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Abstract With the advancements in the field of adult
stem and progenitor cells grows the recognition that the
motility of primitive cells is a pivotal aspect of their
functionality. There is accumulating evidence that the re-
cruitment of tissue-resident and circulating cells is criti-
cal for organ homeostasis and effective injury responses,
whereas the pathobiology of degenerative diseases, neo-
plasm and aging, might be rooted in the altered ability
of immature cells to migrate. Furthermore, understanding
the biological machinery determining the translocation
patterns of tissue progenitors is of great relevance for
the emerging methodologies for cell-based therapies and
regenerative medicine. The present article provides an
overview of studies addressing the physiological significance
and diverse modes of stem and progenitor cell trafficking
in adult mammalian organs, discusses the major micro-
environmental cues regulating cell migration, and describes
the implementation of live imaging approaches for the
exploration of stem cell movement in tissues and the factors
dictating the motility of endogenous and transplanted cells
with regenerative potential.
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Introduction

Orchestrated movement of cells is fundamental for the organ
development, postnatal growth and adequate performance at
the different stages of adulthood. For many years, the complex
pathways regulating cell migration in the physiology of adult
organism and with various pathologies are subject matters of
intense investigations [1–4], https://www.cellmigration.org/
science/. Yet, the journey to uncover the mechanisms
controlling the directional translocation of tissue-specific stem
and progenitor cells and the importance of immature cell traf-
ficking for organ homeostasis and repair is at the exciting
beginning.

It is postulated that in order to preserve organ integrity, the
adult tissue-specific primitive stem cells or their undifferenti-
ated progeny [5] migrate to the sites of tissue repair, compen-
sating for the Bwear and tear^ or supporting the wound healing
[4, 6–9]. Consequently, along with the potency to generate
cells of diverse lineages and capacity for self-renewal, cell
motility is a vital property of stem and progenitor cells, which
evidently changes with pathologies and aging. Hence, the
knowledge of the pathways that guide the immature cell traf-
ficking is essential for elucidating the origins and evolution of
diseases in stem-cell regulated organs. Moreover, the targeted
movement of transplanted cells from the sites of administra-
tion to the foci of injury is key for the success of cell-based
regenerative treatments [10–12].

The research into the mechanisms of adult stem cell migra-
tion has evolved in the course of the past decade as a result of
cumulative efforts to better understand the intricate nature of
stem cell behavior and augment its function in therapeutic
purposes. This review, dedicated to mammalian stem and pro-
genitor cells, describes documented examples and biological
relevance of the immature cell movement in adult organs,
examines the implications of the alterations in stem cell
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motility, and summarizes the recognized features of the prim-
itive cell environment that govern the migratory responses.
Additionally, the use of live imaging is discussed as a com-
pelling tool for the studies of stem cell migratory activity
in vitro and in vivo.

Biological Significance of the Stem and Progenitor
Cell Movement in Adult Tissues

The most studied manifestation of the adult mammalian stem
cell migration is the trafficking of hematopoietic stem and
progenitor cells between the bone marrow, blood circulation
and peripheral organs (for comprehensive reviews on the he-
matopoietic stem cell trafficking, see [7, 13–20]). In adults,
the primitive hematopoietic cells reside in specialized bone
marrow niches (the concept of bone marrow niches was re-
cently reviewed in [8, 21–24]). It is established that the imma-
ture cells of the hematopoietic system constantly emigrate
from and return to the bone marrow [25–27]. For instance,
the circadian rhythm creates cycles of the hematopoietic pro-
genitor cell mobilization to the blood, with maximal cell re-
lease during the resting period [28–30], which presumably
occurs in the absence of injury in purpose of homeostatic
surveillance of peripheral tissues by stem cells. Furthermore,
plethora of stresses, such as inflammation or damage to distant
organs, significantly increases the numbers of circulating pro-
genitors [18, 31, 32]. These emergency responses by undiffer-
entiated hematopoietic cells have been observed after trauma
and hemorrhagic shock [33], wounding of the liver [34, 35],
stroke [36], and myocardial infarction [37, 38]. Remarkably,
even following infusion into the bloodstream, the transplanted
hematopoietic stem and progenitors exhibit tropism towards
the host bone marrow and are capable of engrafting into the
supporting niches. The astonishing migratory ability of imma-
ture hematopoietic cells is widely employed in everyday clin-
ical practices for the bone marrow transplantation in patients
with hematological malignancies, as well as novel therapies
for regenerative medicine [39–42].

Another well-known process of the stem cell movement in
adult organs involves stem cell emigration from the storage
niches as a step in their differentiation program. For example,
the intestinal epithelial stem cells are situated at or near the
bottom of crypts formed by the convolution of the epithelial
sheet, where stem cells proliferate and give rise to progenitor
cells. While moving to ascend the crypt axis, the stem cell
progeny divide and further mature, acquiring terminally dif-
ferentiated phenotype (recently reviewed in [5, 43–46]).
Multiple studies have demonstrated that proper communica-
tion of the primitive intestinal cells with their microenviron-
ment is essential for the prevention of unrestrained growth and
development of neoplasms [47–50]. In this regard, it was
found that the abnormalities in signal transduction pathways

involved in the immature cell migration contribute to tumori-
genesis at all stages of intestinal cancer [51].

The different populations of primitive cell types in the skin
also leave their specialized niches located in the hair follicles,
basal layer of interfollicular epidermis, and other skin com-
partments, in order to differentiate and participate in the tissue
maintenance cycles and wound re-epithelization (for recent
reviews on the skin stem cells, see [52–58]). Specifically, it
is described that in the basal layer of the epidermis, the pro-
genitor cells, or their transient-amplifying progeny, detach
from the underlying basement membrane and migrate towards
the skin outmost layer. Their movement is accompanied by
progressive maturation. Unlike the epidermis, which regener-
ates continuously, the hair follicles undergo cycles of growth,
degeneration and rest. The position of primitive cells in the
bulge of the hair follicle and hair germ region is strictly con-
trolled, and shifts in their placement relative to other cells
affect the lineage commitment and self-renewal potential.
Importantly, after skin wounding, cells from both the hair
follicles and interfollicular epidermis migrate to the site of
tissue damage [59–63]. Of interest, there is evidence that the
activity of telomerase promotes the egress of stem cells from
hair follicles in response to chemical injury, whereas telome-
rase deficiency interferes with the stem cell recruitment, and
might constitute a mechanism for prevention of skin cancers
in old tissues [64]. Also the melanocyte stem cells, which are
normally present in the hair follicle, exit from the bulge when
the skin is wounded or exposed to UV-radiation, partaking in
the re-pigmentation and renewal of the epidermis. It is sug-
gested that in these conditions the stem cell emigration is not
compensated by proliferation, which might lead to melano-
cyte stem cell depletion and deficient injury repair [65].

The immature cells of the skeletal muscle are likewise re-
quired to migrate for tissue maintenance and regeneration.
The dedicated muscle stem cells, often referred as satellite
cells, are maintained in a quiescent state in the supporting
niches, localized between the sarcolemma of myofibers and
surrounding basal lamina. Growth-promoting stimuli or mus-
cle injury induce satellite cell activation, egress from the
niches, commitment to differentiation and movement towards
the target site, where the myogenic progenitors align in prep-
aration for the cell-cell fusion into muscle fibers (diverse as-
pects of the satellite cell biology are reviewed in [5, 66–73]).
Sub-optimal migration of the immature myogenic cells and
lack of proper alignment prior to fusion hinder the organ’s
ability to correctly repair the damage [74], and are speculated
to contribute to the etiology of muscular dystrophy [75] and
aging [76].

Further, the immature neurogenic cells in the central ner-
vous system also have to leave their birthplace in order to
differentiate, reach the target locations, and appropriately in-
tegrate into the neural network. In the adult brain, a category
of neural stem cells is reported to occupy the neurogenic
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niches concentrated in the subventricular zone adjacent to the
lateral ventricles, and the subgranular zone within the hippo-
campal dentate gyrus (detailed reviews of the adult neural
stem cells and their niches are provided in [6, 7, 77–80]). In
the subventricular zone, activated neural stem cells give rise to
transiently amplifying progenitors, which, in turn, become
neuroblasts. Neuroblasts collectively migrate rostrally into ol-
factory bulb, where they change the type of movement to
radial and then terminally differentiate. The primitive cells in
subgranular zone also produce progenitors that generate
neuroblasts, which disperse into the granule cell layer and
complete the differentiation there. Conceivably, the aberrant
translocation of primitive cells is associated with neuropathol-
ogy [78, 79, 81, 82]. For example, the traumatic brain injury
alters the movement of adult-born neurons in the hippocam-
pus [83], while progressive reduction in the neuroblast migra-
tion with aging limits the maturation and lineage-commitment
of newly-generated neurons, and might be causative of the
senescence-related neurological impairments [84].
Additionally, there are documentations that when transplanted
at a locus distant from a brain lesion, cells with the properties
of neural progenitors migrate to the injured area [85–87]; and
methodologies are considered for cell-replacement therapies
with neurogenic cells to ameliorate neurodegenerative dis-
eases and stroke (the challenges and future directions in this
field are discussed in [87–90]).

Thus, the motility of stem and progenitor cells in adult
organs is crucial for the preservation of tissue health and func-
tionality, and, potentially, for the success of cell-based regen-
erative approaches.

Molecular Mechanisms Involved in Stem
and Progenitor Cell Trafficking

The movement of cells in tissues is a combinatorial outcome
of multiple signaling inputs from the cell close surroundings
and the remote sites. The stem cell niches, that is functional
units of the stem cell maintenance and activation, are proposed
to dictate the responses of the primitive cells to the changing
needs of the organ [9], greatly impacting the stem cell decision
to migrate. The niche constituents, although varied by the
stem cell class, are believed to generally include the mature
cells of the same lineage, the undifferentiated stem cell prog-
eny and even heterologous stem cells, as well as endothelial
cells of the vasculature, mesenchymal cells that are character-
istic to a given tissue type, and neural and inflammatory cells.
The non-cellular materials, such as extracellular matrix pro-
teins, are also integral to the stem cell niche (for up-to-date
reviews on the stem cell niches, see [21–24, 56, 91–97]). In
the stem-cell regulated organs, tissue injury evokes multifari-
ous short- and long-range feedbacks to the niches, deploying
programs for stem cell activation and mobilization. Some of

the major molecular systems mediating these processes are
discussed below.

Signaling by Secreted Mediators

Commonly, changes in the cell migratory behavior occur in
response to variations in local concentration of secreted
agents, such as cytokines and bioactive lipids.

Chemotactic Cytokines and Growth Factors

Chemotaxis is directional movement of cells according to
concentration gradient of soluble chemical factors.
Chemotaxis is arguably one of the most explored mechanisms
governing cell translocation, indispensable for any biological
phenomenon relying on cell migration [2, 3, 98–100], and for
the stem and progenitor cell trafficking. Over the years, a
multitude of growth factor and cytokines was described as
motility-inducing agents for the different categories of primi-
tive cells, guiding their migration and recruitment to the site of
tissue repair. For example, the chemotaxis towards the cyto-
kine CXCL12 (a.k.a., SDF-1) is a major pathway regulating
immature hematopoietic cell circulation to and from the bone
marrow (recently reviewed in [16, 19, 101, 102]). CXCR4 and
CXCR7 are two identified receptors for CXCL12, although
the expression and function of CXCR7 in normal hematopoi-
etic cells is less studied. Since the initial report on the neces-
sity of CXCL12/CXCR4 system for the hematopoietic stem
cell migration and bone marrow engraftment in adults [103],
hundreds investigations addressed the various biological pro-
cesses modulating CXCL12/CXCR4 axis in health and dis-
ease, as well as its translational applications for the mobiliza-
tion of primitive hematopoietic cells and bone marrow trans-
plantation procedures. Moreover, it is now understood that
CXCL12/CXCR4-mediated signaling plays a central role in
hematopoietic progenitor cell migration to the organs other
than the bone marrow, such as the injured liver [35]; or the
recruitment of other stem cell types, as shown for endothelial
[104] and neural [105] precursors.

Of interest, in primitive hematopoietic cells, the cytokine
stem cell factor (SCF) has a synergistic effect with CXCL12
[35]. SCF also stimulates dental pulp progenitor migration,
and is suggested to act as a homing factor for immature cells
in the course of dental pulp regeneration [106]. Another well-
documented stem cell chemoattractant is hepatocyte growth
factor, HGF (known as scatter factor), which binds and acti-
vates c-Met receptor. HGF/c-Met pathway induces migration
of hematopoietic progenitors and facilitates stress-induced
mobilization from the bone marrow [35, 107, 108]. HGF/c-
Met promotes chemotaxis of satellite cells as well [109–113],
which is required for myoblast directional motility and
myocyte fusion during adult skeletal muscle restoration [113].
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Although substantial knowledge has been already accumu-
lated on the necessity of cytokines and growth factors for the
regulation of stem cell migration, with the progress of the
research into the trafficking of immature cells, new pathways
driving adult stem cell translocation are coming into focus.

Bioactive Lipids

In addition to soluble proteins, the diverse groups of bioactive
lipids constitute an important mechanism for the cell commu-
nication with the surroundings. As exemplified by sphingo-
sine 1-phosphate (S1P) and lysophosphatidic acid (LPA), the
signaling evoked by bioactive lipids via respective receptors is
crucial for multiple aspects of cell behavior (for recent re-
views, see [114–119]). Intriguingly, it was demonstrated that
the expression of the LPA receptor by itself serves as a specific
functional marker of hippocampal precursor cells in the adult
brain [120]. The migratory responses of stem and progenitor
cells are likewise dictated by these molecules (reviewed in
[38, 118, 121, 122]). It is demonstrated that S1P acts as a
chemoattractant for primitive hematopoietic cells, affecting
their mobilization and homing to the bone marrow and the
circulation to other organs [26, 123–126]. There is also indi-
cation that S1P and LPA stimulate the motility of skeletal
muscle satellite cells [127, 128], which might improve pro-
genitor recruitment to the site of damage. S1P is involved in
the migration between blood and bone of osteoclast precur-
sors, thus fine-tuning their localization to the bone surface and
balancing bone remodeling [129, 130]. Further, the activation
of a neural-specific subtype of S1P receptors antagonizes the
motility of immature oligodendrocytes [131], while treatments
that inhibit S1P signaling potentiate the migration of endoge-
nous neural progenitors in the brain [132] and transplanted
neural progenitors in the spinal cord [133].

As it is the case with virtually any stimulus received by the
cell, the intracellular signaling cascades evoked by bioactive
lipids frequently converge with other pathways governing
stem cell trafficking, for example, CXCL12-induced chemotaxis
[121, 133]. Such a complex and multifaceted regulation of
the tissue progenitor cell motility likely enables coordinated
and measured reactions to the environmental changes.
Moreover, as discussed in the following sections, physical
contacts with the neighboring cells and extracellular compo-
nents are critical as well for the optimal stem cell movement
and recruitment to the site of injury repair.

Juxtacrine Signaling

Along with the secreted factors, the stem cell migratory be-
havior within and outside the niches is determined by direct
binding to the various surrounding cell types and the proper-
ties of the extracellular milieu. Several classes of adhesion

molecules mediate these interactions and are considered fun-
damental for the control of stem and progenitor migration.

Eph and Ephrins

Widely implicated in determining cell positioning is a large
and versatile family of receptor tyrosine kinases called Eph
(the name is derived from the erythropoietin-producing hu-
man hepatocellular carcinoma cell line, from which the first
member was isolated), and their membrane-tethered ligands,
ephrins. Ephrin/Eph axis directs processes requiring immedi-
ate changes in cell morphology, adhesion and motility (for
recent comprehensive reviews on the ephrin and Eph signal-
ing and function, see [134–145]). This cell contact-dependent
communication is bi-directional, namely, the message is trans-
duced into the Eph receptor-expressing cells (Bforward
signaling^) as well as the ephrin ligand-presenting cells
(Breverse signaling^). Since multiple members of the ligand
and receptor families are often co-expressed on the same cell,
the ephrin/Eph axis is subjected to an additional level of
regulation by Bcis^-binding, which may antagonize the
effect induced by the associations in Btrans^ to a partner
on an opposing membrane. Extensive cross-talk with other
signaling pathways and a kinase-independent activity of Eph
receptors further contribute to the diversity of the possible
downstream cascades.

It is increasingly recognized that ephrin/Eph axis plays a
vital role in the biology and migratory behavior of adult stem
and progenitor cells. In the hematopoietic system, the activa-
tion of ephrin A5 potentiates immature hematopoietic cell
adhesion in the bone marrow niche, and can be manipulated
to diminish their retention and enhance mobilization to the
blood [146].Moreover, binding to EphB4 on the bonemarrow
stroma modulates ephrin B2 expression in the primitive he-
matopoietic cells, impacting the stem cell ability to translocate
beneath the stromal layer and colonize the niches [147–149].
Likewise, in the adult dental tissue, EphB and ephrin B pro-
teins are involved in the interactions of the primitive cells with
the microenvironment: ephrin B1 and ephrin B3 expression
on the pulp cells restricts the progenitor attachment and mi-
gration in the niche in homeostatic conditions [150] and after
tooth injury [151].

Diverse ephrin/Eph-mediated pathways are extensively de-
scribed in the development of the nervous system, and there
are numerous findings corroborating their direct involvement
in adult neurogenesis, and the control of migratory behavior of
the immature cells in the brain: it is documented that EphB
receptors and ephrin B1-3 ligands are expressed in the sub-
ventricular zone, potentiating the proliferation and migration of
neuroblasts [152]; and in the dentate gyrus, where the EphB2
forward signaling is necessary for the migration of the sub-
ventricular zone progenitors [153]. Also in the hippocampus,
the proliferation, polarity and positioning of immature cells
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are altered in animals lacking the EphB1 receptor or ephrin B3
ligand [154]. In contrast, ephrin A2 and EphA7 knockouts are
characterized by amplified progenitor cell proliferation and
neuron formation with no obvious migratory defects [155].
Furthermore, an intriguing study by Parrinello and colleagues
shows that after transection of the sciatic nerve, EphB forward
signaling, by inducing progenitor cell separation from sur-
rounding cells, directs peripheral nerve regeneration [156].
Specifically, the immature Schwann cells that migrate into
the wound present EphB2, which is activated by ephrin B
on fibroblasts; this causes augmentation of the N-cadherin-
mediated homotypic adhesion between the moving cells and
the formation of Schwann cell cords that support the regrowth
of neurons.

In the skeletal muscle, ephrins and Ephs were previously
suggested to guide the migrating myoblasts from the storing
niches to the site of injury [111, 112, 157]. Indeed, a recent
study by Gu et al. provides in vivo evidence that the immature
muscle cells, moving towards the end of extending myofibers,
bind ephrin A5, which is abundantly presented on the adjacent
interstitial cells [158]. Although the specific Eph receptors
controlling the behavior of satellite cells and their progeny
remains to be determined, ephrin A5 is essential for the acti-
vation of the directional translocation of myoblasts and neo-
natal muscle growth [158].

Ephrin A proteins are also important in the adult heart:
undifferentiated cells in the myocardial parenchyma preferen-
tially express EphA2 [159, 160], whereas ephrin A1, one of
the EphA2 ligands, is highly represented in cardiomyocytes
[159–161]. EphA2 stimulation by ephrin A1 promotes cell
motility in the infarcted tissue [159, 160], and there are reports
indicating that the ephrin A1/EphA2 signaling is beneficial for
cardiac recovery after ischemic injury [159, 161–163].
Intriguingly, with cellular aging, EphA2 is subjected to post-
translational modifications, which hinder its kinase activity,
interfering with the cell chemotaxis towards HGF in vitro
and the ephrin A1-induced motility of transplanted cells in
the infarcted myocardium [160]. Ephrin A1 protein level is
also somewhat reduced in the old heart tissue [160]. Hence, it
is tempting to speculate the existence of an interrelationship
between the age-associated decline in the ephrin A1 and
EphA2 functionality and the weakened performance of the
senescent heart. In the same way, the aging progenitor cells
of the tendon display a downregulation of the ephrin B1,
EphA4, EphB2 and EphB4, accompanied by diminished abil-
ity to migrate, which can be ameliorated by enhancing EphA4
and EphB2 reverse signaling [164].

Of note, the complementary expression pattern of the Eph
receptors in the primitive cells and the ephrin ligands in the
differentiated progeny of those cells, is widely described in
epithelial tissues, in which EphB receptors and B type ephrins
are essential for the correct cell positioning [62, 165–170]. For
instance, the highest level of EphB2 and EphB3 is detected in

the immature cells residing in the intestinal crypt, whereas
dividing and differentiating cells that move upward the crypt
gradually lose EphBs and acquire ephrins B, e.g., ephrin B1
and ephrin B2. Consequently, there is a counter-gradient of
EphB and ephrin B proteins along the crypt axis, with the
most Eph receptors in stem and progenitor cells at the crypt
base, and the ephrin ligands in the mature cells, situated at the
crypt boundary with the villus. It is assumed that the EphB
receptors generate repulsive cues, which prevent an untimely
migration of precursors into the ephrin-enriched zone of the
more differentiated cells. Interfering with the EphB forward
signaling alters the location of cells in the crypt and reduces
their proliferation. Interestingly, there are indications that the
Eph mitogenic activity in stem cells, controlled by Abl/cyclin
D1 pathway, is distinct from the receptor downstream signal-
ing via PI3 kinase, which is involved in cell positioning [166,
168, 171]. In a similar manner, in the course of branching
morphogenesis, ephrin A1/EphA axis concomitantly evokes
two independent pathways correspondingly triggering cell
proliferation and inhibiting the formation of HGF-induced
cellular protrusions [172]. It is important to point out that the
activity of ephrin/Eph family is known to frequently modulate
other processes required for progenitor cell translocation,
especially, the primitive cell responses to chemotactic stimuli
by cytokines and growth factors [111, 112, 159, 172–174].

In conclusion, owing to an extraordinary ability of facili-
tating direct communication between heterogeneous cell
types, the capacity of simultaneously eliciting responses in
the ligand and receptor bearing cells, and great versatility of
the downstream signaling modes, the ephrin/Eph axis is cen-
tral for the patterning of stem and progenitor cell translocation
in adult tissues.

Other Modules of Direct Cell-to-Cell Communication

One can envisage that in the stem cell microenvironment,
additional mechanisms mediating the cell-to-cell binding im-
pact the propensity of immature cells to migrate. For example,
the cadherins constitute a large family of intercellular adhe-
sion molecules that regulate multiple biological processes,
including determination of the cell polarity and collective cell
migration (the cadherin family is extensively reviewed else-
where [175–179]). Recent studies indicate that cadherin-
containing adherens junctions enable the attachment of prim-
itive cells to other cellular constituents of the niche, as well as
homotypic adhesion between the stem cells themselves, which
helps to preserve their quiescence [180–183]. Thus, inhibition
of cadherin-mediated binding might be required to antagonize
stem cell dormancy and promote emigration from the niches.
In support, there are findings that N-cadherin protein on neural
progenitor cells is cleaved in response to tissue injury, leading
to cell activation [182, 184], egress from the sub-ventricular
zone, and translocation into demyelinated lesions [184].
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Also gap junctional proteins, connexins, are described in
the context of stem cell interactions with the neighboring tis-
sue cells (reviewed in [185–187]). Interestingly, whereas
connexin 43 deficiency in osteoblasts and osteogenic progen-
itors in the bone marrow niches does not impair the steady
state hematopoiesis, it disrupts the trans-stromal migration of
immature hematopoietic cells, which consequently impedes
their mobilization and homing [188]. However, these alter-
ations might not result from the changes in connexin-
mediated cell-to-cell adhesion, but rather be triggered by the
elevated level of CXCL12 in the connexin 43-knockout cells
[188]. Indeed, it was shown that CXCL12 secretion by bone
marrow stroma is cell contact-dependent and involves gap
junctions built by connexin 43 and connexin 45 [189].

Additional group of the cell-cell adhesion receptors partic-
ipating in the trafficking of primitive cells includes P- and E-
selectins, which are required for the initial tethering of circu-
lating hematopoietic progenitors to the endothelium of bone
marrow vasculature, thus constituting the first critical step in
the homing process (reviewed in [20, 190, 191]). Recently,
selectins have been credited with a significant function in
the hematopoietic stem cell communications with the bone
marrow niche [192, 193]. Whether selectins are involved in
the migration of adult progenitors of non-hematopoietic ori-
gins remains to be established.

The adhesion molecules of the integrin family are essential
mediators of both cell-to-cell and cell-to-substrate binding.
Integrins are discussed in details below in the section on the
extracellular matrix. Importantly, integrins are key players in
the hematopoietic stem and progenitor cell migration. Several
integrin subtypes, e.g., α4β1, have been implicated in the
hematopoietic cell attachment to the endothelium and subse-
quent trans-endothelial migration during homing to the bone
marrow [20, 190, 191] and, possibly, in the course of hema-
topoietic and endothelial progenitor cell recruitment to ische-
mic tissues [194].

The CD44 antigen is another major receptor performing
multiple tasks for the interaction of cells with microenviron-
ment. Of special interest is a distinct selectin-binding
glycoform of CD44, termed HCELL (for Hematopoietic Cell
E-selectin/L-selectin Ligand), which is uniquely expressed on
the immature human hematopoietic population. HCELL
facilitates hematopoietic stem cell adhesion to the endothelium
and bone marrow homing (reviewed in [195, 196]). Notably, a
novel technology has been developed to transform CD44 into
the HCELL glycoprotein in other progenitor types that lack
native HCELL expression. This approach has the potential of
improving cell binding to activated endothelial cells and, as a
result, the targeting of intravascularly administered progenitors
to the sites of injury and inflammation [197, 198].

It is plausible that the diverse modalities of cell-to-cell
communication have evolved to address the complex and dy-
namic processes of stem cell activation and translocation in

response to the changes in immediate tissue environment. In a
similar manner, physical interactions with the non-cellular tis-
sue components are pivotal for the immature cell trafficking.

Extracellular Matrix and Mechanical Cues

The term extracellular matrix (ECM) broadly refers to the
non-cellular constituents of the tissue milieu, in which the
cells are embedded. ECM consists from the network of fibrous
proteins, sugar moieties, immobilized cytokines and growth
factors, and other molecules secreted by the cells. The com-
position and structural properties of the ECM are highly spe-
cific to each organ and substantially vary in the presence of
pathologies and with aging [199–204]. In addition to provid-
ing scaffolding, ECM fulfils instructive roles by transducing
biochemical and biomechanical signals to the cells and being a
substrate for cell adhesion and migration [6, 202, 205–208].

It is demonstrated that the contacts of immature cells with
the ECM in niches determine the stem cell behavior: the mo-
lecular complexity of the ECM, its microscale topography,
degree of elasticity, and amplitude and frequency of static
and dynamic deformations, are all influencing the stem cell
choices of quiescence versus proliferation, self-renewal versus
differentiation, and death versus survival (for the discussion
on these topics, see the following recent reviews [199, 205,
206, 208–213]).

How the ECM conveys information to the cells? The bind-
ing of cells to the ECM primarily occurs via integrins.
Integrins are heterodimer transmembrane proteins composed
of α subunit and β subunit, each has multiple variants. The
combinations of subunits confer specificity to the cell recog-
nition of the diverse ECM proteins, such as fibronectin, lam-
inin or collagen, and the specific epitopes within the protein
sequence. Intracellularly, integrins are associated with the cy-
toskeleton and a panel of signaling molecules. Integrins me-
diate inside-out and outside-in communication between the
cell and the physical neighbors and, therefore, are vital for
the processes of cell migration, differentiation, and tissue mor-
phogenesis and maintenance in the adult (for comprehensive
reviews on integrin structure and function, see [214–220]).

As expected, integrin-mediated adhesion to the ECM im-
pacts stem and progenitor cell motility. For example, integrin
αvβ1 is postulated to control translocation of oligodendrocyte
precursors in the central nervous system, whereas downregu-
lation of this receptor is associated with the cell maturation
and changes in the migratory phenotype [221]. Likewise, ep-
ithelial progenitor cells in the hair follicles require β1 integrin
signaling for the adhesion and migration of their progeny, and,
of note, the various sub-classes of immature endothelial cells
exhibit disparate responses to the changes in the β1 activity
[222]. In the populations of primitive hematopoietic cells, the
adhesion to fibronectin via integrin α4β1 is functionally
linked to the cytokine-induced chemotaxis [223].
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Intriguingly, whereas cytokines activate the movement of
resting progenitors, the cell migration speed is modified
by the fibronectin concentration [224]. The immature he-
matopoietic cells also exhibit variations in the integrin
α6β1-mediated adhesion and movement when presented
with distinct isoforms of laminin [225]. Interestingly, it
was noticed that the contribution of different integrin α
chains to the substrate binding by hematopoietic progen-
itors is donor-dependent [226].

Further, mechanosensing is an important function of the
integrins (reviewed in [208, 214, 218, 220, 227–229]). There
are accumulating confirmations, mainly from the studied on
developmental morphogenesis, that mechanical forces, ap-
plied by the microenvironment to the primitive cells, control
their activity [202, 205–207, 230]. The progenitors in the adult
tissues are equally subjected to the changes in shear stresses,
tension, or periodical stretches, which, as mentioned above,
significantly impact cell fate decisions [199, 205, 206,
208–213]. Surprisingly, considerably less data are available
on the role of biomechanical cues in the adult tissue stem
and progenitor cell translocation. Yet, there are indications that
immature hematopoietic cells attach and migrate better on
stiffer substrates [231, 232], which might be relevant for the
homing and engraftment in the bone marrow. Similarly, the
migration of osteoblast precursors is highly dependent on the
matrix stiffness [233]. Along with the ECM rigidity, the tech-
nological advances in bioengineering approaches brought to
light the significance of surface nanotopography for the regu-
lation of cell binding and locomotion [210]. It was shown that
primitive hematopoietic cells change the tendency to adhere to
fibronectin- or osteopontin-derived peptides according to the
nanometer scale variations in the spacing of these elements
[226]. Cell’s perception of the nanoscale substrate distribution
and structure, e.g., existence of pillars and grooves, is also
known to dictate the alignment and polarization of immature
neural cells [234], which might enhance their differentiations
[234–236]. Moreover, dissimilar motility responses are ob-
served when undifferentiated neural stem cells and astrocyte
progeny, and the stem cell-derived neurons, are concomitantly
exposed to laminin-coated micropatterned surfaces, allowing
in vitro separation of newborn astrocytes and neurons [237].

It must be indicated that mechanosensory functions are not
limited to integrin-mediated adhesions to the ECM. Forces are
transmitted via cadherins in the adherens junctions and other
types of cell-to-cell attachments [238–240]. Hence, the disrup-
tion of the intercellular connections after tissue injury or in
pathological states might cause aberrations in the migratory
pattern of progenitor cells.

Moreover, there are receptors outside the integrin family
that are required for the cell contacts with the ECM and con-
trol of primitive cell translocation. For example, the different
isoforms of the CD44 protein are critically implicated in the
adhesion to bone marrow matrix and the lodgment of normal

and malignant hematopoietic progenitors to specialized end-
osteal niches, which are rich in the ECM protein, hyaluronic
acid (reviewed in [15, 19, 241]). In the hematopoietic stem
cell niche, CD44 and CXCL12/CXCR4 pathways cross-react:
interference with the CD44 activity impairs CXCL12-
induced chemotaxis, whereas treatment with CXCL12 poten-
tiates CD44-mediated ECM binding and niche engraftment of
immature hematopoietic cells [242]. In the course of hemato-
poietic progenitor cell mobilization, CD44 is cleaved by ma-
trix metalloproteinases, facilitating cell egress from the bone
marrow [243].

Curiously, the CD34 molecule, a primary marker of the
primitive hematopoietic cells in humans, is also an adhesion
receptor. The function of the CD34 protein in early hemato-
poietic progenitors is insufficiently known: on the one hand,
ectopically expressed human CD34 increases murine hemato-
poietic cell interactions with the human bone marrow stroma
[244], on the other hand, there are studies pointing to the anti-
adhesive and pro-migratory roles of CD34 [245]. CD34 is also
highly present in endothelial and skeletal muscle progenitors,
and the CD34 knockout impairs satellite cell proliferation and
motility [246].

A striking confirmation of the essential and multiplex
involvement of the ECM in the contact-dependent guidance of
progenitor cells for tissue repair was recently provided by live
imaging of the satellite cell translocation in injured skeletal
muscles [74]. This study revealed that following myofiber
death and degradation, the remaining ECM structures, coined
by authors the Bghost fibers^, direct the muscle regenerative
response by orienting the migration and subsequent division
of activated myogenic progenitors along the longitudinal axis
of the fiber ECM. Alterations in the positioning of these ECM
arrangements disturb the migratory path and division plane of
satellite cells, causing disorganization of the newly - formed
myofibers. Interestingly, the satellite cells from an uninjured
fiber are not mobilized from their location to the affected area,
suggesting that the myofiber ECM acts as autonomous
architectural unit necessary for proportionate regeneration
of the tissue.

To summarize, based on the extensive research, spanning
the matrix features from nanoscale to whole-organ level, it is
apparent that the diverse modes of immature cell interactions
with the substrate evoke multitude of biochemical and
mechanical signals, operating in tandem to coordinate the
motile behavior of stem and progenitor cells. Furthermore,
cellular behavior is highly context-specific: the propensity of
stem cells to migrate is regulated by copious mechanisms and
is dictated by the tissue composition, disease state and age.
Importantly, the processes of cell movement are dynamic by
nature. Thus, as discussed in the next section, imaging
approaches for the visualization of live cells in their microen-
vironment are among most powerful tools employed today for
the studies of immature cell trafficking in different organs.
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Live Imaging for the Investigations of Stem
and Progenitor Cell Motility

There are diverse biological imaging platforms enabling ob-
servations of isolated cells, as well as visualization of endog-
enous or transplanted cells in vivo. These methodologies range
from monitoring single-cell behavior in an artificial environ-
ment to the longitudinal analysis of the distribution of cells in
live organisms. The resolution of each approach depends on
the type of label (for instance, fluorescence, bioluminescence,
nuclear, or magnetic), the corresponding imaging modality
(namely, light imaging, positron emission tomography, or
magnetic resonance imaging), as well as the nature of exam-
ined samples (e.g., in vitro cell analysis versus studies of cells
in organs). The technological details and relative advantages
of the currently employed procedures for the stem cell imag-
ing are extensively discussed in the literature [11, 247–252].
The present paper focuses on the light imaging using fluores-
cence microscopy, since it is one of the better established and
commonly used methods for the identification of stem cells in
situ and exploration of their motility.

The migration of stem and progenitors cells is frequently
examined by observing the behavior of isolated cells in vitro.
Many of the findings on the juxtacrine and paracrine signaling
in the stem cell translocation, as described in the above sections,
were obtained by this methodology. For example, the live im-
aging of cells from a skeletal myoblast line has revealed that
fibronectin promotes integrin- and cadherin-mediated cell-to-
cell alignment and collective movement, which facilitates ensu-
ingmyoblast fusion [253]. Also, bymicroscopic observations of
primary muscle progenitors, it was established that Wnt7a/Fzd7
axis increases cell polarity and directional migration, and has a
beneficial effect on the myogenic cell engraftment after trans-
plantation [254]. Similarly, by monitoring live cell motility in
collagen gel cultures, HGF was identified as a major
chemoattractant for satellite cells [112]. In the same study, the
live imaging of the endogenous cells in the explanted whole
myofibers emphasized the intricacy of the mechanisms regulat-
ing stem cell migratory behavior, impacted by a host of envi-
ronmental inputs [112]. Thus, while in vitro imaging is particu-
larly instrumental for establishing specific chemoattractants for
the immature cells, or pinpointing the fine characteristics of the
substrate that influence cell migration, the extreme complexity
of the stem cell native environment is only partially reflected in
these setups. Consequently, intravital imaging, that is live imag-
ing of cells in the animal organs [248, 255–257], is invaluable
for elucidating the pathways orchestrating stem cell migratory
responses in the conditions that are close to physiological.

A pioneering work implementing intravital imaging for the
studies of stem cell trafficking was performed by Mazo and
colleagues, who developed a methodology for the live obser-
vations of transfused, fluorescent dye-labeled hematopoietic
progenitor cells in the bone marrow of the mouse calvarium

[258]. Using this approach, they demonstrated for the first
time that the unique expression pattern of P-/E-selectins and
the vascular cell adhesion molecule-1 on the bone marrow
microvasculature enables adhesion of circulating hematopoi-
etic progenitors and facilitates their homing. The intravital
microscopy of the mouse calvarium for the studies of homing
and retention of transplanted hematopoietic stem and progen-
itors was subsequently applied by other groups, who intro-
duced new platforms of monitoring primitive cell behavior
after engraftment in the bone marrow niches with differential-
ly labeled stromal cell populations, modified dyes for the stem
cell tracking, and advanced technologies for image acquisition
and quantitative analysis [259–263]. These methodologies
hold promise to accelerate the research into the molecular
mechanisms governing hematopoietic stem cell trafficking af-
ter transplantation. Indeed, in a recent work by Itkin et al., the
observations of mouse bonemarrow by live imaging led to the
documentation of distinct vascular compartments, i.e., high-
permeability sinusoids, functioning as dedicated sites for im-
mature hematopoietic cell transmigration [264]. The activa-
tion of cell motility occurs in these locations due to exposure
to the peripheral blood plasma, which, on the other hand,
antagonizes bone marrow stem cell quiescence and hampers
self-renewing and long-term repopulating potentials. These
findings bring forth new considerations of manipulating vas-
cular integrity and adjusting the degree of plasma penetration
via blood-bone marrow barrier for the clinical mobilization
and transplantation protocols.

The migration of skeletal muscle satellite cells was also
addressed by intravital imaging. In confirmation of the in vitro
studies, it was documented by live observations that exoge-
nous HGF induces cell migration in the rat soleus muscle
[110], where the cells are prompted to move by the tissue
damage [265]. However, in these works no specific markers
of the myogenic progenitors were utilized. A more recent
study by Webster et al. introduced intravital imaging in a
transgenic mouse with the progeny of muscle stem cells
tagged by the expression of a fluorescent protein: in this mod-
el, the live imaging of muscle progenitor migration was cru-
cial for the identification of the specific ECM structures
remained after the myofiber death that guide the directional
translocation of activated myogenic cells for adequate tissue
repair [74].

In the adult brain, intravital imaging was recently used
to study the trafficking of newly-born neurons: by infect-
ing the endogenous cells with fluorescent protein-
expressing lentivirus, and introducing fluorescent calcium
indicators, the functional incorporation of migrated cells
in the olfactory bulb was evaluated [266]. This work sug-
gests that in addition to intrinsic spontaneous activity of
neuronal circuits, extrinsic sensory-driven signals propel
the integration of immature stem cell progeny within the
adult nervous system.
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A critical insight on the stem cell behavior during hair
follicle regeneration originated from a series of intravital im-
aging studies performed by the group of Greco and collabo-
rators [56, 255, 267–270]. To visualize the hair follicle con-
stituents, several fluorescent reporters were combined in a
transgenic mouse model in order to differentially label epithe-
lial and mesenchymal populations, and repeated observations
of the ear skin were conducted. By this approach, it was dem-
onstrated that the migration, as well as commitment, prolifer-
ation, death and clearance of primitive and maturing cells, are
spatially restricted events within the sub-compartments of hair
follicle epithelium, and these processes are determined by the
cell proximity to mesenchymal dermal papilla niche.

Despite the implicit importance of monitoring stem cell
behavior in the natural environment of a live organism, the
number of published studies implementing intravital imaging
of adult organs in rodents is relatively limited, as this type of
investigations presents extreme technical challenges. Some of
the confiding factors include the need in advanced and elabo-
rated equipment, as well as an expertise in image acquisition
and quantitative analysis. Further, the imaging has to be per-
formed in anesthetized animals for the extent of hours, while
the imaged tissue is exposed for the optical observations. This
entails development of complex surgery protocols and imag-
ing set-ups aiming at maintaining organ function, minimizing
tissue injury and attenuating its deterioration, diminishing
light-induced damage to the imaged cells and their environ-
ment, and avoiding motion artifacts. Moreover, transgenic an-
imals or other modalities for the specific expression of fluo-
rescent protein/s in population/s of interest are required,
whereas for many types of stem cells, a single marker is in-
sufficient for faithfully discrimination of primitive cells from
other cell cohorts. Additionally, in some tissues, the location
of stem cells is uncertain, or their sites are inaccessible to the
light due to the organ size (for example, sub-ventricular zone
in the brain or the marrow of long bones).

Consequently, alternative approaches for exploring stem
cell motility in tissues using ex vivo organotypic cultures have
been used. For instance, by imaging of brain slices, the char-
acteristics of the sub-ventricular zone neuroblast movement
were examined by several groups [271–274], showing that
contrary to the expectations, the neuroblast migratory chains
remain stable and immotile for relatively long periods of time.
Interestingly, in these settings, it was found that physiological
electrical signals promote the chain migration of neuroblasts
by augmenting purinergic receptors and enhancing cell adhe-
sion [275]. Additionally, imaging of the excised perfused
hearts has been utilized to demonstrate the involvement of
the ephrin A1/EphA2 pathway in the control of cardiac
progenitor cell movement after transplantation into the
acutely infarcted myocardial parenchyma [159, 160].
Likewise, live observations of the isolated myofibers were
instrumental in uncovering the role of various cytokines,

ECM components and adhesion molecules in directing
satellite cell translocation [112, 246].

Therefore, by combining different methodologies for the
live imaging in vitro, in vivo and ex vivo, one can achieve a
better comprehension of the complex mechanisms defining
the stem cell trafficking in the course of tissue homeostasis
and after injury.

Concluding Remarks

The rapidly expanding field of adult stem cells prompted inves-
tigations into the molecular underpinnings of the migratory be-
havior of immature cells, leading to considerable advancements
in elucidating the elements in tissue microenvironment that im-
pact the stem cell trafficking. Among the key factors are secreted
mediators, direct contacts of primitive cells with their neighbors,
and biochemical and physical characteristics of the extra-cellular
matrix, all acting in concert to optimally coordinate the stem cell
movement. While these regulatory pathways are not unique to
stem cells, it is argued that the intricate responses of the immature
cells address in a specificmanner the needs of organmaintenance
and repair, and could be exploited for regenerative approaches of
modulating the translocation of endogenous or transplanted pro-
genitors.Moreover, there is evidence that the abnormalities in the
migratory ability of stem cells are causative of pathological
changes in tissues, which occur with age and diseases. Future
research in this area, facilitated by the implementation of inno-
vative live imaging platforms and other new technological tools
for the studies of immature cell biology and function, will im-
prove our understanding of the multifaceted processes governing
cell recruitment to the site of injury and hold great promises for
the success of cell-based regenerative therapeutics.
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