-
chymal origin have collided (Fig. 2a) [113]. Divergence the-
ory (monoclonal theory) argues that both carcinomatous and
sarcomatous components are derived from a single pluripotent
stem cell that subsequently diverges along separate epithelial

and mesenchymal pathways (Fig. 2b) [114]. Finally; conver-
sion theory proposes that the sarcomatous element of the tu-
mor represents a metaplastic transformation from the
epithelial part (EMT) (Fig. 2c) [115]. The reverse mechanism
is also supposable and MSCs could be the cells of origin to
sarcomatous component and late in tumorigenesis, sarcoma-
tous subclones go through partial MET and result in carcino-
matous component formation (Fig. 2DA.

Monoclonality of Carcinosarcomas is supported by multi-
ple levels of evidence such as: the co-expression of
cytokeratins and epithelial membrane antigens in both carci-
nomatous and sarcomatous components [116], concordance
of TP53 and K-ras mutations [117], identical patterns of X
chromosome inactivation [118], and similar losses of hetero-
zygosity [119].

MSCs as the Cells of Origin for Carcinomas

The epithelial barrier is exposed to several exogenous insults
and the homeostasis of this tissue should be precisely balanced
according to cell loss and production. One of the possible cell
sources of this homeostasis is considered to be local and bone
marrow leaked MSCs [120]. Following an epithelial injury,
the MSCs are recruited to this site using the samemechanisms
as immune cells [121]. Upon their arrival, MSCs regulate the
repair process by differentiation into several kinds of stromal
and damaged cell types [122, 123] including myofibroblasts

Fig. 2 Theories proposed to explain Carcinosarcoma cell of origin; (A)
Convergence theory or multiclonal theory suggests that two independent
tumors with separate epithelial and mesenchymal origin have collided;
(B) Divergence theory or monoclonal theory argues that both
carcinomatous and sarcomatous components are derived from a single
pluripotent stem cell; (C, D). Conversion theory proposes that a single

epithelial or mesenchymal stem cell gives rise to carcinoma or sarcoma,
respectively. Subsequently theses neoplasias go through metaplastic
transformation and give rise to carcinosarcoma; SC:Stem Cell; EMT:
Epithelial to Mesenchymal Transition; MET: Mesenchymal to
Epithelial Transition
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[124], endothelial cell [125], and epithelial cells of the injured
tissue.

The presence of MSC derived epithelium in injured ecto-
dermal and endodermal tissues has been demonstrated by sev-
eral lines of evidence. An interesting observation in regard to
hMSC transdifferentiation to keratinocytes was reported by
Sivamani and colleagues [126]. They reported that contact
co-culture of hMSCs and keratinocytes, caused the hMSCs
to adopt epithelial morphology and express keratinocyte
markers [126]. Using specific differentiation protocols, sever-
al in-vitro models confirmed that acquisition of keratinocyte
phenotype is a pretty probable event in epithelial regeneration
after injury [127–131]. Interestingly, corneal keratinocyte can
also be generated using MSCs [132, 133].

Transdifferentiation of MSCs to alveolar pneumocytes and
their role in repair of respiratory epithelium has been studied
widely. These cells are well recognized for their ability to
differentiate into type II alveolar pneumocytes in damaged
lungs, which is critical for re-epithelization in acute lung in-
jury [134, 135].

In gastrointestinal tract, the epithelium needs to be renewed
rapidly, in order to conserve its function. Tissue damage, for
instance following local irradiation, enhances engraftment of
bmMSCs in the epithelial linings of the gut, revealing a close
relationship with the course of tissue regeneration [136].
Ferrand and colleagues demonstrated that MSCs fusion with
gastrointestinal epithelial cells could be the predominant
mechanism by which they acquire epithelial characteristics
when in close contact with gastrointestinal epithelium [137].
Furthermore, MSCs transdifferentiation to hepatocytes fol-
lowing liver injury has been reported [138–141] and endo-
crine cells of pancreas (beta cells) can also be regenerated
using MSCs [142–144].

MSCs’ role in repair of urothelial tissue has been demon-
strated as well. Ning and colleagues reported that co-culture of
hMSCs with urothelial cells, led to development of urothelial
features in MSCs [145]. Tian et al. further revealed that MSCs
can differentiate into urothelium when cultured in conditioned
medium derived from bladder cell culture [146].

Bearing these in mind, it is supposable that in physiologic
states, at least some parts of regenerated epithelium are orig-
inated fromMSCs and the broader (the area) and longer (time
duration) the injury, the more MSCs going through
transdifferentiation (MET, Mesenchymal to Mesenchymal
Transition (MMT), Mesenchymal to endothelial transition
(M-endT)).

In 2013, the stem cell misplacement theory (SCMT) was
proposed by Wang et al. to explain carcinoma formation and
some obscure aspects of this event [147]. They proposed that
invasive cancers are the result of misplaced epithelial stem
cells which come to the wrong land of connective tissue by
accident and give rise to carcinoma in the stroma de novo
[147]. Herein we describe an alternative model for carcinoma

formation, arising from misplaced MSCs in epithelial tissue,
going through defective MET (Fig. 3).

The primary insult causes disruptions in the epithelium and
its basement membrane (for example UV, radiation, etc., Fig.
3a). This injury attracts immune cells along with bmMSCs by
means of cytokines/chemokines and adhesion molecules (Fig.
3b,c) [121]. bmMSCs pass through the injured basement
membrane, enter the epithelial milieu and transdifferntiate to
epithelial tissue (MET), mostly due to direct contact with ep-
ithelial cells and encountering their growth media (Fig. 3d,e,f)
[126, 145, 146]. At the very beginning these misplaced cells
are neither genetically mutated nor transformed neoplastic
cells. However, it is supposable that this newly formed epithe-
lial tissue still conserves its mesenchymal and stem cell fea-
tures. If the insults are repetitive or persistent or chronic in-
flammation develops (secondary insult), as a consequence of
recurring exposure to growth factors, cytokines, etc. the newly
formed epithelium fromMSCs, which still has conserved their
mesenchymal features and stemness, go through rapid popu-
lation expansion, and nullify their tumor suppressor genes,
and consequently give rise to carcinoma cells, presenting
EMT/MET markers, and aggressive behavior (Fig.
3G,H,I,J). Our hypothesis chains together other carcinogene-
sis theories such as the tissue organization field theory, the
stem cell theory and the inflammation-cancer chain.

There are multiple lines of molecular and clinical evidence
supporting this hypothesis. For instance, both colon and small
intestine contain Lgr5+ multipotent stem cells, but cancer of
digestive tract occurs preferentially in the colon and rectum,
although epithelium turn-over is higher in small intestine
[148]. These controversial observations could be explained
fairly by the model we proposed. The repetitive injury and
inflammatory milieu in colon attracts bmMSCs, which gives
rise to colon epithelium and carcinoma consequently due to
chronic induction of cytokines and growth factors. The same
model can be applied to any carcinoma formation follow-
ing chronic inflammation, such as Marjolin ulcer, Bladder
SCC (following chronic schistozomia infection), hepato-
cellular carcinoma (HCC) (following chronic hepatitis and
cirrhosis), non-small cell lung cancer (following chronic
inflammation due to smoking), cervical cancer (following
chronic HPV infection), and many other examples.
Furthermore, this model easily describes carcinosarcoma
formation and its monoclonality.

A more tangible evidence for our model is observed in
kidney transplant patients. Squamous Cell Carcinoma (SCC)
is a well-known complication in long term kidney transplant
recipients [149]. Verneuil and colleagues have reported the
presence of donor-derived epithelial cells in skin SCC and
actinic keratosis [150]. In an attempt to further clarify the type
of donor cell that has homed to these skin lesions, they ob-
served donor-derived stem-cells in basal layers and invasive
areas in all skin SCCs, but not in surrounding normal skin.
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These donor-derived stem-cells expressed the EMT markers,
vimentin, snail and slug in SCCs [151]. It is probable that the
MSCs engrafted along with the kidney, had been hijacked by
injured epithelium and their consequent transdifferentiation to
and integration in the epithelium, creates a tissue with higher
susceptibility to carcinogens (Fig. 3).

The role of chronic inflammation and the molecules in-
volved in development of carcinomas has been studied exten-
sively. Interestingly, some vague parts of these mechanisms
can be enlightened by the model we proposed. For instance,
the NF-κB pathway is one of the most fascinating links be-
tween inflammation and cancer formation and following its
activation EMT regulators Snail and Slug are activated, which

leads to downregulation of E-cadherin [152], and supposedly
cell separation and cancer progression. However, inhibition of
this pathway has been shown to enhance the growth of SCC
and HCC [153, 154]. The progression of SCC and HCC fol-
lowing NF-κB pathway inhibition can be explained by our
model, considering MSCs going through partial MET and
giving rise to these carcinoma cells.

Another observation is in regard toWnt/β-catenin pathway,
which is supposed to play roles in EMT [155]. Vermeulen and
colleagues showed that cancer cells with high Wnt pathway
activity are observed near stromal myofibroblasts [156]. We
can explain this observation by considering MSCs going
through both MMT and MET, giving rise to both carcinoma

Fig. 3 Schematic diagram showing the process of carcinogenesis; (a).
The primary insult causes disruptions in the epithelium and its
basement membrane; (b, c, d). The injury attracts immune cells along
with MSCs by means of chemokines and adhesion molecules; (e, f).
MSCs pass through the injured basement membrane, enter the epithelial
milieu and transdifferntiate to epithelial tissue (MET); (g, h, i, j); If the

insults are repetitive or persistent or chronic inflammation develops
(secondary insult), the newly formed epithelium from MSCs, which still
has conserved their mesenchymal features, as well as their stemness, go
through rapid population expansion, and nullify their tumor suppressor
genes, and consequently give rise to carcinoma in situ, invasive
carcinoma and metastasis
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cells and myofibroblasts. In fact, EMTand METare reversible
processes, and observations are a snapshot en route to full
EMT/MET and thus could not be representative of a precise
epithelial or mesenchymal state [157] and considering the role
of MET in carcinoma formation is as fair as EMT based
hypotheses.

Conclusion

The high complexity and diversity in cancer development is
still unraveled and through previous decades, cancer models
have been re-written several times. In this paper, we presented
a model of carcinogenesis which chains together the tissue
organization field theory, the stem cell theory and the
inflammation-cancer chain. In this model we propose that tis-
sue resident stem cells could be leaked cells from bmMSC
pool to various injured tissue, which consequently transform
and integrate in the host tissue. If the insult persists or chronic
inflammation develops, as a consequence of recurring expo-
sure to growth factors, cytokines, etc. the newly formed tissue
from MSCs, which still has conserved their mesenchymal
features, as well as their stemness, go through rapid popula-
tion expansion, and nullify their tumor suppressor genes, and
hence give rise to neoplastic cell (both carcinoma and sarco-
ma, as well as carcino-sarcomas). Considering the probability
of this hypothesis being true, the clinical and therapeutic use
of MSCs should be with caution and careful surveys, and the
recipients’ long term follow-up seems to be insightful.
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