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Abstract Large articular cartilage defects remain an im-
mense challenge in the field of regenerative medicine be-
cause of their poor intrinsic repair capacity. Currently, the
available medical interventions can relieve clinical symp-
toms to some extent, but fail to repair the cartilaginous injuries
with authentic hyaline cartilage. There has been a surge of inter-
est in developing cell-based therapies, focused particularly on
the use of mesenchymal stem/progenitor cells with or without
scaffolds. Mesenchymal stem/progenitor cells are promising
graft cells for tissue regeneration, but the most suitable source
of cells for cartilage repair remains controversial. The tissue
origin of mesenchymal stem/progenitor cells notably influences
the biological properties and therapeutic potential. It is well
known that mesenchymal stem/progenitor cells derived from
synovial joint tissues exhibit superior chondrogenic ability com-
pared with those derived from non-joint tissues; thus, these cell
populations are considered ideal sources for cartilage regenera-
tion. In addition to the progress in research and promising pre-
clinical results, many important research questions must be an-
swered before widespread success in cartilage regeneration is
achieved. This review outlines the biology of stem/progenitor

cells derived from the articular cartilage, the synovial membrane,
and the synovial fluid, including their tissue distribution, func-
tion and biological characteristics. Furthermore, preclinical and
clinical trials focusing on their applications for cartilage regen-
eration are summarized, and future research perspectives are
discussed.
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Introduction

Articular cartilage is a thin connective tissue covering the
end of bones to transmit loads to the subchondral bone
and to provide a smooth surface for low-friction motion.
Many joint disorders, such as intra-articular fracture, can
lead to cartilage defects. The repair ability of articular
cartilage is very limited because of its avascular nature
and the paucity of resident stem cells. Partial-thickness
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defects of mature articular cartilage do not heal spontane-
ously [1, 2], while full-thickness lesions are always
repaired with fibrocartilage that has inferior mechanical
properties [3, 4]. Much effort has been devoted to carti-
lage regeneration; nevertheless, current medical interven-
tions, such as microfracture and mosaicplasty, can relieve
clinical symptoms to some extent but fail to restore func-
tional and phenotypically stable hyaline cartilage [5–7].

Autologous chondrocyte implantation (ACI) has been con-
sidered as a useful repair technique for cartilage defects [8]. In
this cell-based technique, chondrocytes are harvested from a
non-weight bearing articular cartilage after biopsy, expanded
in vitro and then implanted into the cartilage defect [9].
Nevertheless, chondrocytes gradually lose their phenotype
during in vitro expansion [10, 11], and dedifferentiated
chondrocytes have been reported to be unable to generate
stable hyaline cartilage [12–14]. Therefore, the phenotype
changes of expanded chondrocytes may compromise the
long-term clinical outcomes of ACI.

Because stem cells can generate hyaline-like cartilage tis-
sue under specific conditions, stem cell-based therapy has
been regarded as a promising approach to address the com-
plexity of cartilage injury. Recently, mesenchymal stem cells
(MSCs) have attracted increasing attention for cartilage regen-
eration owing to their ease of isolation, relatively high expan-
sion rates, low immunogenicity, and multipotency. MSC-
specific markers are not yet clearly defined, and the phenotype
and comparison of MSCs from different tissues isolated using
different protocols are still based on the combination of dif-
ferent parameters according to the minimal criteria proposed
by the International Society for Cellular Therapy [15].

MSCs are comprised of heterogeneous cell populations, and
their regenerative capacity varies among tissue sources
[16–18]. MSCs from different tissues have been shown to
differ dramatically in chondrogenic potency [19–21]. Hence,
the innate tissue-specific characteristics should be taken into
consideration when developing MSC-based cartilage regener-
ation approaches. For instance, bone marrow-derived MSCs
(BM-MSCs) are apt to undergo endochondral bone develop-
ment rather than form stable hyaline cartilage after
chondrogenic induction. Without any osteogenic induction,
rat BM-MSCs can spontaneously calcify during in vitro culture
[22]. The subcutaneous implantation of chondrogenically-
primed BM-MSCs leads to bone formation, but not stable car-
tilage formation [23–26]. Furthermore, the transplantation of
chondrogenically-primed BM-MSC pellets into an atrophic,
non-union environment resulted in pronounced bone regener-
ation through endochondral ossification [27]. These findings
raise considerable concern about the improper differentiation
of BM-MSCs during cartilage regeneration.

Recent studies found that stem/progenitor cells derived
from synovial joint tissues showed superior chondrogenic
ability when compared with those derived from bone

marrow and adipose tissue [20, 28, 29], thus suggesting
that the resident stem/progenitor cells in synovial joints
could be ideal cell sources for cartilage repair. A further
understanding of the biology and regenerative potential of
these progenitors is likely to yield new therapeutic ap-
proaches that could successfully repair cartilage defects.
Therefore, in this review, we discussed the distribution
and function, preclinical and clinical applications, and fu-
ture perspectives of stem/progenitor cells isolated from
three types of synovial joint tissues: articular cartilage, sy-
novial membrane and synovial fluid.

In vivo Distribution of Progenitors in the Synovial
Joint

The synovial joint comprises different tissues enclosed within
the joint capsule, including articular cartilage, bone,
synovium, ligaments, and the fibrous capsule. The following
techniques have been employed to determine the distribution
of progenitors in the synovial joint: 1) DNA labeling methods
to detect the slow-cycling cells [30–32]; 2) transgenic animal
models to track the fate of progeni tors [33]; 3)
immunohistological analysis to detect the distribution of pu-
tative stem cell markers [34–38].

Tissue Distribution of Progenitors in the Synovial Joint

The distribution of stem/progenitor cells in synovial joint
tissues has been studied in some rodent species, such as
rat, mouse and rabbit. Progenitors are slowly proliferating
cells in vivo; therefore, DNA labeling agents, such as
[3H]-thymidine, bromodeoxyuridine (BrdU) and 5-ethy-
nyl-2′-deoxyuridine (EdU), are useful to identify their lo-
calization due to the long-term labeling capacity of these
agents in stem/progenitor cells. Usually, the distribution
of cells that retain a long-term label is determined by a
pulse-chase method.

In embryonic and young rats, cells with long-term [3H]-
thymidine-labeling were observed in the proximal portion
of the growth plate, the perichondrial ring and the surface
of articular cartilage [30]. Similarly, in rabbit joints, long-
term BrdU-positive cells were observed in the germinal
zone of the growth plate, the perichondrial groove of
Ranvier and all the zones of articular cartilage [31]. In
the developing synovial joints of mice, long-term EdU-la-
beled cells were predominantly present at the surface zone
of the articular cartilage, but were also detectable in the
other areas of articular cartilage, the perichondrium/
periosteum and the synovium [32]. Collectively, these
studies showed that stem/progenitor cells reside in the ar-
ticular cartilage and its adjoining tissues.
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Tissue Distribution of Progenitors in the Articular
Cartilage

The articular cartilage consists of histologically distinct
zones with different cell populations: the superficial zone,
the transition zone, the deep zone, and the calcified zone
[39]. During development, articular cartilage grows
appositionally from the articular surface, indicating that
the superficial zone contains progenitor cells that provide
transit-amplifying progeny for growth [40]. Using a trans-
genic mouse model, Kozhemyakina et al. tracked the fate
of articular cartilage progenitor cells and found that the
Prg4+ cells, a progenitor population for the deeper layers
of mature articular cartilage, were observed at the joint
surface in the embryo [33].

Several putative stem cell markers have been used to
determine the location of progenitors in the cartilage.
CD166, a putative marker of articular cartilage stem/
progenitor cells, was primarily located in the superficial
and middle zones of cartilage [34]. Interestingly, the ex-
pression of Notch-1, a cell surface marker of in vitro cul-
tured cartilage progenitors, was observed in all zones of
human articular cartilage [35]. Likewise, other putative
MSCs markers, such as CD90, Stro-1, Oct-3/4, and
CD105, were found in various zones of human cartilage
[36]. From the superficial to the deep zone of articular
cartilage, a high percentage of cells were positive for
Notch-1, Stro-1 and VCAM-1 [37]. In view of the low
frequency of stem/progenitor cells in the cartilage, these
abundantly expressed cell markers may not be sufficient
to determine the precise location of stem/progenitor cells;
thus, further investigation is needed.

Tissue Distribution of MSCs in the Synovial Membrane

The synovial membrane has two layers: the synovial lining
and the sub-intimal layer. The synovial lining is comprised
of fibroblast-like synoviocytes and macrophage-like
synoviocytes, while the sub-intimal space contains fibrous
tissue, blood vessels and immune cells [41]. In vitro, the
ultrastructural and immunocytochemical features of syno-
vial membrane-derived MSCs (SM-MSCs) are similar to
the fibroblast-like synoviocytes, indicating that they may
originate from the synovial lining [42].

In a mouse model of joint-surface injury, SM-MSCs have
been identified in the lining layer and the subsynovial tissue of
synovium [43]. In healthy humans, SM-MSCs were found to
be localized in the subintimal zone of the synovial membrane
[44]. In patients with osteoarthritis, however, the distribution
of SM-MSCs was more diffuse; they have been found around
veins in the perivascular matrix [44], as well as in synovial
surface projections [38].

Response of Stem/Progenitor Cells to Cartilage
Injury

To maintain tissue homeostasis, adult stem cells undergo asym-
metric cell division to self-renew and generate functional cells to
replenish the dead ones [45]; this process can be intensified by
injury signals to restore tissue function. After cartilage injury,
stem/progenitor cells in the joint tissues, such as synovium, under-
go proliferation and serve as a pool of reparative cells [43, 46–48].

In vivo Studies

Partial-thickness articular cartilage injuries (PTCIs) provide a
useful model to study the intrinsic reparative response of res-
ident stem/progenitor cells in the synovial joint [46, 47].
Notably, in the PTCIs model, cartilage defects do not pene-
trate the subchondral bone; and consequently, there is no in-
filtration of bone marrow cells from the subchondral bone,
which usually serves as the major source of reparative cells
in full-thickness cartilage defects [52, 53].

In immature rats, the repair response occurs immediate-
ly after PTCIs, and progenitor cells, identified as CD105+

and CD166+ cells, have been found in the superficial and
transitional zones of the reparative cartilage tissue [46]. In
mature rats, putative progenitor cells, defined as CD105+

or BrdU-label-retaining cells, have been found around the
injury sites of PTCIs and increased during the repair pro-
cess, indicating that cartilage injury activated the prolifer-
ation of these progenitors [47]. Although there is no re-
cruitment of BM-MSCs from the subchondral bone in
PTCIs, the precise tissue origin of these reparative stem/
progenitor cells remains uncertain.

The synovium is highly responsive to cartilage injury.
MSCs residing in the synovium have been shown to respond
to full-thickness articular cartilage injury through cell prolif-
eration and chondrogenesis [43]. At PTCIs, the recruitment of
repair cells from the synovial membrane was evident, as
shown by a continuous layer of mesenchymal cells extending
from the synovial membrane across the surface of normal
articular cartilage into the defect [48]. Additionally, the re-
cruited synovial cells were able to differentiate into
chondrocytes when stimulated by TGF-β1 [49]. Collectively,
these data clearly showed that the synovium contributes to
articular cartilage repair in both full- and partial-thickness
defects.

Synovial fluid (SF) is a clear, viscous, hyaluronic acid-rich
liquid in contact with the synovial membrane and articular
cartilage [54]. It provides a route for exogenous stem cells to
access cartilage defects after intra-articular injection [55]. In
normal joints, the number of synovial fluid-derived MSCs
(SF-MSCs) is very low, but it increases notably under injury
or in osteoarthritic conditions [50, 51].
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Ex vivo Studies

Cartilage explants are very helpful for investigating the repar-
ative mechanism of cartilage injury. Following a mechanical
injury, two repair mechanisms have been described in porcine
cartilage explants: 1) proliferation of cells close to the injured
cartilage, and 2) chemotactic migration of cells toward the
injured surface followed by binding to the repair tissue [56].
Likewise, in blunt-impact-injured cartilage explants, nonvia-
ble areas were repopulated by MSC-like cells migrating from
the surrounding matrix [57], and this repair response can be
enhanced by stromal cell-derived factor 1 alpha through stim-
ulation of the recruitment of local cartilage progenitors [58].
At the wound edge of explants, cells responsible for
neocartilage formation originated from the deep zone of car-
tilage [59]. Taken together, these studies revealed that tissue-
resident progenitors were actively engaged in the repair of
injured cartilage.

Biological Characteristics

Articular Cartilage-Derived Mesenchymal Progenitor
Cells (AC-MPCs)

Chondrocytes represent a highly differentiated cell type
that producing cartilage-specific extracellular matrix, and
they have long been regarded as the only cell type in artic-
ular cartilage. In 2002, Dowthwaite et al. first isolated AC-
MPCs, a cell type with multi-differentiation potential, from
the surface of bovine articular cartilage by a method of
differential cell adhesion to fibronectin-coated dishes
(termed as the fibronectin adhesion assay). They observed
that AC-MPCs formed large numbers of colonies from an
initially small seeding density and expressed α5β1 integrin
and Notch-1 [60]. Subsequently, they found that AC-MPCs
exhibited phenotypic plasticity in an embryonic chick
tracking system [61]. Similarly, AC-MPCs isolated from
human articular carti lage have been shown to be
multipotent under specific induction conditions, and to ex-
press a panel of cell surface markers typical of MSCs
(Table 1). Based on the similarities with MSCs, in literature
AC-MPCs are also referred to as articular cartilage-derived
mesenchymal stem cells [62, 103, 105].

In addition to the fibronectin adhesion assay, other tech-
niques, as shown in Fig. 1, have been applied to isolate AC-
MPCs, including the Hoechst 33,342 exclusion assay and the
cell sorting techniques. The Hoechst 33,342 exclusion assay is
a valuable technique for identifying and sorting AC-MPCs
because of the property of adult stem/progenitor cells to ex-
clude this DNA binding dye. The cell sorting techniques are
used to isolate AC-MPCs based on the positive and/or nega-
tive expression of specific cell surface markers. Interestingly,

due to differences in the isolation methods, variations in some
of the biological properties of AC-MPCs, such as differentia-
tion potency, were presented. For instance, AC-MPCs isolated
by the Hoechst 33,342 exclusion assay have been shown to be
osteogenic and chondrogenic, but not adipogenic, after in vitro
induction [37]. Additionally, the proliferation and differentia-
tion abilities among AC-MPCs subpopulations have been
shown to vary enormously [62].

AC-MPCs have greater chondrogenic potency than BM-
MSCs [63] and adipose-derived MSCs [28, 64, 65]. Unlike
the full-depth chondrocyte populations, AC-MPCs preserved
chondrogenicity after extensive expansion [66]. Notably, AC-
MPCs did not obtain a hypertrophic cartilage phenotype after
chondrogenic induction, and could thus form stable hyaline
cartilage without calcification [67].

SM-MSCs

The surface markers of SM-MSCs are similar to those of BM-
MSCs (Table 1), but the expression is influenced by various
factors such as cell passage number [68, 69]. SM-MSCs are
multipotent, and their differentiation ability is not influenced
by donor age, cell passage or cryopreservation [70]. SM-
MSCs are highly clonogenic, with a clone forming efficiency
more than 100-fold higher than that of BM-MSCs [71, 72].
Furthermore, SM-MSCs isolated by different methods (Fig. 1)
have robust in vitro expandability; when subcultured at low
density, SM-MSCs retained proliferation ability after exten-
sive expansion [71].

SM-MSCs possess greater chondrogenic ability than
MSCs derived from extra-joint tissues, such as the
adipose tissue [73], bone marrow [71] and umbilical
cord [20]. It is reported that gene expression profiles
of chondrocytes and SM-MSCs are closer to each oth-
er than those of extra-articular tissue-derived MSCs
[74]. At the single-cell level, SM-MSCs are heteroge-
neous in chondrogenic potency [75]. Therefore, as
shown in several studies, an enriched subpopulation
of SM-MSCs could be more efficient for chondrogenic
differentiation than the mixed SM-MSCs populations
[69, 76, 77].

SF-MSCs

SF-MSCs are fibroblast-like cells with a phenotype similar to
that of BM-MSCs (Table 1). SF-MSCs are usually isolated by
the method of direct cell seeding in the culture flask (Fig. 1),
and they are highly proliferative in vitro. For instance, most
bovine SF-MSCs could expand for at least 1 million-fold [78].
The proliferation ability and the expression of pluripotent tran-
scription factors of SF-MSCswere higher than BM-MSCs [79].

In contrast to the proliferation ability, SF-MSCs were infe-
rior in adipogenic, osteogenic and neurogenic differentiation
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when compared to BM-MSCs [78, 79]. However, the
chondrogenic potential of SF-MSCs was comparable to SM-
MSCs [29]. The detailed mechanism of cell-source-dependent
variant in the biological properties of MSCs has not been fully
understood. Gene profiles indicated that SF-MSCs were more
similar to SM-MSCs than to BM-MSCs and adipose tissue-
derived MSCs [80].

Interestingly, the health state of the donor greatly influ-
ences the chondrogenic potential of SF-MSCs. For exam-
ple, SF-MSCs derived from normal joints did not require a
micro-mass step for efficient chondrogenesis, while those
obtained from osteoarthritic joints needed the micro-mass
procedure [81].

Animal Studies

AC-MPCs

Very few animal studies have been conducted to determine the
cartilage repair potential of AC-MPCs (Table 2). To determine
the in vivo plasticity of AC-MPCs, fluorescent PKH26 labeled
cells were injected into the thigh muscle of severe-combined
immunodeficient (SCID) mice; at two weeks post implanta-
tion, no robust cartilage pellet, but only diffuse cartilage nod-
ules, were found, suggesting that AC-MPCs required further
signals for chondrogenic differentiation after ectopic implan-
tation [82].

Nevertheless, in a full-thickness cartilage defect model, the
transplantation of autologous AC-MPCs resulted in improved
reparative tissue and significantly reduced central osteophyte

formation [83]. Moreover, the transplantation of AC-MPCs
showed histological repair scores similar to those of full-
depth chondrocytes, and both groups showed evidence of col-
lagen type II-positive repair tissue [66].

SM-MSCs

Compared with AC-MPCs, more animal studies have been
performed to explore the cartilage repair potential of SM-
MSCs (Table 2). After induction in a traditional chondrogenic
medium, primed SM-MSCs were unable to form stable hya-
line cartilage after ectopic implantation [84, 85]. Interestingly,
when transplanted into cartilage defects, SM-MSCs showed
high cartilage repair ability in both small and large animal
experiments [86–92], indicating that the microenvironment
of graft sites influenced greatly on the fate and behaviors of
grafted cells.

In a rat osteochondral defect model, it was observed that
articular cartilage defects could be repaired by grafted SM-
MSCs [86]. Likewise, in rabbit full-thickness osteochondral
defects, transplantation of SM-MSCs improved cartilage re-
pair [87–90]. Interestingly, placing a suspension of SM-MSCs
on the surface of cartilage defects resulted in rapid adherence
of grafted cells and an improved cartilage repair outcome in
full-thickness osteochondral defects [91, 92]. Due to the
promising outcomes and the simple treatment procedure, this
cell delivery strategy is attractive for clinical application.

In partial-thickness chondral defects (PTCDs), however,
transplanted cells have difficulty in attaching to the surface
of lesions, which may be due to the anti-adhesive properties
of proteoglycan, a rich component of the cartilage matrix

Fig. 1 Schematic representation
of the isolation of stem/progenitor
cells from articular cartilage,
synovial membrane and synovial
fluid. AC-MPCs: articular
cartilage-derived mesenchymal
progenitor cells; SF-MSCs:
synovial fluid-derived
mesenchymal stem cells;
SM-MSCs: synovial membrane-
derived mesenchymal stem cells;
FACS: fluorescence-activated cell
sorting
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existing at the surface of PTCDs [93]. Nakamura and his col-
leagues evaluated the reparative ability of allogenic SM-
MSCs in a porcine PTCDs model [94–97]. They first gener-
ated 3-dimensional scaffold-free tissue engineered constructs
(TECs) from allogenic SM-MSCs in vitro and then implanted
TECs into the PTCDs; the results showed that TECs promoted
the repair of chondral lesions, and the reparative tissue exhib-
ited mechanical properties similar to normal cartilage in static
compression, friction and unconfined compression tests [94,
95]. However, further analysis revealed some compromised
mechanical properties of the reparative tissue: 1) the surface
stiffness of the reparative tissue, measured by a micro-

indentation analysis, was significantly lower than that of nor-
mal cartilage [97], and 2) the tensile strength of the integration
boundary between native cartilage and reparative tissue was
significantly lower than that of uninjured cartilage [96].
Hence, further investigations are needed to improve the integ-
rity of reparative tissue.

SF-MSCs

Only one report has determined the cartilage repair ability of
SF-MSCs (Table 2). In this study, the SF-MSC-laden platelet-
rich plasma (PRP) hydrogel possessed better therapeutic

Table 2 Animal studies of AC-MPCs, SM-MSCs and SF-MSCs for cartilage repair

Cells Animal model Transplantation method Results Ref.

AC-MPCs SCID mice Intramuscular injection of cell suspension. Cells survived post-implantation, but failed to create a robust
cartilage pellet; diffuse cartilage nodules were found.

[82]

Equine FTODs Cells plus fibrin were grafted at the defect
sites.

Autologous AC-MPCs group showed better results than the
empty-defect group, the fibrin only group and the allogenic
AC-MPCs group.

[83]

Goat FTODs Cells were seeded on collagen membrane
and then grafted at the defect sites.

The AC-MPCs group and the full-depth chondrocyte group
showed comparable histological repair scores.

[66]

SM-MSCs Porcine PTCDs Scaffold-free cell/matrix complex was
implanted at the defect sites.

The repair tissue stained positive for Safranin O and collagen
II, exhibited mechanical property similar to that of normal
cartilage.

[94]

Rabbit FTODs Defects were filled with cells and covered
with periosteum.

SM-MSCs improved histological scores, produced abundant
cartilage matrix, and changed over a time course according
to the tissue microenvironment.

[87]

Rabbit FTODs Cell suspensionwas placed on the cartilage
defects for 10 min.

Placing an SM-MSC suspension on the cartilage defect for
10 min resulted in adherence of >60% of cells to the defect
and promoted cartilage regeneration.

[91]

Rabbit FTODs Defects were filled with premature
cartilage engineered by SM-MSCs.

Defects were repaired with hyaline-like cartilage that
integrates with the native tissue.

[88]

Porcine PTCDs Defects were implanted with
tissue-engineered constructs (TECs) of
allogenic SM-MSCs.

TECs promoted the repair of chondral lesions in both
immature and mature pigs without immune reaction; the
repaired tissue exhibited similar viscoelastic properties to
normal cartilage regardless of skeletal maturity.

[95]

Rat FTODs Intra-articular injection of cell suspension. SM-MSCs accumulated at the osteochondral defect; the
regeneration of the articular cartilage was confirmed.

[86]

Porcine PTCDs TECs derived from allogenic SM-MSCs
were implanted at the defects.

The superficial zone of TEC-mediated tissue was
fibrocartilage-like and exhibited compromised mechanical
properties; the middle or deep zones of TEC-mediated
tissue were more hyaline cartilage-like.

[97]

Porcine FTODs Cell suspensions were placed on the
defects for 10 min.

Transplantation of SM-MSCs resulted in better outcomes
than the control knees (without cell transplantation).

[92]

Rabbit FTODs Defects were filled with SM-MSC
aggregates.

Transplantation of SM-MSC aggregates at relatively low
density achieved successful cartilage regeneration, while
high density transplantation failed to regenerate cartilage.

[89]

Rabbit FTODs Defects were filled with SM-MSCs
embedded in PRP.

SM-MSCs embedded in PRP gel successfully resurfaced the
defect with cartilage and restored the subchondral bone.

[90]

Rabbit PTCDs Intra-articular injection of cell suspension. Exposure to fibronectin enhanced the attachment of
SM-MSCs to partial-thickness chondral defects; the tissue
regenerated by SM-MSCs was not hyaline cartilage.

[93]

Porcine PTCDs TECs derived from allogenic SM-MSCs
were implanted at the defects.

The repair tissue was well integrated with the adjacent host
cartilage; no significant differences in histological scores
between the integration boundary and the center of the
repair tissue.

[96]

SF-MSCs Porcine FTODs SF-MSC-laden PRP was used to fill in the
defects.

SF-MSC-laden PRP increased cell growth and maturation of
chondrocytes compared with the PRP only group.

[98]

PTCDs: partial-thickness chondral defects; FTODs: full-thickness osteochondral defects; Ref.: reference(s)
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potential than PRP hydrogel alone in repairing porcine
osteochondral defects, which was evidenced by an increase
in cell growth and the maturation of chondrocytes [98].

Clinical Trials

Clinical trials focusing on cartilage regeneration by articular
cartilage-, synovial membrane- and synovial fluid-derived
stem/progenitor cells are very limited. According to the clin-
ical trials database (www.clinicaltrials.gov), to date (Jun 1,
2017), there is only one completed trial (Identifier:
NCT01879046) that explored the cartilage repair potential of
SF-MSCs, while there are no trials investigating AC-MPC- or
SM-MSC-based cartilage repairs.

In literature, two studies have reported the clinical ap-
plication of AC-MPCs and SM-MSCs for cartilage repair
[99, 100], but there were no clinical results regarding SF-
MSC-based cartilage regeneration. For AC-MPCs, Jiang
and colleagues obtained a population of AC-MPCs from
fully differentiated human articular chondrocytes and
evaluated their repair ability for large knee cartilage de-
fects in 15 patients; the clinical outcomes of AC-MPCs
implantation were highly encouraging [99]. Concerning
SM-MSCs, it was reported that transplantation of SM-
MSCs could improve the clinical outcomes of patients
with a symptomatic single cartilage lesion of the femoral
condyle, in terms of magnetic resonance imaging score,
qualitative histology and clinical evaluation scores [100].

Current Challenges and Future Perspectives

The high chondrogenic potential of AC-MPCs, SM- and SF-
MSCs makes them promising graft cells for cartilage repair.
However, many questions need to be addressed before exten-
sive clinical application. Particular attention should be paid to
the following unanswered questions: 1) How can a sufficient
amount of the aforementioned stem/progenitor cells with high
therapeutic potential be obtained? 2) How can the therapeutic
potential of grafted cells be promoted/enhanced? 3) What is
the repair mechanism? 4) How safe and efficient are these
strategies?

First, obtaining a clinically relevant number of cells is an
important premise for cell-based therapy. The small number of
progenitors in articular cartilage and the synovial fluid ham-
pers the acquisition of a sufficient number of cells.
Furthermore, clinical-grade cell expansion protocols for the
aforementioned stem/progenitor cells have yet to be success-
fully developed. Hence, further studies are needed to establish
protocols that comply with good manufacturing practices; and
it is necessary to determine the quality and therapeutic poten-
tial of cells after extensive expansion. For instance, detailed

evaluations of the genetic stability, phenotype, differentiation
potential, migration ability, and paracrine effects are
suggested.

Second, it is necessary to develop new methods that can
induce stable cartilage formation in vivo. The ability of grafted
cells to maintain a chondrocyte phenotype and thus to produce
hyaline cartilage-specific extracellular matrix is critical for
articular cartilage repair. Traditional chondrogenic induction
protocols often result in transient cartilage formation. To pro-
mote the therapeutic potential of graft cells, smart strategies
that mimic the development of articular cartilage, such as a
combination of mechanical stimulation and growth factors,
are required to produce permanent articular cartilage.

Third, many questions need to be answered at the preclin-
ical level, especially the safety and efficiency of these cell-
based cartilage repair approaches. Although previous animal
studies have shown improved outcomes after cell transplanta-
tion, the fate and repair mechanism of grafted progenitors
remains largely unclear. A combination of stable cell labeling
techniques and non-invasive cell tracking methods, such as
magnetic resonance imaging, is proposed to monitor the fate
of implanted cells for a long-term period.

Finally, high quality clinical trials are still missing.
Although promising results have been shown in some pilot
clinical cases, the clinical evidence is still very limited due to a
small patient population and a short-term follow-up [99, 100].
Therefore, the efficiency of these cell-based treatments needs
to be further confirmed by reliable clinical data from double-
blind, controlled, prospective and multicenter studies with
long-term follow-up, especially clinical studies comparing
the aforementioned stem cell-based strategies with traditional
treatments, such as the arthroscopic procedures.
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