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Abstract The main aim of oncologists worldwide is to un-
derstand and then intervene in the primary tumor initiation and
propagation mechanisms. This is essential to allow targeted
elimination of cancer cells without altering normal mitotic
cells. Currently, there are two main rival theories describing
the process of tumorigenesis. According to the Stochastic
Model, potentially any cell, once defunct, is capable of initi-
ating carcinogenesis. Alternatively the Cancer Stem Cell
(CSC)Model posits that only a small fraction of undifferenti-
ated tumor cells are capable of triggering carcinogenesis. Like
healthy stem cells, CSCs are also characterized by a capacity
for self-renewal and the ability to generate differentiated prog-
eny, possibly mediating treatment resistance, thus leading to
tumor recurrence and metastasis. Moreover, molecular signal-
ing profiles are similar between CSCs and normal stem cells,
including Wnt, Notch and Hedgehog pathways. Therefore,
development of novel chemotherapeutic agents and proteins
(e.g., enzymes and antibodies) specifically targeting CSCs are
attractive pharmaceutical candidates. This article describes
small molecule inhibitors of stem cell pathways Wnt, Notch
and Hedgehog, and their recent chemotherapy clinical trials.
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Introduction

Tumors are considered as hierarchically organized sys-
tems with heterogeneous cell populations, including tu-
mor-initiating, stromal, endothelial, hematopoietic and
infiltrating cells with variable self-renewal capabilities,
differentiation and tumor propagation potential [1–3].
There are two main rival theories explaining the process
of tumorigenesis: the Cancer Stem Cell (CSC) and Sto-
chastic Models (Fig. 1). The Stochastic Model (or clon-
al evolution) suggests that many tumor cells have the
same potential to give a rise to cancer growth and me-
tastasis [4, 5]. Many years later Canadian researchers
found that only a small subset of acute myeloid leuke-
mia (AML) cancer cells were capable of sustaining tu-
mor growth after transplantation into non-obese diabetic
mice with severe combined immunodeficiency disease
(NOD/SCID) [6, 7]. This resulted in the development
of the CSC model suggesting that some cancer cell
populations are reminiscent of somatic stem cells. Ac-
cording to this model cancer develops from small pop-
ulations of tumor initiating cells through the accumula-
tion of genetic, epigenetic and somatic defects, and al-
tered signaling within the cell’s micro-environment [8].
These altered cells are intermixed with the bulk of tu-
mor cells, which may require a different treatment strat-
egy for effective inhibition and suppression of tumor
growth and relapse. However, probably both premises
play a role in the cancer development and the predom-
inance of a particular mechanism of cancerogenesis
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depends on micro-environmental cues, cancer types, tu-
mor development stage and other factor types [2, 9, 10].

There are several well characterized molecular signaling
cascades in CSCs including Wnt, Notch and Hedgehog path-
ways [11]. These pathways are broadly involved in self-re-
newal, proliferation and differentiation mechanisms of CSC.
The existence of different populations of heterogeneous cells
with different molecular signaling profiles and cell surface
phenotypes may be largely responsible for the frequent failure
of conventional treatments, contributing to frequent recur-
rence and relapse. This article will discuss these three CSC
signaling pathways and the novel chemotherapeutic candidate
drugs that target crucial components of the cascades.

Wnt Pathway-Targeting Chemotherapeutic Drugs

Understanding normal cellular homeostasis is a prerequisite
for understanding the molecular mechanisms underlying the
origin and development of tumor cells. One of the key signal-
ing cascades involved in cell proliferation and stem cell re-
newal processes is the Wnt pathway. This signaling cascade
can be subdivided into either β-catenin dependent or indepen-
dent pathways. Both pathways regulate determination of cell
fate, proliferation and differentiationmechanisms [12], as well
as cell polarity and motility processes [13]. Meanwhile, the
dysregulation of these mechanisms has been reported to be the
main factor causing development of various cancer types
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Fig. 1 A schematic comparison between the CSC and Stochasticmodels.
In the Stochastic model all cells within a tumor are biologically
equivalent. The chances of cancer development are stochastically
dependent on the environmental cues, accumulated mutations and
epigenetic abnormalities. Any cell within the tumor bulk has an equal

potential to initiate tumorigenesis and differentiate into different subsets
of cancer cells. Meanwhile, the Cancer Stem Cell model assumes that
cancer cells can be divided into distinct cell populations, where only
cancer stem cells are capable to initiate tumorigenesis
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including colorectal cancer (CRC) [14], acute myeloid leuke-
mia (AML) [15], chronic myeloid leukemia (CML) [16], gas-
tric cancer [17] and many others.

The signaling cascade begins whenWnt ligands bind to the
Frizzled (Fz) transmembrane receptor. The complex cooper-
ates with another transmembrane lipoprotein receptor related
protein (LRP). Formation of this triple complex inhibits gly-
cogen synthase kinase-3β (GSK-3β) activities, resulting in
non-phosphorylated β-catenin cytoplasmic accumulation
[18]. Non-phosphorylated β-catenin translocates into the nu-
cleus, where it regulates gene transcription by binding to other
transcription cofactors including lymphoid enhancer-binding
factors (LEF), T-cell transcription factor (TCF), cAMP re-
sponse element-binding protein (CREB) [19, 20]. Formation
of the machinery triggers expression of downstream targets of
the Wnt signaling pathway such as c-MYC, Axin-2 and
ASCL2 [21]. Whereas the absence of Wnt ligand results in
the formation of the β-catenin destruction complex, which is
comprised of GSK-3β, casein kinase 1-alpha (CK1α), axin
and adenomatous polyposis coli (APC), causing phosphory-
lation of β-catenin and degradation in endosomes.

Given the importance of the Wnt pathway in cancer pro-
gression, there are a number of chemotherapeutic agents in
pre-clinical and clinical trial stages (Table 1). In a series of
in vitro cytotoxicity tests and in vivo activity experiments
conducted in zebrafish, Chen and colleagues [22] discovered
two major types of Wnt pathway antagonists: Wnt ligand
production inhibitors (IWPs) and Wnt response inhibitors
(IWR). IWP-1 and IWP-2 molecules inhibit the membrane-
bound acyltransferase Porcupine, which modifiesWnt ligands

through palmitoylation and preventing accumulation of β-
catenin molecules in the cytoplasm. This modification seems
to be essential for the ligand’s signaling activity, such as IWR
induced stabilization of Axinmolecules, which in turn leads to
the suppression of Wnt dependent signaling cascades [22].
Moreover, IWR suppressed Wnt-dependent regeneration pro-
cesses in resected caudal fin of zebrafish can be reversed by
washing out the drug [22]. Recently, Waaler and his col-
leagues have synthetized JW74 and JW67, two novel Wnt
pathway antagonists [23]. Both molecules decreased the
level of active β-catenin and increased expression levels
of Axin2 molecules. Several molecules like 2,4-
diamino-quinazoline and PNU74654 [24, 25] can also
act as antagonists of β-catenin and TCF4. A similar
effect was achieved by XAV939, which inhibits β-
catenin signaling via interactions with the type 1 and
2 tankyrase-binding domain (TBD) of the Axin mole-
cule [26]. However, these drugs have shown low selec-
tivity, therefore further development and optimization is
required. Other potential drugs from this series of mol-
ecules are ICG-001 analogues, which have shown some
promising effects against various cancer stem cell types
[27].

Several molecules have been reported to prevent ac-
tivation of Wnt signaling by specifically targeting the
PDZ domain of Dvl. This domain is a protein-protein
interaction motif that directly binds to the Fz receptor,
thereby activating the signaling cascade [28]. Three po-
tential drugs NSC668036, FJ9 and 3289–8625 have
shown to inhibit Dvl and Fz protein-protein interactions.

Table 1 Wnt pathway inhibitors

Molecule Sponsor Mechanism of action Phase/ Clinical Trials.
Gov. identifier

Types of cancer stem
cells

IWP N/A Inhibition of Wnt ligand production No clinical trials N/A

IWR N/A Stabilization of axin molecules,
inhibition of β-catenin accumulation

No clinical trials N/A

XAV939 National Cancer
Institute

Stabilization of axin molecules,
inhibition of tankyrase 1 and 2

Phase 1 Neuroblastoma,
Breast, Colon cancer SC

2,4-diamino-
quinazoline

Parke Davis & Co.,
Pfizer Inc.

Inhibition of β-catenin/Tcf-4 pathway Pre-clinical Not yet investigated

PNU74654 Genentech/ Curis Inhibition of β-catenin/Tcf-4 pathway No clinical trials Colon cancer SC

ICG-001 PrismBiolab Inhibition of β-catenin/Tcf-4 pathway Phase 1 Colon cancer SC,
Brain tumor SC

NSC668036 US National
Cancer Institute

Inhibition of Dvl activity through the
PDZ domain

Pre-clinical trials Breast cancer SC

3289–8625
(BML-286)

Enzo Biochem Inhibition of Dvl activity through the
PDZ domain

No clinical trials Colon cancer SC

NSAIDs N/A Prevention of β-catenin
translocation into the nucleus,
inhibition of COX2

many Intestinal, Skin, Basal
cell carcinoma CSC

Abbreviations NSAIDs non-steroidal anti-inflammatory drugs, SC stem cells, CSC cancer stem cell, COX2 cyclooxygenase 2
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Efficacies of these drugs are due to further validation on
cancer stem cell lines [28].

Non-steroidal anti-inflammatory drugs (NSAIDs) have also
proven to be effective against various cancer types [29]
(Table 1). The majority of NSAIDs target cyclooxygenase type
1 and 2 with consequent prevention of nuclear β-catenin accu-
mulation. For instance, sulindac molecules have demonstrated
significantly decreasing nuclear localization of β-catenin in pa-
tients with familial adenomatous polyposis (FAP) [30].

Chemotherapeutic Agents Targeting Hedgehog
Signaling

The Hedgehog (Hh) signaling pathway is an essential signal-
ing cascade mediating cell polarity and migration mecha-
nisms, regulating maintenance of stemness properties and
guiding SC differentiation [31]. There are three homologues
of the Hh ligand: Sonic Hedgehog (Shh), Indian Hedgehog
(Ihh) and Desert Hedgehog (Dhh) [32]. The pathway initiates
upon binding of Hh to the Patched 1 (Ptch1) receptor. Forma-
tion of the complex triggers release of Smoothened (Smo),
which drives activation of Gli zinc-finger transcription factor

family members (Gli1, Gli2, Gli3). It results in their nuclear
translocation and expression of target genes [33].

There are several drugs targeting Hh pathway components
that are in preclinical and clinical trial stages (Table 2). The
naturally occurring Hh-specific inhibitor, cyclopamine, inhibits
Smo activities in Hh-pathway-related tumors such as medullo-
blastoma, basal cell carcinoma, rhabdomyosarcoma and others
[34]. Moreover, in vitro experiments showed a significant de-
crease of insulin-like growth factor binding protein 6 (IGFBP6)
and proliferating cell nuclear antigen (PCNA), simultaneously
increasing BCL2-antagonist/killer 1 (Bak1) and BCL2-
associated X (Bax) proteins in SW116 cells treated with
cyclopamine, which leads to decreased proliferation and initia-
tion of apoptotic mechanisms [35]. Other Smo-inhibiting syn-
thetic molecules, such as GDC-449, IPI-926, Cur-61414 and
BMS-833923 are also at pre-clinical and clinical stages. GDC-
0449 has recently entered phase II clinical trials on recurrent
medulloblastoma, glioma, gastric carcinoma, breast cancer, pros-
tate carcinoma, lung carcinoma and others [36] (Table 2).

Apart from trials with advanced stage patients, the drugs
have also been tested on several types of cancer stem cells.
The drug has been administered to patients with metastatic
cancer, who had previously been treated with FOLFOX

Table 2 Hedgehog pathway chemotherapeutic inhibitors

Molecule Sponsor Mechanism of action Phase/Clinical
Trials.gov Identifier

Types of cancer stem cells

Cyclopamine Generic Smo antogonist Phase 1, 2 Glioblastoma, Gastric, Prostate,
Leukemic stem cells

GDC-0449 Curis, Genentech,
Hoffmann-La
Roche

Cyclopamine
derivative, Smo antagonist

Phase 2
NCT02371967, NCT02115828,
NCT01713218, NCT01604252,
NCT02366312, NCT02091141,
NCT02073838, NCT01878617,
NCT01835626, NCT01774253,
NCT01601184

Lung, Pancreatic, Leukemic
stem cells

IPI-926 Infinity Cyclopamine derivative,
Smo antagonist

Phase 1, 2
NCT01383538

Primary myelofibrosis SC,

Cur-61414 Curis Smo antagonist Phase 1 Basal cell carcinoma, Glioma,
Melanoma, Pancreatic CSC

BMS-833923 Bristol-Myers
Squibb

Gli inhibition,
Smo antagonist

Phase 1, 2
NCT00670189, NCT01218477,
NCT01413906, NCT00927875,
NCT00909402, NCT01357655,
NCT00884546

Basal cell carcinoma SC

LDE225 Novartis Gli inhibition,
Smo antagonist

Phase 1, 2
NCT01350115, NCT00961896,
NCT01456676, NCT01033019,
NCT00880308, NCT01208831,
NCT01125800, NCT01487785

Prostate, Pancreatic, Ovarian,
Solid tumors, CML CSC,

PF-04449913 Pfizer Gli inhibition,
Smo antagonist

Phase 1
NCT02038777, NCT02367456,
NCT01842646, NCT01841333,
NCT01546038

MDS, CML CSC,

Abbreviations MDS myelodysplastic syndrome, CML chronic myeloid leukemia, AML acute myeloid leukemia
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(combination of folinic acid, fluorouracil and oxaliplatin) or
FOLFIRI (combination of folinic acid, fluorouracil and
irinotecan) [37]. LDE225 (Novartis) and PF-04449913
(Pfizer) have also demonstrated some promising results pre-
sented in preliminary data [38]. Phase I trials on patients with
advanced solid tumors have shown no dose-limiting toxicities
at all given dosages, including up to 800 mg daily [38]. More-
over, decreased expression levels of Gli-1 mRNA in skin and
medulloblastomas provided evidence for in vivo Hh pathway
inhibition [38]. Phase I trials of PF-04449913 in patients with
hematologic malignancies were conducted to determine DLTs
and phase II dose recommendations [39]; overall the drug was
reported to be tolerated well and even indicated some efficacy
against chronic myeloid leukemia patients.

Notch Signaling Pathway Inhibitors

The Notch cascade, may also contribute to dysregulation of
homeostasis in cancer stem cells. Mammals possess four
Notch receptor homologues (1, 2, 3 and 4) that interact with
two different families of ligands: Delta-like ligands (DLLs)
and Jagged ligands [11, 40]. Upon formation of the ligand-
receptor complexes, conformational changes of the receptor
lead to the exposure of cleavage sites to metalloprotease and
γ-secretase, releasing the Notch intracellular domain (NICD).
The NICD translocates to the nucleus and initiates transcrip-
tion of target genes including HES (hairy enhancer of split),
Myc and p21. Expression levels of Jagged ligands, Notch1
and HES1 were comparable to or slightly higher in cancer
stem cells than that in normal intestinal crypt cells [11, 41,
42]. However, another study conducted by Meng and col-
leagues [42], revealed a positive correlation in HES1, Notch1
and NICD gene expression with the grade of colon cancer
progression. Moreover, overexpression of these genes is hy-
pothesized to be involved in chemo-resistance of colon cancer
cells.

Notably, γ-secretase inhibition has become a common tar-
get for drug development. There are several gamma-secretase
inhibitors currently being developed, which inhibit gamma-
secretase mediated Notch cleavage in various types of tumors
(Table 3). RO4929097 is a gamma-secretase inhibitor in phase
I studies in neuroendocrine carcinoma andmelanoma patients.
The first phase II trial on refractory CRC patients showed a
very good tolerability, with minor toxicity levels [43]. The
drug showed tumor inhibiting properties in patients with mel-
anomas [43]. The authors suggested that RO4929097 would
be more effective in combination with other drugs. Initial ex-
periments of another γ-secretase inhibitor, MK-0752, on T-
cell acute lymphoblastic leukemia patients were unsuccessful
due to the dose limited toxicity (DLT). Most of the patients
had diarrhea and other gastrointestinal symptoms [44]. How-
ever, in another phase I trial of MK-0752 in children with

refractory malignant CNS tumors, DLT was not observed
[45]. Therefore these facts require further investigations and
clarification.

Another essential element of the Notch pathway is the
DLL4 ligand. It has been demonstrated to play a crucial role
in vascularization of tumors [46]. It is believed that the block-
ade of the vascular endothelial growth factor (VEGF) receptor
with monoclonal antibodies has a major therapeutic potential
in inhibition of tumor driven angiogenesis [47]. However,
severe forms proceed even when these receptors are blocked.
Therefore additional angiogenesis-targeted treatments are re-
quired. Such therapy had been shown to be feasible by
Noguera-Troise and colleagues who demonstrated the impor-
tance of DLL4 in the inhibition of tumor angiogenesis and
growth in mice [48]. However, the blockade of the DLL4/
Notch pathway resulted in enhanced formation of non-
functional tumor vessels, thus the DLL4 antibody was con-
cluded to be a negative regulator of tumor vascular growth.

The effect of the anti-DLL4 antibody on xenograft models
of CRC patients with oncogenic KRAS mutations has been
tested as a combination drug therapy [49]. KRASmutations in
CRC patients are common and are associated with treatment
resistance to anti-EGFR therapy. Anti-DLL4 alone, as well as
in combination with widely used chemotherapeutic drugs
(such as irinotecan), has decreased tumor cell proliferation
and angiogenesis in both wild type and KRAS mutant mouse
tissue. These results indicate the utility of DLL4 inhibition on
treating CRC xenograft tumors. Despite quite a number of
experiments and positive effects on cancer patients with this
agent there are no reports on dosage and administration re-
gimes for clinical development.

Conclusions and Further Perspectives

The CSC model provides a potential explanation of tumor
initiation, progression and metastasis mechanisms in many
cancer types. The logic is that failure to eliminate the subset
of CSCs within the tumor bulk leads to cancer recurrence,
chemotherapy resistance and metastasis. Recent investiga-
tions have provided insights into the role and mechanisms of
Wnt, Hh and Notch pathways in the development of a number
of cancer types. Higher activity of these pathways in CSCs
compared to normal somatic cells, as well as the interplay
between the molecular pathway components, may contribute
to the cellular diversity and complexity of the problem. It is
important to emphasize that a number of signaling cascades
highly expressed in normal stem cells may also be upregulated
in CSCs [50], therefore contributing to CSC driven tumor
development and recurrence mechanisms. This fact has hin-
dered the development of effective cancer stem cell-specific
therapies. The development of these novel therapeutic ap-
proaches may be complicated by significant issues. Despite
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pioneering works in the field, when scientists used the cell
surface phenotype for enrichment and investigations of CSCs,
some recent investigations suggest that CSCs undergo dynam-
ic changes at the level of biomarker expression during tumor-
igenesis [51, 52]. Interestingly, the accumulation of genetic
aberrations and instabilities, a common feature of cancer cells,
recently has also been extrapolated to cancer progenitor cells
[53] suggesting novel mechanisms of cancer transformation
and development. For example, chromosomal instabilities and
increased expression of c-Myc have been detected in in vivo
experiments on fibrosarcoma [54] and non-tumorigenic neural
cells [55] leading to the acquaintance of CD133+ phenotype
and increased ability to develop cranial malignancies. This
makes it difficult to monitor the effects of biologic and thera-
peutic effects of current drugs on CSCs. Nonetheless, explor-
ing and understanding pathway cross-talk mechanisms may
also provide a platform for designing and developing new
experimental drugs. It will widen the perspectives of therapeu-
tic options and treatment regimens for effective inhibition of
tumor development and relapse.
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