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Abstract Stem cell therapy (SCT) raises the hope for cardiac
regeneration in ischemic hearts. However, underlying molec-
ular mechanisms for repair of deadmyocardium by SCT in the
ischemic heart is poorly understood. Growing evidences sug-
gest that cardiac matrix stiffness and differential expressions
of miRNAs play a crucial role in stem cell survival and dif-
ferentiation. However, their roles on transplanted stem cells,
for myocardial repair of the ischemic heart, remain unclear.
Transplanted stem cells may act in an autocrine and/or para-
crine manner to regenerate the dead myocardium. Paracrine
mediators such as stem cell-derived exosomes are emerging as
a novel therapeutic strategy to overcome some of the limita-
tions of SCT. These exosomes carry microRNAs (miRNAs)
that may regulate stem cell differentiation into a specific line-
age. MicroRNAs may also contribute to stiffness of surround-
ing matrix by regulating extracellular matrix (ECM) turnover.
The survival of transplanted stem cell depends on its autoph-
agic process that maintains cellular homeostasis. Therefore,
exosomes, miRNAs, extracellular matrix turnover, and au-
tophagy may have an integral role in improving the efficacy
of SCT. This review elaborates the specific roles of these
regulatory components on cardiac regeneration in the ische-
mic heart during SCT.
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Introduction

Ischemic heart disease is a leading cause of mortality in the
world. As per the 2012 World Health Organization report 7.4
million people die due to ischemic heart disease (http://www.
who.int/mediacentre/factsheets/fs310/en/). Restricted blood
supply to the ventricular muscles due to narrowing of
coronary arteries results in ischemia that compromises
oxygen supply to cardiomyocytes and other cells in the
myocardium. Severe ischemia leads to acute myocardial
infarction (MI) that results in massive loss of cardiomyocytes
[1]. The adult mammalian heart does not have adequate regen-
erative capacity to replenish the loss of damaged myocardium
after MI. Therefore, MI leads to heart failure [2]. Stem cell
therapy (SCT) provides a strategy to regenerate new myocar-
dium to replenish dead/damaged myocardium of MI hearts by
using exogenous stem cell transplantation [3, 4]. However, the
survival, proliferation, and differentiation of transplanted stem
cells depend on several factors including the stiffness of extra-
cellular matrix (ECM) surrounding the stem cells [5–10].
Proteolysis of ECM by matrix metalloproteinase (MMPs) is
common in cardiovascular disease (CVD) [11]. MMP9 plays
an important role in ECM degradation in pathological hearts
that leads to cardiac fibrosis, a stiffer ECM, that may influence
cardiac stem cell survival and differentiation [8]. MMPs are
regulated bymicroRNAs (miRNAs) [12, 13].MiRNAs are tiny
non-coding RNAs that regulate biological functions of a cell by
modulating expression of genes [14]. MiRNAs have emerged
as a novel therapeutic target for CVD [15–17]. MiRNAs may
play a pivotal role in stem cell survival because they regulate
stem cell autophagy [18, 19]. Autophagy is a lysosomal degra-
dation process that regulates cellular homeostasis [20].
MiRNAs may regulate cardiac stem cell proliferation and dif-
ferentiation [21] by acting in an autocrine and/or a paracrine
fashion [22, 23]. MiRNAs encapsulated in an exosome
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circulate through blood and may have a paracrine effect [24].
Exosomes are lipid bilayer nanovesicles released by different
types of cells when endosomes carrying multivesicles fuse with
plasma membrane. Exosomes exert their therapeutic actions by
involving cell-cell interactions and transferring proteins, RNAs
[25], and miRNAs [23]. Exosomes derived from cardiac stem
cells is a promising therapeutic candidate because in one hand it
may regulate survival, proliferation and differentiation of the
transplanted stem cells whereas on the other hand it may over-
come the limitations of SCT due to immune rejections, terato-
ma, or ethical concerns. In this review, we elaborated the roles
of exosomes, miRNAs, autophagy, and extracellular matrix
turnover in cardiac regeneration during stem cell therapy in
the ischemic heart.

Stem Cell Characteristics and Types

Stem cells are pluripotent cells that can differentiate into dif-
ferent lineages to regenerate different types of cells [26].
Based on origin, stem cells are classified into embryonic stem
cells (ESCs) and adult stem cells (ASCs). ESCs can be main-
tained in tissue culture, while retaining their pluripotency [27].
ESCs in cell culture express the intrinsic transcription factor
Oct4 and constitutively receive the extrinsic signal from the
leukemia inhibitory factor (LIF) to maintain their pluripotent
state [28, 29]. Adult stem cells (ASCs) are slow cycling cells
that are able to respond to specific environmental signals to
either proliferate or differentiate. During differentiation, these
ASCs enter into a transient state of rapid proliferation [30],
withdraw from cell-cycle, and execute terminal differentiation.
ASCs are localized in specific niches, where they utilize many
of the extrinsic and intrinsic cues used by their embryonic
counterparts in selecting a specific fate. ASCs are roughly cat-
egorized into bone marrow stem cells (BM-SCs), circulating
pool of progenitor cells such as endothelial progenitor cells
(EPCs), and tissue-resident stem cells such as cardiac stem cells
(CSCs). BM-SCs are further categorized into mesenchymal
stem cells (MSCs) and hematopoietic stem cells (HSCs) [31].
According to the expression of surface markers and properties,
resident CSCs were classified into different subsets such as c-
Kit-positive (c-Kit+) cells, Sca-1-positive (Sca-1POS) cells, side
population (SP) cells, cardiosphere cells, and Isl1-positive
(Isl1POS) cells [32]. CSCs are multipotent cells that can differ-
entiate into multiple lineages; such as cardiomyocytes, smooth
muscle cells, and endothelial cells [33, 34].

Regulators of CSCs Proliferation and Differentiation

The adult heart has small number of CSCs that may have
potential for cardiac regeneration [35–37]. Stem cells can be
differentiated into cardiomyocytes with the treatment of a

specific combination of factors [38]. CSCs were identified
and validated using various markers such as c-Kit, MDR-1,
and Sca-1 [36, 38, 39]. They are heterogeneous and express
7 %–10 % of important cardiogenic transcription factors like
Nks2.5, GATA4, and MEF2 [36]. CSCs can divide both sym-
metrically and asymmetrically, however, asymmetrical divi-
sion is predominant [40]. They regulate myocytes turnover,
which is heterogeneous across the heart. Myocytes turnover is
faster at the apex and atria and slower at the base-and mid-
regions of the ventricle [38, 41]. The studies on CSCs differ-
entiation were performed primarily on mice and chick embry-
os. The formation of cardiomyocytes from mesoderm is reg-
ulated by Wnts, BMPs, and Nodal [42, 43]. Inhibition of
Nodal (a family member of TGF-β), and Wnt promotes for-
mation of cardiomyocytes in xenopus and chick embryos
[44–46]. Inhibition of nodal, and Wnt is also important for
differentiation of mouse ESC into cardiomyocytes [46–48].
The transmembrane receptor Notch induces a combination
of growth factors that upregulate differentiation of ESC-
derived mesoderm subpopulations into cardiac progenitors
[49]. These growth factors include Wnt5a, BMP7, and secret-
ed frizzled-related protein1 (Sfrp1) [50]. The differentiation of
committed cardiac progenitors into cardiomyocytes is the last
step of differentiation, and is poorly understood. It is believed
that Wnt11 plays a crucial role in this last step [48, 51]. The
transduction of Wnt11 promotes mesenchymal stem cell
trans-differentiation into cardiac phenotypes in vitro [52].
Several transcription factors regulates differentiation of plu-
ripotent stem cells (PSCs) into cardiac fate. These transcrip-
tion factors include T Brachyury for primitive streak meso-
derm, mesoderm posterior 1(Mesp-1) for cardiogenic meso-
derm, and Nkx2.5, T-box (Tbx5/20), GATA4, MEF2C, and
Hand1/2 for cardiac mesoderm [53–57]. Cardiac development
is a complex process that is tightly controlled by the sequential
expression of multiple signal transduction proteins and tran-
scription factors working in a synergistic manner. The most
studied of these growth factors and signaling pathways in-
clude FGFs, BMPs, and Wnts/Nodal [58–61]. We have sum-
marized few of the important regulators of stem cells prolifer-
ation and differentiation in Fig. 1.

Role of Autophagy in Homeostasis of Stem Cells

Autophagy is an evolutionary conserved adaptive process re-
quired for cellular homeostasis and protecting against various
pathological conditions including CVD. During autophagy
defective cytoplasmic cargoes are sequestered into a double
membrane autophagosome which after fusion with lysosome
are degraded and recycled [20]. Autophagy maintains the
quality control of stem and progenitor cells [62]. Various prop-
erties of stem cells such as pluripotency, quiescence, differen-
tiation, and self-renewal depend on autophagy activation
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[63, 64]. Therefore, autophagy plays an important role in nor-
mal functions of stem and progenitor cells [65]. Suppression of
autophagy through fibroblast growth factor (FGF) signaling
inhibits CSC differentiation [65]. Autophagy may have differ-
ent role in different types of stem cells. It induces apoptosis in
BM-MSCs of non-obese diabetic (NOD) mice [66] but pro-
motes MSC-mediated hepatic regeneration in carbon
tetrachloride-injured rat liver model [67], and MSC-mediated
wound healing in diabetic mellitus patients [68].

Trans-Differentiation of Cells

Although differentiation of stem cells into a particular lineage is
canonically the strategy for SCT, recent studies revealed that

differentiated adult cells can be trans-differentiated into another
phenotype by using certain factors. Fibroblasts are present in a
large pool in the postnatal heart and they contribute to patholog-
ical remodeling via fibrosis. It is observed that by using devel-
opmental transcription factors (Gata4,Mef2c, and Tbx5) somatic
fibroblast can be reprogrammed into cardiomyocytes in mouse
heart [69]. In neonatal and adult humans’ fibroblasts addition of
Gata4, Hand2, Tbx5, myocardin, miR-1 and miR-133 result in
trans-differentiation of fibroblast into cardiomyocyte phenotype
[70]. There are several other factors documented in this trans-
differentiation process [71, 72]. However, whether these trans-
differentiated cardiomyocytes can maintain the cardiomyocyte
properties including contractility for prolonged time and can
maintain synchronous beating with resident cardiomyocytes is
unclear and requires further investigation.

Effect of ExtracellularMatrix Turnover on StemCell
Differentiation

The mechanical force of ECM may influence survival, prolif-
eration, and differentiation of stem cells, and also trans-
differentiation of other cells into cardiomyocytes. The mechan-
ical load of the ECM contributes to differentiation of MSCs
[73–76]. Transforming growth factor- beta (TGF-β) promotes
MSC differentiation into a smooth muscle lineage on stiff sub-
strates [77, 78]. Soft matrix promotes MSC differentiation into
chondrogenic and adipogenic lineages. However, matrix stiff-
ness may not be specific for only one lineage. Biochemical
factors such as TGF-β are required to define a unique differen-
tiation pathway [79]. ECM stiffness depends on matrix turn-
over, which is determined by the balance between MMPs and
tissue inhibitors of metalloproteinases (TIMPs) [80]. MMP-9
and TIMP-4 are predominantly involved in cardiac remodeling.
MMP-2 and MMP-9 are collagenases that degrade ECM and
contribute to fibrosis [80, 81], where ECM is stiffer (Fig. 2).
Stiffness of cardiac ECM may play a pivotal role in stem cell
therapy [82]. MMP9 is also involved in inhibiting EPCs-
mediated increase in vessel density in the peri-infarct area in
the mouse brain [83]. Moreover, it is implicated in migration of
c-Kit+ CSCs, which is partially mediated by stem cell factor
(SCF) via the activation of PI3K/AKT/MMP-2/−9 signaling
pathway [84]. These reports indicate diverse roles of MMPs.
Along with MMPs, it was reported that various miRNA family
members also regulate ECM. These miRNAs have either pro-,
or anti-fibrotic roles in various tissues [85].

MicroRNAs in Stem Cell Proliferation
and Differentiation

MiRNAs are ~22 nucleotide long, non-coding RNAs that
modulate gene expression and are involved in regulation of
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Fig. 1 Regulators of embryonic stem cell (ESC) differentiation into
cardiomyocytes. Transcription factors Oct4, KLF4, Sox2 and c-Myc are
required for maintaining embryonic stem cell pluripotency. Inhibition of
signaling molecules Wnt3a and nodal, and upregulation of FGF, BMP4,
and Activin A are required for differentiation of ESC into cardiac stem cell
(CSC). Activity of BMP6, Srfp1, andWnt5a are required for differentiation
of CSC into cardiac lineage specific cardiac progenitor cell (CPC). Nkx2.5,
GATA4 and MEF2 maintain cardiac lineage specificity. Wnt11 is involved
in differentiation of CPC into cardiomyocytes.
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stem cell proliferation and differentiation [86]. They
have emerged as a biomarker and a therapeutic target
for cardiovascular diseases [15, 87, 88]. MiR-29 is found
to be an important regulator of TGF-β and collagen syn-
thesis [85]. MiR-1, miR-24, miR-29b, miR-101, and miR-
200b are anti-fibrotic, whereas miR-15 family, miR-21,
miR-34a, miR-192, miR-199b, and miR-208 are pro-
fibrotic miRNAs [85]. As discussed above fibrosis changes
the ECM tensile properties, and ECM related miRNAs can
influence stem cell physiology in normal and pathological
conditions. In Table 1, we have shown the list of miRNAs
targeting important ECM regulators including MMPs,
TIMPs, CTGF, and TGF-β [89–135] . The information is
obtained from online database miRTarbase (http://mirtarbase.
mbc.nctu.edu.tw/).

MicroRNAs (miRNAs) regulate differentiation of stem
cells into cardiomyocytes [136]. MiR-1 induces differentia-
tion of mESCs and hESCs into cardiac phenotype [51, 137].
MiR-1 promotes differentiation of stem cell by targeting
HDAC4, which is a negative regulator of MEF2, whereas
miR-133 promotes stem cell proliferation by targeting SRF.
The differential expression of miRNAs in ESCs and CSCs is
nicely reviewed by Kuppusamy et al. [138]. MiR-1, miR-21,
miR-133a, miR-133b, and miR-145 are upregulated both in
mouse and human ESC differentiation into cardiac lineage,
whereas miR-20b is downregulated during this process in both
species [138]. Empirical evidences demonstrate that several
miRNAs are deregulated during differentiation of embryonic

stem cells into cardiac stem cell lineage [138–141]. It is also
reported that miR-499 along with miR-1 and miR-208 regu-
lates cardiomyocyte differentiation [141]. MiR-133-a, −b,
miR-125-a, −b, miR-126, miR-23-a, −b, miR-24, miR -30C,
miR-132 are differentially expressed during mouse CSC dif-
ferentiation [142]. There are several miRNAs that regulate
both ECM turnover (Table 1) and stem cell differentiation.
MiR-1, miR-21-5p, miR-26a-5p, miR-26b-5p, miR-30c-2-
3p, miR-126-3p, miR-126-5p, miR-145-5p, miR-30a, miR-
30b, miR-99b, miR-125a-5p, miR-129-3p, miR-133a, miR-
133b, miR-148a, miR-181b, miR-652 are upregulated where-
as miR-17-5p, miR-124-3p, miR-200c-3p, miR-205-5p, miR-
20a, miR-20b, miR-106a, miR-106b, miR-182, miR-183,
miR-183*, miR-302c, miR-302c* are downregulated during
differentiation of SC into cardiomyocytes [138, 141].
MiRNAs which are involved in regulating ECM turnover in-
clude let-7e-5p [122], miR-100-5p [104], miR-103a-3p [119],
miR-125b-5p [107], miR-132-3p [109], miR-140-5p [106],
miR-143-3p [108], miR-144-3p [119], miR-16-5p [122],
miR-181b-5p [117], miR-18a-5p [130], miR-18b-5p [122],
miR-19a-3p [135], miR-19b-3p [130], miR-203a [102],
miR-221-3p, miR-222-3p [117], miR-24-3p [123], miR-27a-
3p [106], miR-27b-3p [105], miR-29b-3p [143], miR-335-5p
[97], miR-338-3p [94], miR-375 [134], miR-423-5p [122],
miR-451a [92], miR-491-5p [93], miR-519a-3p, miR-519c-
3p, miR-519d-3p [110], miR-633, miR-663a [126], miR-9-
5p [103]. Therefore, miRNAs play an integral role in SCT
(Fig. 3).
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Fig. 2 Extracellular matrix (ECM) remodeling in Failing hearts. In
healthy heart collagen and elastin are present in optimal ratio which
might help in maintaining the integrity of ECM and niche of stem

cells. In failing heart activity of MMPs is augmented, expression of
cardio-protective miRNAs is attenuated, stiffness of ECM and
apoptosis of stem cells are induced.
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Table 1 MiRNAs that regulates extracellular matrix turnover in mouse and human hearts

Genes involved in
ECM turnover

miRNA (Mouse) Ref. miRNA (Human) Ref.

MMP9 miR-204-5p, miR-212-3p, miR-132-3p,
miR-320-3p

[89–91] miR-451a, miR-491-5p, miR-338-3p, miR-21-5p [89, 92–95]

MMP2 --- --- miR-29b-3p, miR-451a, miR-335-5p, miR-338-3p,
miR-21-5p, miR-17-5p

[92, 94–98]

MMP7 --- --- miR-126-5p, miR-126-3p [99]

MMP12 --- --- miR-145-5p [100]

MMP-14 --- --- miR-335-5p, miR-145-5p [97, 100]

MMP1 --- --- miR-222-3p, miR-203a, miR-145-5p [100–102]

MMP13 --- --- miR-9-5p, miR-100-5p, miR-27b-3p, miR-140-5p,
miR-27a-3p, miR-125b-5p, miR-143-3p,
miR-132-3p

[103–109]

TIMP-1 --- --- miR-519a-3p, miR-26b-5p [110, 111]

TIMP2 --- --- miR-519d-3p, miR-519c-3p, miR-200c-3p [110, 112]

TIMP3 miR-181b-5p, miR-206-3p, miR-7b-5p,
miR-181a-5p, miR-149-5p, miR-124-3p

[113–116] miR-181b-5p, miR-21-5p, miR-1, miR-222-3p,
miR-221-3p, miR-103a-3p, miR-335-5p,
miR-124-3p, miR-423-5p, miR-30c-2-3p,
miR-18b-5p, miR-16-5p, let-7e-5p

[97, 117–122]

TGF-β --- ---- miR-24-3p, miR-29b-3p, miR-144-3p, miR-633,
miR-663a, miR-21-5p

[122–127, 143]

CTGF miR-122–5p, miR-425-5p, miR-297a-5p,
miR-9-5p

[115, 128] miR-124-3p, miR-18a-5p, miR-26a-5p, miR-205-5p,
miR-145-5p, miR-375, miR-19b-3p, miR-19a-3p

[115, 129–135]

MMPsMatrix metalloproteinases, TIMPs Tissue inhibitor of metalloproteinases, TGF-β Transforming growth factor-β,CTGFConnective tissue growth
factor, ECM Extra cellular matrix
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Fig. 3 MiRNAs involve in ECM
turnover and stem cell
homeostasis. Left panel shows
33 miRNAs that regulate ECM
turnover, right panel shows 19
miRNAs that regulate stem cell
homeostasis, and middle panel
represents miRNAs that regulate
both stem cell homeostasis and
ECM turnover.
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MicroRNAs in Trans-Differentiation

Cardiac fibroblasts can be reprogrammed to cardiomyocytes
using combination of different miRNAs (miR-1, miR- 133,
miR- 208 and miR- 499) [144]. Administration of these
miRNAs into ischemic boarder zone of MI heart induces
trans-differentiation of cardiac fibroblasts into cardiomyocytes.
Although miR-1 may be sufficient to induce cardiomyocyte
trans-differentiation, the combination of miR-133, −208, and
−499 is much more effective in the trans-differentiation pro-
cess. Fibroblast-turned cardiomyocytes have all the properties
of functional cardiomyocytes including contractility and spon-
taneous calcium oscillations [144]. Therefore, trans-
differentiation of fibroblasts into cardiomyocytes by miRNAs
provides a novel opportunity for SCT.

Stem Cell Therapy for Cardiac Regeneration

Stem cell therapy (SCT) is one of the propitious approaches to
promote cardiac regeneration or repair myocardium after MI
[145, 146]. In vitro and in vivo studies have shown the trans-
formation of various types of stem cells such as ESC [147],
iPSCs [148], BM-SCs [149, 150], and adult tissue derived
MSCs [14, 150, 151], HSCs [152], CSCs [36], adipose stem
cells [153], and EPCs [154, 155] into cardiomyocyte lineage.
Growing evidence suggest that cardiac regeneration by SCT is
influenced by several paracrine factors [156, 157]. Moreover,
the homing of transplanted stem cells is dictated by the cyto-
kines released from the damaged tissue [158]. Broad range of
cytokines, chemokines, growth factors such as vascular endo-
thelial growth factors (VEGF), fibroblast growth factors
(FGF), insulin-like growth factor-1 (IGF-1), and hepatocyte
growth factor (HGF) have been shown to stimulate regenera-
tion. Exosomes are one of the various paracrine mediators,
which play an important role as regulator in cell autonomous
repair mechanisms [159].

Role of miRNA Containing Exosomes in Cardiac
Regeneration

Exosomes originate from inward folding of cell membranes
which results in the formation of multiple intraluminal vesi-
cles in the endosome called multivascular bodies (MVBs).
These MVBs fuse with the plasma membrane releasing
intraluminal vesicles into the extracellular matrix in the form
of exosomes [160–162]. They are present in the extracellular
space as vesicles [160]. The diameter of exosome range from
30 to 120 nm. Exosome is first reported in sheep reticulocytes
in early 1950s [162, 163]. They are secreted from various types
of cells including stem cells [164], cardiomyocytes [165], B
cells [166], T cells [167], dendritic cells [168], platelets [169],

Schwann cells [170], endothelial cells [171], and tumor cells
[172]. They are present in various body fluids such as blood,
urine, plasma, semen, and broncho-alveolar lavage, and play an
important role in intercellular communication [173, 174]. They
also play a pivotal role in modulating of immune responses and
cell signaling pathways [175–177].

Different types of exosomes behave differently based on
their origin. Stem cell exosomes are released by different types
of stem cells such as pluripotent stem cells (embryonic stem
cells- and induced pluripotent-derived exosomes) and adult
stem cells (mesenchymal-, endothelialprogenitor-, and cardiac
progenitor-derived exosomes). The roles of stem cell
exosomes on cardiac repair along with their roles in normal
and infarcted heart are documented [162, 178]. Exosomes
released during stress or pathological conditions behave dif-
ferently compared to healthy conditions [179]. ESCs
serve as a promising source of exosomes due to their
unique microRNA and protein content to augment endoge-
nous CPCs proliferation and differentiation. MiR-290 family
is highly expressed in ESC-derived exosomes in the mouse
cardiomyocytes, which is evident from the elevated levels of
miR-291, miR-294 andmiR-295. These exosomesmight have
an important role in ESC exosome-mediated cardiac repair.
Therefore, these exosome are implicated in stem cell survival,
proliferation, and differentiation into cardiomyocyte lineage
[180]. Few studies have reported cardioprotective effects of
CPC-derived exosomes in myocardial ischemia/reperfusion
(I/R) injury and MI model. CPC exosomes with miR-451/
144 might exert beneficial effects [181]. They also enhanced
endothelial cell migration through extracellular matrix metal-
loproteinase inducer (EMMPRIN) [165]. Exosomes with var-
ious miRNAs derived from CPCs in hypoxic conditions im-
prove cardiac function in the injured heart [182]. Cardiosphere
derived cell (CDC) exosomes with miR-146a have elicited
signature beneficial effects in MI model by improving global
function and decreasing scar mass. Though therapeutic regen-
eration was observed with miR-146a-treated hearts but CDC
exosomes excel in having more promising effects [183]. CDC
exosomes carrying miR-22 and miR-24 played a prominent
role in cardiac regeneration [184, 185]. Exosomes are also
released from mature cells present in the heart such as
cardiomyocytes and fibroblasts [186, 187]. MiR-320 enriched
exosomes in diabetic cardiomyocytes transfer miR-320 into
endothelial cells and inhibit endothelial cell proliferation, mi-
gration, and myocardial angiogenesis in diabetics [187].

Stem Cell Therapy and Stem Cell-Derived Exosomes
in Clinical Trial

The first stem cell based clinical trial with intracoronary infu-
sion was “transplantation of progenitor cells and regenerative
enhancement in acute myocardial infarction (TOPCARE)”,
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where bone marrow-derived mononuclear cells (BMMNCs)
were used [188]. Although, there was initial success with this
population of cells for acute myocardial infarction (AMI) and
chronic heart failure (CHF) but later in larger trials, no signif-
icant improvement in heart condition was observed [188].
Subsequent clinical trials were based on purified cell popula-
tion. In Act34-CMI trial, CD34+ EPCs were used for chronic
myocardial infarction (CMI) and reduction in frequency of
angina was reported. However, in another trial (POSEIDON)
using purified BM derived human MSCs, no improvement in
ejection fraction was observed in patients [188]. Cardiac spe-
cific stem cells were used in recently concluded SCIPIO trial.
It is reported that c-kit+, lineage negative CSCs improve post-
infarction left ventricular functions [156]. However, another
group found that c-kit+ cells have minimal contribution to
cardiomyocytes in the adult heart [189]. There is controversy
on whether c-kit+ cells are the marker of cardiac stem cells
[190]. CADUCEUS clinical trial used CSC cardiosphere and
observed no cardiac benefits in AMI patients whereas C-
CURE trial used cardiopoietic hMSCs and reported positive
results in ischemic cardiomyopathy patients [188]. Apart from
various phase-I and II clinical trials, there are few ongoing
phase-III clinical trials – BMI, CHART-1, CHART-2. The
BMI trial used BMMNCs whereas CHART-1 and 2 used
MSCs isolated from patient’s bone marrow [188]. Clinical
trials on human ESCs and iPSCs in various ailments is

reviewed [191]. Transcoronary infusion of CPCs in patients
with hypoplastic left heart syndrome, the (HLHS)- TICAP
trial showed improvement in right ventricular ejection fraction
that persisted during 36-month follow up [192]. A list of
existing and ongoing stem cell clinical trials are summarized
in a recent review by Poulin et al. [193].

Limitations and Future Perspective of Stem Cell
Therapy

Although several types of stem cells were used in clinical
trials, they were successful only at different phases of clinical
trials but mostly failed in larger trials, may be due to inappro-
priate choice of endpoints and/or less considerations for reg-
ulatory pathways involved in myocardial regeneration [194].
Careful analyses of results from clinical trials will help us to
understand the challenges to get success in stem cell therapy
for heart failure [195, 196]. To understand the cause of failure
of larger clinical trial, it is imperative to evaluate the gene
expression profiles of the transplanted stem cells after engraft-
ment and to develop strategies that can facilitate the engraft-
ment and differentiation of transplanted stem cells. The suc-
cess of stem cell therapy may depend on homing and differ-
entiation of transplanted stem cells to cardiac lineages that
contribute to myocardial regeneration, the effect of paracrine

Cardiac regenera�on

Stem Cells

Fibroblasts

Stem cell-derived Exosomes

Extracellular Matrix (ECM)

Exocytosis

Mul� vesicular
bodies(MVB)

Stem Cell

?

Endosome

MicroRNA

Autophagy

Stem cells

Fig. 4 Schematics of systemic approach for stem cell therapy. Improved
cardiac regeneration can be achieved by using different approaches such
as regulating autophagy in stem cells, using stem cell-derived exosomes,
inhibiting matrix metalloproteinase-9 (MMP9) that may reduce stiffness

of extracellular matrix to promote stem cell proliferation and
differentiation, and inducing trans-differentiation of fibroblasts into
cardiomyocytes.
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factors that stimulate endogenous resident stem cell’s differ-
entiation to contribute to myocardial regeneration, and the
microenvironment surrounding the niche of the stem cells that
facilitates survival and differentiation of stem cells [86, 197].
Recent studies demonstrated that stem cell exosomes could be
a promising target for myocardial regeneration, and several
preclinical trials reported improvement in myocardial regener-
ation by stem cell exosomes [164, 198–200]. Therefore,
exosomes could be a novel approach for cardiac regeneration
[201], and are given in pre-clinical studies for evaluating its
safety and efficacy. MiRNAs from these exosomes can be also
used as a biomarker [202]. Although miRNAs are now in clin-
ical trials [203], stem cell-derived exosomes need further inves-
tigations to translate its role in SCT. One of the limitations of
exosome-mediated cardiac regeneration is specificity and yield
of exosomes [204]. Developing techniques to isolate cardiac
specific exosomes, their delivery to the border zone of the
ischemic heart, and understanding the mechanism of action of
exosomes delivered to the ischemic heart are some of the strat-
egies for successful use of exosomes in regenerating damaged
myocardium. An alternative strategy for replenishing the dead
myocardium could be trans-differentiation of fibroblast into
functional cardiomyocytes or inducing cardiomyocyte to reen-
ter into cell cycle [205]. Considering of ECM stiffness and its
impact on stem cells, regulation of MMPs especially inhibition
of MMP9 can be an important approach. Similarly, regulation
of autophagy of stem cells is crucial for their survival and
differentiation.

In summary, we can harness the basic science knowledge
and clinical outcomes from the previous clinical trials to under-
stand the factors that regulate survival of transplanted stem
cells, differentiation of engrafted stem cells into a specific lin-
eage such as cardiomyocytes, maintenance of cardiomyocyte’s
properties for prolong time. At the same time, we need to use
systematic approach to improve cardiac regeneration in MI
hearts and it may include autophagy, exosome, miRNAs,
ECM stiffness, and trans-differentiation (Fig. 4).
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