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Abstract In recent years, the mesenchymal stem cells
(MSCs) have provided the new opportunities to treat dif-
ferent disorders including infertility. Different studies have
suggested that the MSCs have ability to differentiate into
germ-like cells under specific induction conditions as well as
transplantation to gonadal tissues. The aim of this systematic
review was to evaluate the results obtained from different
studies on MSCs therapy for promoting fertility. This search
was done in PubMed and Science Direct databases using key
words MSCs, infertility, therapy, germ cell, azoospermia,
ovarian failure and mesenchymal stem cell. Among the more
than 11,400 papers, 53 studies were considered eligible for
more evaluations. The obtained results indicated that the
most studies were performed on MSCs derived from bone
marrow and umbilical cord as compared with the other types
of MSCs. Different evaluations on animal models as well
as in vitro studies supported from their role in the recovery
of spermatogenesis and folliculogenesis. Although the data
obtained from this systematic review are promising, but the
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further studies need to assess the efficiency and safety of
transplantation of these cells in fertility recovery.
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Introduction

Infertility is known as an important health and social prob-
lem, affecting both men and women. This condition was
defined as the inability to get pregnant after more than 1 year
of unprotected intercourse. The studies indicated that this
disorder affects 1 in 6 couples [1]. Different factors have
been demonstrated to play a role in the fertility ability of
individuals. They included anatomical defects, environmen-
tal and genetics factors [2, 3].

Although the assisted reproductive technique (ART) is
considered as the most effective way for treatment of infertil-
ity in humans, but the use of this method was accompanied
with some limitations. This technique cannot be used for
patients with no sperm [4]. The recent studies have been
focused on the derivation of germ like cells from stem cells
or the evaluation of stem cell transplantation in treatment of
infertility [5-9].

Numerous researches indicated that embryonic stem cells
(ESCs) had the ability to generate the differentiated cells
expressing some germ cell markers [5, 6, 10-12]. However,
the use of these stem cells has disadvantages including
the tumor formation and ethical limitations. Furthermore,
the isolation of these cells needs the destruction of human
embryos [13-15].

Recently, mesenchymal stem cells (MSCs) therapy has
been considered as the new option to treat infertility [16].
These spindle-shaped cells could be proliferated and formed
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colony forming unit-fibroblasts (CFU-Fs). These cells were
generally isolated by the adherent ability to the plastic surface
and their identity was confirmed by the positive expression of
CD105, CD73 and CD90 as well as the negative expression
of CD45, CD34, CD14, CD19 and HLA-DR [17]. Mesen-
chymal stem cells (MSCs) were reported to have the differ-
entiation ability into cells of all three germ layers including
osteocytes, chondrocytes, adipocytes, cardiac cells, neuronal
cells and germ cells [18, 19]. However, the studies have been
demonstrated that the differentiation ability of bone marrow-
derived mesenchymal stem cells (BM-MSCs) decreased with
increasing age [20, 21]. The growth factors secreted by MSCs
have been revealed to involve in cell survival, proliferation,
migration as well as angiogenesis and immune modulation.
Hence, these cells were suggested as ideal candidates for
regenerative medicine [22].

These cells can be obtained from different tissues
such as bone marrow, lung, liver, adipose tissue, umbili-
cal blood, amniotic fluid, umbilical cord and peripheral
blood as well as reproductive tissues [23—-32]. Some reports
indicated that there was very small embryonic like stem
cells (VSELSs) in testis and ovary. They showed the char-
acteristics resembling MSCs [33]. These cells have been
known to be in the basal layer of seminiferous epithelium
of the testis and surface epithelium of the ovary. They
could undergo asymmetric division and give rise to the
progenitor cells. Different evidence presented that these
cells survive following chemotherapy exposure and can
undergo germ cell differentiation. It appears that these cells
function as a backup population of stem cells [34, 35]. It
is likely that the interaction between these cells and the
transplanted MSCs play a role in recovery of fertility. Cur-
rently, a small subpopulation of MSCs has been identified
to have the pluripotency ability. These cells could migrate
into damaged tissue via bloodstream and undergo differen-
tiation into the cells identical with the cells of target tissue.
These cells were known as the multilineage-differentiating
stress-enduring (Muse) cells [36].

The aim of this systematic review is to investigate the
effects of mesenchymal stem cells derived from different
sources in the treatment of infertility. The results obtained
from the present review could play an important role in the
assessment of translation of MSCs therapy in clinical trials.

Materials and Methods
Focused Question
This systematic review was performed to address the follow-

ing question: “Could mesenchymal stem cells be used as a
suitable option in the treatment of infertility?”

@ Springer

Search and Study Selection

Key words and subject terms included (“MSCs” AND “infer-
tility””) OR (“MSCs” AND “infertility” AND “therapy”) OR
(“mesenchymal stem cell” AND “infertility”’) OR (“MSC”
AND “germ cell”) OR (“MSC” AND “ovarian failure”) OR
(“MSC” AND “azoospermia”) OR (“mesenchymal stem
cell” AND “ovarian failure””) OR (“mesenchymal stem cell”
AND “azoospermia”). The search strategy was applied to
PubMed database and ScienceDirect, being focused on the
animal models and in vitro studies. The filters included the
publications in the English language. The abstracts not pub-
lished as full manuscripts, reviews or the articles about MSCs
therapy for diseases except infertility were excluded. Stem
cell sources other than mesenchymal stem cells were also
rejected. Data were collected from the full text of the articles
as follows: (i) the source of MSCs (ii) type of the study (in
vitro or in vivo) (iii) the method used for the evaluation of
the germ cell differentiation ability of MSCs and (iv) the
obtained results.

Results
Search Results and Characteristics of Included Studies

The electronic search process yielded 11,419 studies. Among
them, 145 papers received all inclusion criteria (Fig. 1). A
total 53 articles were selected after removing duplicates and
reviews [6, 8, 11, 37-86]. From these articles, 16 articles
included the results obtained from the MSCs transplantation
in male animal models (Table 1), whereas 14 articles showed
the data of the MSCs transplantation assay in female animal
models (Table 2).

Cell Sources of MSCs Used to Induce Germ Cell
Differentiation

MSCs derived from bone marrow (BM-MSCs) were used
in 23 studies, whereas 12 papers used umbilical cord-
derived MSCs (UCMSCs) for treatment of infertility. Only
one study has examined the microvesicles (MVs) gener-
ated from MSCs. In other studies, the MSCs derived from
adipose tissue, amniotic membrane, chorionic membrane,
menstrual blood, skin and lung were evaluated. In two
papers, the researchers used mesenchymal stem cells of first
trimester human umbilical cord-derived perivascular cells
(FTM HUCPVCs) and term human umbilical cord-derived
perivascular cells (HUCPVCs). One study also investigated
the effect of mesenchymal stem cells derived from MSCs
isolated from human orbital fat tissue (OFSCs).

The effects of MSCs transplantation into ovarian and tes-
tis tissues were studied in 23 studies, whereas in vitro study
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has been used to evaluate the MSCs differentiation into germ
cells in 22 papers. To investigate the role of MSCs on infer-
tility treatment, in vitro assay was followed by transplanta-
tion in five studies. Most of these studies were performed
with the use of MSCs derived from the human species.

Use of Transfection/Transduction for Differentiation
of MSCs into Germ Cells

Liet al. (2016) transduced UCMSCs using plasmid includ-
ing CD61. The expression analysis of markers indicated
the differentiation of these cells into germ like cells [78].
In another study, Fang et al. (2017) increased the CD61
expression by the transfection and the expression of germ
cell markers were evaluated by qRT-PCR, immunocyto-
chemistry and western blot. Their results revealed that CD61
overexpression could induce the differentiation of MSCs into
primordial germ cell (PGC)-like cells through integrin-f3-
transforming growth factor beta (TGF-f) pathway [37]. In
two other studies, the researchers demonstrated that the
overexpression of STRA8, BOULE, and DAZL genes by
plasmid transfection could contribute to the differentiation
of BM-MSCs into germ like cells. These observations were
also confirmed by qRT-PCR, immunocytochemistry and
western blot [71, 86].

Treatment Approaches Used for Differentiation
of MSCs into Germ Like Cells

Different combinations of growth factors were used in 13
studies to induce the differentiation of MSCs into germ like
cells. Hua et al. (2009) treated the human BM-MSCs by

retinoic acid (RA) and testicular extracts. Although the low
number of cells differentiated into germ cells, the expression
pattern of germ cell markers showed that these cells could
be used for treatment of infertility [11]. These researchers
(2009) in another study also showed that a small proportion
of lung- derived MSCs (L-MSCs) can differentiate into germ
like cells after treatment with RA. However, it was not clear
that whether these cells had the ability to function as sper-
matozoa [48]. Hosseinzadeh Shirzeily et al. (2013) induced
two types of MSCs by treatment with RA. Their obtained
results revealed that BM-MSCs had the germ cell differ-
entiation ability more than adipose- derived MSCs (ADM-
SCs) [56]. In another study, Ghasemzadeh-Hasankolaei et al.
(2014) evaluated the effect of BMP4, BMP8b and TGFbl
on the differentiation ability of BM-MSCs into germ like
cells in vitro conditions. They found that TGFbl treatment
could be led to more effective differentiation of BM-MSCs
into primordial cells, as compared with BMP4 and BMP8b
treatment [6]. Jouni et al. (2014) also demonstrated that BM-
MSCs can differentiate into germ cells through activation of
the MAPK pathway. They used SMF and BMP4 for induc-
tion of differentiation [62].

Li et al. (2014) and Wei et al. (2016) assessed the effect of
BMP4 treatment on UCMSCs and ADMSCs, respectively.
Their observations indicated that these cells can differenti-
ate into germ like cells under medium including BMP4 [77,
84]. In other research, Kaviani et al. (2014) investigated the
expression of germ cell markers in vitrified-UCMSCs and
non- vitrified- UCMSCs treated with RA, testosterone and
conditioned medium prepared from testicular cell cultures
(TCC). They found that vitrification did not have any effect
on the expression of germ cell markers [57]. Amidi et al.
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(2015) also demonstrated that UCMSC:s in the presence of
RA and TCC had the ability to differentiate into germ like
cells [51]. Other study performed by Yan et al. (2015) also
confirmed that RA can have the more ability than BMP4 to
induce the expression of germ cell markers [86].

In 2016, Afsartala et al. was evaluated the ability differen-
tiation of amniotic-derived MSCs (AMSCs). They found that
these AMSCs can differentiate into germ like cells through
a two-step treatment method with BMP4 and RA [42]. Hou

cated that these cells were able to differentiate into
differentiation of some MSCs into germ cells in the

The results obtained from expression analysis indi-
spermatogenic cells in the azoospermic rat model
The results showed that these MSCs can differenti-
ate into germ cells after treatment with RA, but the
number of differentiated cells is low. The results
obtained from transplantation also indicated the
The results indicated that BM-MSCs transplantation
improved spermatogenesis in busulfan-induced
MSCs transplantation led to induction of spermato-

8
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[53]. The study performed by Xie et al. (2015) revealed that
the expression pattern and morphology of MSCs co-cultured
with Sertoli cells (SCs) was similar to germ cells, confirming

ADMSCs Adipose-derived mesenchymal stem cells, UCB-MSCs Umbilical cord blood-derived mesenchymal stem cells, BM-MSCs Bone marrow- mesenchymal stem cells, UCMSCs Umbilical
cord derived mesenchymal stem cells, FTM HUCPVCs First trimester human umbilical cord-derived perivascular cells, ferm HUCPVCs Term human umbilical cord-derived perivascular cells

3 % their differentiation into male germ cells [54]. The results
g E = g Q obtained by Liu et al. (2014) also indicated that co-culturing
g E o) p= = granulosa cells (GCs) with BM-MSCs contributed to reduce
3= g = = apoptosis induced by cisplatin [81].
O |8 G} = = pop y cisplatin [81]
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S % = i = ; entiation into germ-like cells [68]. In only one study, the
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FGF2, BMP4 and LIF, supporting SSCs differentiation. The
evaluation of culturing murine germ cells on mitomycin-
inactivated FTM HUCPVC feeders also showed that these
cells could be applied as a feeder system for proliferation and
survival of germ cells [41].

The Application of Microvesicles (MVs) Derived
from MSCs in Treatment of Infertility

In only one study, Mokarizadeh et al. (2013) evaluated the
effects of microvesicles (MVs) derived from MSCs on the
quality parameters of sperms. They found that these MVs
enhanced the quality of crypserved sperms, suggesting that
the MVs derived from MSCs can play a protective role
against the sperm damage [63].

Animal Studies Performed for the Treatment of Male
Infertility by MSCs Transplantation

The efficacy of MSCs therapy on male infertility was evalu-
ated in 16 different animal studies. In 2012, Sabbaghi et al.
transplanted BM-MSCs into the testicular torsion rats to
evaluate the ability of these cells in the treatment of infertil-
ity. They observed no spermatogenesis in the torsion testis
after BM-MSCs transplantation. However, the expression
of germ cell markers indicated the initiation of differentia-
tion into germ cells. It is likely that it needs to follow up the
study for a longer time [58]. In another study, Wang et al.
(2013) used the MSCs isolated from goat bone marrow in
xenotransplantation, demonstrating that MSCs had poten-
tial to restore spermatogenesis into the seminiferous tubules
of busulfan-treated mice [60]. Other studies performed by
Rahmanifar et al. (2016) and Vahdati et al. (2017) also con-
firmed these observations [74, 85].

Cakici et al. (2014) also investigated the effect of ADM-
SCs transplantation in the treatment of infertility in rats.
They found that these cells reversed the spermatogenesis in
some seminiferous tubules of busulfan treated rats [8]. The
other study on lead nitrate (LN)-treated male rats indicated
that the administration of MSCs improved the sperm char-
acteristics and could play a role in the reestablishment of
spermatogenesis [46]. Yang et al. (2014) also revealed that
UCMSC:s transplantation improved the expression of germ
cell markers in the testis of busulfan-treated mice and these
cells could be suggested as a suitable option for treatment of
infertility [47]. In another study, Zhang et al. (2014) demon-
strated that transplantation of BM-MSCs co-cultured with
Sertoli cells can induce trans-differentiation of MSCs into
spermatogenic cells in busulfan-induced azoospermic rats
[55]. Furthermore, the other study (2014) on the evaluation
of MSCs transplantation into a mouse model of autoimmune
infertility indicated that MSCs may play a role in suppres-
sion of antisperm antibody (ASA) [67].

In 2015, Chen et al. observed that UCMSCs had the ability
to differentiate into germ like cells and facilitated the improve-
ment of damaged testicular tissue in busulfan-treated mice
[52]. The study of torsion-induced Sprague—Dawley rats also
demonstrated that MSCs could prevent torsion-induced infer-
tility through diminish apoptosis and oxidative stress as well as
increase testosterone secretion [49]. Ghasemzadeh-Hasankolaei
et al. (2016) transplanted the BM-MSC:s into the testes of infer-
tile rats. They observed that the number of transplanted cells
decreased in the testes as time progressed. However, their
results indicated that transplanted BM-MSCs differentiated into
spermatogonia in the testes of infertile rats [43], being consist-
ent with the similar results obtained by Mehrabani et al. [66].
Anand et al. (2016) also demonstrated that MSCs derived from
bone marrow had the ability to restore spermatogenesis follow-
ing busulfan treatment [69]. Ghasemzadeh-Hasankolaei et al.
(2016) in another study investigated the differentiation ability
of ram BM-MSCs into germ cells. They observed that TGF-1
was more effective than RA in differentiation of BM-MSCs into
spermatogonia. Indeed, these treated cells could home at semi-
niferous tubules and form colonies [44]. Maghen et al. (2016)
also demonstrated that FTM HUCPVCs could improve the
regeneration of the seminiferous tubule in mono-2- ethylhexyl
phthalate (MEHP)-treated male mice [41]. In another study, Abd
Allah et al. (2017) compared the differentiation ability of MSCs,
hematopoietic stem cells (HSCs) and mono cell layer derived
from umbilical cord blood. Their results showed that the injec-
tion of MSCs restored the spermatogenesis ability to testes of
busulfan-treated mice model. In contrast; these results did not
observe for treatment with HSCs and mono cell layer [39].

Animal Studies Performed for the Treatment of Female
Infertility by MSCs Transplantation

In 14 studies, the transplantation of MSCs was investi-
gated in female animal models of infertility. Fu et al. (2008)
presented that MSCs secreted growth factors including
VEGTF, IGF-1 and HGF in culture medium, reducing the
germ cell (GC) apoptosis and enhancing the function of the
ovary [64]. Furthermore, Kilic et al. (2014) investigated the
effect of MSCs therapy in cyclophosphamide-treated rats.
They demonstrated that administration of MSCs following
chemotherapy could protect from germ cells against apop-
tosis [76]. Abd-Allah et al. (2013) also demonstrated that
MSC:s could increase ovarian follicle in rabbits with ovarian
failure [59]. Fouad et al. (2016) also obtained the similar
results following the injection of AMSCs and ADMSCs to
rats with cyclophosphamide-induced ovarian failure [79].
Mohamed et al. (2017) used the intraovarian injection of
MSCs in chemotherapy-treated mouse model. They found
that transplanted MSCs could improve folliculogenesis and
pregnancies number in chemotherapy-induced ovarian fail-
ure mouse model [80].
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In 2016, Elfayomy et al. established the ovarian failure
model through treatment of rats with paclitaxel. The results
obtained from MSCs injection indicated that these stem
cells can improve the ovarian failure and folliculogenesis
through the establishment of epithelium or the effects on
the ovarian microenvironment [65]. The data obtained by
Wang et al. (2017) also confirmed these observations [70].
In two other studies, the researchers used a cyclophosph-
mide (CTX)-induced rat model to evaluate the role of MSCs
transplantation in improvement of infertility. They found that
the injection of UCMSCs could diminish cell apoptosis in
the ovary and improve folliculogenesis [50, 72]. Liu et al.
(2012, 2014) also observed long-term survival and prolifera-
tion of MSCs in the ovary of cisplatin or cyclophosphamide-
induced POF model [75, 81]. Lai et al. (2014) transplanted
MSCs derived from the skin to the chemotherapy-treated
females. The obtained results indicated that the migration of
these cells to damage ovaries could play a role in regulation
of pro-inflammatory cytokines as well as oogenesis marker
genes, restoring the function of damaged ovaries [82]. Liu
et al. (2014) also found that menstrual blood-mesenchymal
stem cells (MenSCs) transplantation increased the expres-
sion level of ovarian markers in the POF model. The higher
number of normal follicles was observed in this transplanted
group, making them ideal cells in the infertility treatment
[83].

Gan et al. (2017) also established the Intrauterine adhe-
sion (IUA) models and then, they studied the efficiency of
MSC:s transplantation on damaged endometria in these mod-
els. They found that immunomodulatory properties of MSCs
could play a role in endometrial regeneration in the injured
uteri [73].

Discussion

This study is the first systematic review about the ability of
mesenchymal stem cells (MSCs) in restoration of fertility.
Although the clinical trial has planned for effect of mesen-
chymal stem cell transplantation in treatment of infertility
(https://clinicaltrials.gov/ct2/show/NCT02062931), but its
outcome is unknown at present. The results of the present
systematic review were based on in vitro differentiation and
animal studies. The various sources of MSCs used in the
studies and different evaluation methods make it difficult to
compare the obtained results with each other.

In the most studies, MSCs derived from bone marrow
(BM-MSCs) was used for the assessment of the role of
these cells in infertility therapy. The results of these studies
indicated that growth factors including RA, BMP4, BMP8b
and TGFb1 could support from the differentiation ability of
BM-MSCs into germ like cells. However, there were some
limitations. For example, the no expression of ACR meiotic
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marker was observed in TGFb1 treated cells, indicating
these cells cannot enter into meiosis [6] or fewer numbers
of sperm like cells was observed after treatment of BM-
MSCs with RA and the extracts obtained from goat testes,
as reported by Hua et al. (2009) [11]. Hou et al. (2016) was
also reported that the BM-MSCs could be considered as the
treatment option for infertile patients with complete loss
of Leydig cells [61]. The studies indicated that the Leydig
cells play a role in the support of spermatogonial stem cell
proliferation [87]. Furthermore, it appears that the treat-
ment of BM-MSCs before injection play a key role in the
improvement of transplantation outcome. The comparison
of the obtained results indicated that the type of treatment
of BM-MSCs before transplantation could influence on the
fate of transplanted BM-MSCs. Some growth factors may
inhibit the meiotic division in these cells, as demonstrated
by Ghasemzadeh-Hasankolaei et al. (2016) [44]. Further-
more, the tracing of transplanted cells demonstrated their
migration into the basement membrane of the seminiferous
tubules. In the study performed by Wang et al. (2013), the
BM-MSCs derived from goat were transplanted into the
seminiferous tubules of busulfan-treated mice. The obser-
vation of spermatogenesis improvement indicated that it is
less likely that the difference between donor and recipient
species affected on the outcome of MSCs therapy of infertil-
ity [60]. Also in some studies, the effect of BM-MSCs on
germ cells (GCs) survival was reported in damaged ovaries.
The authors found that BM-MSCs play a role in improving
follicles survival and reduction of GCs apoptosis [59, 64,
80]. In fact, it appears that cytokines secreted from MSCs
could influence on proliferation and survival of neighboring
cells, be consistent with the results of the study performed
on microvesicles (MVs) derived from MSCs [61]. Very low
number of ovarian stem cells (OSCs) have been identified
in ovarian surface epithelium and cortical tissue. These cells
have been known to be expressed ovarian germ line markers
and had ability to differentiate into cells of all three embry-
onic germ layers. Some reports indicated that these cells can
produce new granulosa cells and primary follicles [88, 89].
Furthermore, discovery of spermatogonial stem cells (SSCs)
suggested the new resource for the restoration of spermato-
genesis in the testis. These cells showed the unusual feature
as they are unipotent cells [90, 91]. The existence of these
stem cells (OSCs and SSCs) in the gonadal tissues suggested
that the growth factors secreted by transplanted MSCs may
influence on these cells and led to progress the differentia-
tion of these cells into germ cells.

The interesting results has obtained from the assessment of
the ADMSC:s in treatment of infertility [8, 37, 56]. Although
the results obtained by Hosseinzadeh Shirzeily et al. (2013)
indicated that ADMSCs had less differentiation ability than
BM-MSC:s following treatment with RA [56], the other study
performed by Cakici et al. (2013) on the transplantation of
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ADMSC:s into busulfan-treated testes demonstrated that
these MSCs could differentiate into functional sperms. The
observation of birth of 9 live offspring after mating healthy
females with males transplanted with ADMSCs was the direct
evidence of the role of ADMSC:s in the restoration of fertility
ability [8]. However, the recent study about the effect of over
expression of CD61 on the differentiation of MSCs into germ
cells indicated that the fewer numbers of cells (almost 1%)
showed the haploid status in vitro [37]. Indeed, the results
obtained from the studies showed that MSCs derived from
adipose tissue could be a suitable and available source for
the establishment of spermatogenesis in azoospermia males.

In some other studies, the generation of germ cells from
UCMSCs was assessed in vitro [40, 45, 51, 53, 54, 57]. In two
of them, the co-culture technique was used to evaluate the dif-
ferentiation ability of UCMSCs into germ cells [53, 54]. The
co-culture method has been identified to provide a suitable
microenvironment for UCMSC:s differentiation. Although the
results obtained from these two studies indicated the differ-
entiation of UCMSCs into germ like cells under co-culture
conditions with placental cells or Sertoli cells [53, 54], but
the absence of evaluation of meiotic markers such as SCP1
was considered as the limitation of these studies. The effect
of vitrification on germ cell differentiation ability of UCM-
SCs was assessed only in one study performed by Kaviani
et al. (2014) [57], indicating that the vitrification did not influ-
ence on the differentiation ability of these mesenchymal stem
cells. Although the results obtained by expression analysis
confirmed the differentiation ability of UCMSCs into germ
like cells after culturing in presence of testicular cell condi-
tioned (TCC)- medium or RA followed by placental feeder
cells or BMP4, these cells did not show the haploid status
[40, 45, 51, 57]. It seems that these cells showed the charac-
teristics like to primitive germ cells. The outcome obtained
from the animal studies was also supported from the efficacy
of UCMSC:s in the recovery of seminiferous tubules morphol-
ogy, improvement of spermatogenesis and folliculogenesis in
azoospermia and premature ovarian failure (POF) models [47,
50, 52]. These observations were consistent with the results
of UCB-MSC:s transplantation performed by Elfayomy et al.
(2016) and Abd Allah et al. (2017) [39, 65].

Two different research groups tried to examine the germ
cell differentiation ability of MSCs derived from amniotic
membrane [40, 42]. Although they found the contradictory
results, the comparison of these two studies showed that the
type of growth factors used for treatment of these MSCs
could influence on their differentiation ability into germ cells
(GCs), indicating the presence of RA had an important role
in induction of germ cell differentiation.

The conflicting results have been obtained in two studies
about the role of HUPVC s, a rich source of MSC:s, in the res-
toration of testes functions [38, 41]. Although Maghen et al.
(2016) reported that these cells did not show the ability to

differentiate into germ cells or Sertoli cells in the condition
similar with testes [41], the results obtained by Shlush et al.
(2017) indicated that these cells could differentiate into germ
cells and Sertoli cells by mimicking physiological conditions
of spermatogenesis [38]. It is likely that the use of RA for
induction of differentiation by Shlush et al. (2017) play an
important role in the observation of the haploid status of the
differentiated cells. However, the studies on animal models
demonstrated that the HUPVCs showed the supportive char-
acteristics of testicular tissue [41].

Until now, the evaluation of germ cell differentiation abil-
ity of lung-MSCs has been only performed by Hua et al.
(2009) [48]. Although, there was evidence of differentiation
of small population of these cells into germ cells, but deci-
sion about the application of these cells in infertility therapy
needs more studies. There are some problems with genera-
tion of germ cells from stem cells in vitro. At first, it needs
to be done meiosis correctly. Furthermore, the epigenetic
changes during male and female gametogenesis should be
performed properly. These two points are necessary for the
generation of functional gametes [92].

Conclusion

In summary, the results obtained from this systematic review
provide better understanding about the role of mesenchymal
stem cells in improvement of infertility before translating the
MSC:s therapy into clinical trials. The obtained results showed
that MSCs derived from bone marrow and umbilical cord
showed the better ability than other types of MSCs to restore
the fertility. The most studies indicated that MSCs could be
used as a suitable option for treatment of azoospermia in males
as well as premature ovarian failure in females. However, the
obtained results indicated that it needs to do more evaluation
about the efficacy of these cells for treatment of infertility.
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