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Abstract Wnt signaling determines major developmental
processes in the embryonic state and regulates maintenance,
self-renewal and differentiation of adult mammalian tissue
stem cells. Both {3-catenin dependent and independent Wnt
pathways exist, and both affect stem cell fate in developing
and adult tissues. In this review, we debate the response to
Wnt signal activation in embryonic stem cells and human,
adult stem cells of mesenchymal, hematopoetic, intestinal,
gastric, epidermal, mammary and neural lineages, and discuss
the need for Wnt signaling in these cell types. Due to the vital
actions of Wnt signaling in developmental and maintenance
processes, deregulation of the pathway can culminate into a
broad spectrum of developmental and genetic diseases, includ-
ing cancer. The way in which Wnt signals can feed tumors and
maintain cancer stem stells is discussed as well. Manipulation
of Wnt signals both in vivo and in vitro thus carries potential
for therapeutic approaches such as tissue engineering for re-
generative medicine and anti-cancer treatment. Although
many questions remain regarding the complete Wnt signal
cell-type specific response and interplay of Wnt signaling with
pathways such as BMP, Hedgehog and Notch, we hereby
provide an overview of current knowledge on Wnt signaling
and its control over human stem cell fate.

Keywords Wnt - Human - Embryonic stem cells - Adult stem
cells - Canonical - Noncanonical

Introduction

Research on the Wnt pathway started about 30 years ago with
the discovery of Int-1, a proto-oncogene that, when activated
by insertion of the Mouse Mammary Tumor Virus (MMTYV),
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leads to malignant transformation of mammary tissues in
mouse [1]. Int-1 was shown to be a homolog of Drosophila
wingless (wg), which controls segment polarity during larval
development, and the gene was subsequently named Wntl
(wingless-type MMTYV integration site family member 1).

Currently, the Wnt pathway is known as an important
regulatory signaling axis that influences developmental pro-
cesses in the embryo and regulates maintenance, self-renewal
and differentiation of adult mammalian tissue stem cells.

Whnt Signaling Pathways

The involvement of numerous Wnt ligands and (co-)receptors
accounts for a myriad of possible interactions, that are distilled
intracellularly into a limited number of established responses.
In the past, these were divided into canonical and noncanon-
ical Wnt pathways, defined by their requirement or indepen-
dence of intracellular 3-catenin, respectively. In recent years
however, we have been encouraged not to view canonical and
noncanonical pathways as independent, linear pathways but to
view them as part of a complex and dynamic signaling net-
work. When Wnt ligands bind to receptors and co-receptors
on the cell surface, both 3-catenin dependent and {3-catenin
independent answers can be set in motion, which can reinforce
or even oppose each other. At this point, the cell will respond
to the net result of the intracellular signaling activities, and this
will depend on factors intrinsic to both the cell and its
environment.

In absence of Wnt ligands, intracellular levels of (3-catenin
are kept low by ubiquitin-dependent proteasomal degradation,
set in motion by a multicomponent degradation complex,
consisting of Axin, caseine kinase 1x (CK1«x), Adenomatous
polyposis coli (APC) and glycogen synthase kinase 3f3
(GSK3f3). When Wnt proteins bind to the seven transmem-
brane (7-Tm) Frizzled (Fz) receptor and low density lipopro-
tein receptor-related protein co-receptor 5/6 (LRP5/6), the
formation of the degradation complex is inhibited, and f3-
catenin is stabilized [2—4]. 3-catenin then accumulates in the
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cytoplasm and migrates to the nucleus where it acts as a
transcriptional co-activator for transcription factors of the T-
cell factor/lymfoid-enhancing factor (TCF/LEF) family,
among others [5] (Fig. 1b). Additional co-activators, such as
B-cell lymphoma 9 (BCL9), cAMP response element-binding
protein (CREB)-Binding Protein (CBP)/p300 and brahma-
related gene 1 (BRG1) bind the 3-catenin-TCF complex and

ensure cell- and tissue-specific activation or suppression of
transcription of numerous Wnt responsive genes [6—10].
When {3-catenin is not present in the nucleus, TCF/LEF binds
TLE1, which promotes histone deacetylation and chromatin
compaction, thereby repressing transcription [11] (Fig. 1a).
Through their efforts to find proteins homologous to Wntl,
a protein shown to signal through the Wnt (3-catenin dependent
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Fig. 1 [3-catenin dependent Wnt signal transduction pathway. A graph-
ical representation of the (3-catenin dependent Wnt pathway. a In the
canonical Wnt pathway, the central co-activator 3-catenin is kept at low
levels by a degradation complex, consisting of Axin, CK1e, GSK3f and
APC. Phosphorylation of 3-catenin by this complex leads to poly-
ubiquitination by the E3 ligase 3-TrCP and subsequent degradation by
the proteasome. In the inactive state, TCF/LEF transcription factors are
bound to TLE1, which recruits HDACs to silence chromatin and thereby
repress transcription. The Wnt pathway is regulated by both extracellular
and intracellular inhibitors, intruding at every step of the pathway. sFRPs
and WIF both work in an autocrine and paracrine manner and bind Wnts,
preventing their interaction with Fz. DKK proteins inhibit the canonical
pathway by binding the extracellular part of LRP co-receptors and,
together with Kremen, mediating the internalisation of LRP. Sclerostin
binds LRP co-receptors and impairs the binding to Wnt ligands. b When
Wnt proteins bind the 7-Tm Frizzled receptor and LRP5/6 on the cell
surface, CK1x and GSK3f3 are diverted to the plasma membrane and
phosphorylate LRP5/6. In addition, DVL molecules gather to the plasma
membrane to interact with Fz. Interaction of Axin with phosphorylated
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LRP5/6 and DVL leads to disintegration of the destruction complex and
accumulation of 3-catenin in the cytoplasm. (3-catenin can then migrate
to the nucleus where it binds transcription factors of the TCF/LEF family,
among others. When activated, 3-catenin converts TCF/LEF into a
transcriptional activator and the complex binds Wnt response elements
in the DNA. In addition, several co-activators are recruited (BCL9, CBP/
p300, BRG1) to ensure efficient transcription of target genes. Chibby and
ICAT inhibit 3-catenin action in the nucleus by preventing the formation
of the 3-catenin-TCF complex. In addition, Chibby was shown to pro-
mote [3-catenin export out of the nucleus. CKl«, caseine kinase 1«;
GSK3p, glycogen synthase kinase 3(3; APC, Adenomatous polyposis
coli; 3-TrCP, 3- transducin repeat-containing protein; HDAC, histone
deacetylase; TCF/LEF, T-cell factor/lymfoid-enhancing factor; sFRP, se-
creted frizzled-related protein; WIF, Wnt-inhibitory factor; DKK,
Dickkopf; LRP5/6, low density lipoprotein receptor-related protein co-
receptor 5/6; DVL, dishevelled; BCL9, B-cell lymphoma 9; CBP, cAMP
response element-binding protein-binding protein; BRG1, brahma-relat-
ed gene 1; WRE, Wnt response element
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pathway, Christian et al. identified XWnt5a which, as opposed
to XWntl, did not lead to duplication of the embryonic axis
when injected in Xenopus embryos. Administration of
XWntS5a however lead to developmental defects of head and
tail and even antagonized the ability of other Wnts to induce an
ectopic axis [12, 13]. This implied that some Wnts signal
through an alternative pathway, that differs from standard f3-
catenin signaling [14, 15]. Current studies have however shown
that Wnt ligands elicit a canonical or noncanonical response
dependent on cell type, environment and receptor milieu.

Depending on the major intracellular mediators used, the
noncanonical signaling cascades are subdivided into several
Wnt/Ca®" pathways and a Dishevelled (DVL)-c-Jun N-
terminal kinase (JNK) pathway (Fig. 2).

In the noncanonical Ca*"-mediated pathways (Fig. 2a),
stimulation of heterotrimeric G-proteins and DVL, associated
with Frizzled, leads to the activation of phospholipase C
(PLC) [14, 16—-18]. The resulting IP3 then diffuses through
the cytosol and interacts with the Ca** channels present on the
membrane of endoplasmic reticulum (ER) resulting in release
of Ca”" ions. Ca”" ions then function as secondary messen-
gers, leading to the activation of protein kinase C (PKC)-
Cdc42 [19, 20], Ca**/calmodulin-dependent protein kinase
IT (CaMKII), TGFf activated kinase (TAK1), Nemo-like
kinase (NLK) [21, 22] and/or calcineurin (CaCN)-nuclear
factor of activated T cells (NFAT) [23, 24].

In the DVL-JNK pathway (Fig. 2b), after binding of Wnts
to the Frizzled receptor, Dishevelled can aid in the activation
of INK through the downstream action of small GTPases Rho
and Rac. This pathway is involved in cellular polarity and
cytoskeletal modulation as well as the morphology and mi-
gration of cells during gastrulation in Xenopus embryos, and
has therefore been termed the ‘planar cell polarity’ or PCP
pathway [25, 26].

Wnt Ligands

Nineteen Wnt ligands have been identified in vertebrates to
date (Table 1) but their classification is based on amino acid
sequence rather than on functional properties [27]. The com-
mon structural features of all Wnt proteins include a signal
sequence for secretion, several highly charged amino acid
residues, and multiple glycosylation sites [28, 29]. In addition,
Wnt ligands display a characteristic distribution of 22-24
cysteine residues [29-31]. On the first conserved cysteine
residue, Wnts carry a lipid modification, in the form of a
palmitate group [32]. Palmitoylation of Wnts occurs at the
level of the endoplasmatic reticulum of the Wnt secreting cell,
and is performed by a porcupine acyl-transferase (PRCN).
Further transport and secretion of the Wnt protein in secretory
vesicles is controlled by Wntless (Wls)/Evenness interrupted
(Evi), a multipass transmembrane protein that is present in the
Golgi and/or on the plasma membrane [33]. The presence of

palmitate on Wnts was shown to be necessary for Wnt signal-
ing and is proposed to aid in the N-linked glycosylation of
Wnat ligands [32, 34]. Glycosylation might support Wnt trans-
port by increasing Wnt interactions with heparin sulfate pro-
teoglycans (HSPGs) present on the surface of Wnt responding
cells [35, 36].

As described previously, some Wnts signal through a
“noncanonical” pathway, that differs from standard {3-catenin
signaling [14, 15]. Although the intracellular response to Wnt
activation does not depend solely on the Wnt ligand, Wnt4,
Wnt5a, Wnt5b and Wntll are known as “noncanonical-
Wnts”, whereas Wntl, Wnt3 and Wnt10b are typically “ca-
nonical-Wnts”. This signaling specificity is achieved in part by
the preference for a particular type of Fz receptor (Table 1) in
addition to the choice of (a) specific co-receptor(s). However,
as mentioned previously, specific Wnt ligands are not restrict-
ed to activating the canonical or noncanonical pathway and
several Wnts have been shown to activate both, depending on
the receptor and co-receptor usage (Table 1).

As can be predicted from their important role in embryonic
and adult tissue development and maintenance, mutations in
Wnt ligands lead to a broad spectrum of developmental,
genetic diseases (Table 1). In addition, overexpression of
Wnt ligands and repression of Wnt pathway inhibitors was
shown to cause human cancer (reviewed in [37]).

Wnt Receptors

Wnats bind to the Frizzled (Fz) family of 7-Tm receptors,
comprised of 10 members in humans (Table 1). Fz proteins
are characterized by a large extracellular part containing a
conserved cysteine-rich domain (CRD) [2]. The cytoplasmic
side of Fz interacts directly with the PDZ domain of
Dishevelled. It is at the level of DVL that the Wnt signal
branches into the three separate pathways i.e. the canonical,
Wnt/Ca®" and DVL/JNK pathway.

Unique for the canonical Wnt pathway, is the use of LRP5/
6 as co-receptors. LRPS and LRP6 are single-pass transmem-
brane proteins with a relatively small intracellular domain and
a large extracellular domain, containing several potential re-
gions for protein interaction [38]. Intracellularly, LRP5/6 is
phosphorylated by the action of GSK3[3 and CKvy. This
results in the interaction of LRP5/6 with Axin, leading to the
release of Axin from the destruction complex, and the subse-
quent stabilization and nuclear localization of {3-catenin
(Fig. 1). LRP4 is another Wnt co-receptor that shares struc-
tural elements within the extracellular ligand binding domain
with LRP5 and LRP6 [39].

Ror2 (orphan receptor tyrosine kinase) is a single-pass
transmembrane tyrosine kinase receptor that contains a CRD
motif similar to that of the Frizzleds. This receptor is involved
in Wnt/Ca®"-signaling and under certain circumstances has
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Fig. 2 -catenin independent Wnt signal transduction pathways. A
graphical representation of the different 3-catenin independent Wnt path-
ways. a In the Wnt/Ca2+ pathway, Wnt ligand binding to Frizzled and
Ror co-receptor leads to stimulation of heterotrimeric G-proteins and
DVL. This interaction leads to the activation of PLC. This enzyme
converts PIP2 into IP3 and DAG. Subsequently, intracellular Ca**ions
are released from the endoplasmatic reticulum through the action of IP3.
These Ca®" ions will now act as secondary messengers, relaying signaling
via downstream pathways. The cytosolic rise of Ca2+ ions, together with
ubiquitously expressed calmodulin, activates CamKII. CaMKII induces
activation of TAK1 and NLK which can eventually lead to NLK mediated
inhibition of (3-catenin-TCF-dependent transcription through phosphory-
lation of TCF. Ca*" ions, together with calmodulin, activate the phospha-
tase CaCN, which in turn leads to the dephosphorylation and activation of
NFAT. NFAT will then migrate to the nucleus and alter gene expression.
DAG, along with released Ca®" from ER, activates PKC. PKC then

been shown to bind Wnt5a, leading to the inhibition of Wnt/[3-
catenin/TCF signaling [40].

Ryk (receptor-like tyrosine kinase) is another single-pass
tyrosine kinase receptor, that was shown to activate Wnt
signaling by binding Fz, but its function mainly lies within
the developing neuron and will therefore be discussed further
below (§3.7 Neural stem cells).

@ Springer

regulates small GTPase Cdc42 which is a key regulator of actin cytoskel-
eton remodeling and cell migration. b In the DVL/JNK pathway, Frizzled
and Dishevelled function in concert with G proteins and Daaml to
activate small GTPases RhoA and Rac. Activation of Rho GTPase leads
to the activation of the ROCK which leads to modification of the actin
cytoskeleton. The activation of Rac is independent of Daam1 and stim-
ulates JNK to set up cellular polarity through its effect on the actin
cytoskeleton. Ror, orphan receptor tyrosine kinase; DVL, disheveled,
PLC, phospholipase C; PIP2, phosphatidyl inositol 4,5-bisphosphate;
IP3, inositol 1,4,5-triphosphate; DAG, 1,2 diacylglycerol; CamKII,
Ca2+/calmodulin-dependent kinase II; TAK1, TGFf activated kinase;
NLK, nemo-like kinase; CaCN, calcineurin; NFAT, nuclear factor of
activated T cells; PKC, protein kinase C; Daaml, Dishevelled associated
activator of morphogenesis 1; ROCK, Rho-associated kinase; JNK, c-Jun
N-terminal kinase

The leucine-rich repeat containing, G-protein—coupled re-
ceptor (LGR) family of receptors associate with the Frizzled/
Lrp Wnt receptor complex and are able to enhance both Wnt
[3-catenin and PCP signaling [41, 42]. LGRs belong to a 7-Tm
evolutionary conserved receptor family, known for their large
extracellular ligand binding domain. R-spondins (RSPO1-4)
are secreted agonists of the Wnt pathway that interact with
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LGRs on the cell surface. In addition, R-spondins were shown
to bind cell-surface transmembrane E3 ubiquitin ligase zinc
and ring finger 3 (ZNRF3) and induce the association between
ZNRF3 and LGR4, which results in membrane clearance of
ZNRF3 [43]. Because ZNRF3 inhibits Wnt signaling by
promoting the turnover of Frizzled and LRP6, this mechanism
represents another way in which R-spondins can enhance Wnt
signal transduction [43].

Intracellular and Extracellular Regulators of Wnt Pathways

The Wnt pathway can be spatially and temporally regulated
by both extracellular and intracellular inhibitors, intruding at
every step of the signal transduction (Figs. 1 and 2).

The secreted frizzled-related protein (SFRP) protein family
consists of 5 members in humans (sFRP1-5) and all are known
modulators of the Wnt pathway that bind Wnt ligands extra-
cellularly [44]. Wnt-inhibitory factor 1 (WIF1) binds Wnt
ligands through a unique WIF domain that does not exhibit
homology to the cysteine-rich Wnt-binding regions of sFRP
or Frizzled proteins, but similarly prevents Wnts from binding
their receptors [45]. Another secreted Wnt inhibitor is
Dickkopf (Dkk), which works together with Kremen to me-
diate LRP co-receptor internalization, thereby making it un-
available for Wnt reception [46]. In a similar way, secreted
Sclerostin protein can bind to LRP co-receptors and cause the
inhibition of the Wnt pathway [47-50].

Chibby (Cby) is an intracellular modulator of the canonical
Wnt pathway and has a dual role in inhibiting the pathway. On
the one hand, Cby competes with TCF/LEF transcription
factors in the nucleus for binding to [3-catenin and on the
other hand, Cby promotes removal of {3-catenin out of the
nucleus through interaction with 14-3-3 proteins [51-53].
ICAT (inhibitor of 3-catenin and TCF-4) is another intracel-
lular regulator that interferes with the formation of the f3-
catenin-TCF4 complex by binding to (3-catenin [54].

Above mentioned mechanisms are just a fraction of possi-
ble ways to dynamically regulate Wnt signaling and it is clear
that this pathway contains an enormous potential to control
developmental and homeostatic processes.

As mentioned above, Wnt signaling is involved in the
upkeep of both embryonic (ESC) and adult (ASC) stem cells.
Embryonic stem cells are pluripotent, meaning that they have
the ability to differentiate to each of the three germ layers. It is
however a transient cell state in the development of all verte-
brates. Adult stem cells have a lower ability to differentiate
(multi-, oligo- or unipotent) and typically reside within regen-
erative tissues throughout adult life, playing an important role
in replenishment and repairing of these tissues. In the first part
of this review, we will discuss the involvement of Wnt signal-
ing in embryonic stem cell proliferation and differentiation. In
the second part, we will discuss the majority of human regen-
erative tissues in which stem cells, that are maintained by Wnt

signaling, reside. Lastly, we will focus on cancer stem cells, a
small population of stem cells in tumor tissues, which main-
tain tumor growth and possess properties of both ESC, ASC
and cancer cells.

Role of Wnt Signaling in Stem Cell Proliferation
and Differentiation

Embryonic Stem Cells

The decision of an embryonic stem cell to either proliferate,
and maintain its pluripotent character, or commit to the differ-
entiation process (to mesoderm, endoderm or ectoderm;
Fig. 3) and lose a level of potency depends on an enormous
amount of extracellular and intracellular signals, that have to
be interpreted by the cell and funneled into a final choice.
Whereas in vitro adding of murine leukemia inhibitory factor
(LIF) to murine ESCs is sufficient for self-renewal and main-
tenance of the pluripotent state of these cells, human LIF is not
able to maintain a human ESC culture in an undifferentiated
state [55]. The pluripotent state of human embryonic stem
cells (hESC) is characterized and maintained by the expres-
sion of key transcription factors Oct4, Nanog and Sox2 [56].
RNA expression profiling in H7 hESCs showed that these
cells express RNA for each of the 19 Wnt genes and in
addition, express all 10 Fz receptors and both LRP5 and
LRP6 co-receptors [57].

There has been some debate on the role of the canonical
and noncanonical Wnt signaling cascades in the decision of
the hESC to either proliferate or differentiate. Although it is
clear that Wnt signaling is widely utilized during early devel-
opment to regulate body axis formation [58-60], organogen-
esis [01, 62] and cell migration [63—65] in vertebrates, its role
in the maintenance of pluripotent stem cell character is thus
not clear.

While many reports indicated that Wnt pathway activation
leads to loss of pluripotency and differentiation toward meso-
derm and endoderm lineages [66—69], a number of other
reports identified the Wnt pathway as an essential factor for
the establishment and maintenance of ESC self-renewal
[70-73].

Sato et al. stated that the activation of the Wnt/[3-catenin
pathway by 6-bromoindirubin-3’-oxime (BIO), a specific
pharmacological inhibitor of GSK3 3, was sufficient for main-
taining the undifferentiated phenotype in both murine and
human ESC. Oct3/4, Rex1 and Nanog were expressed in
BIO-treated mESC cells, which led the authors to believe that
the observed pluripotent state was mediated by Wnt-activation
of these transcription factors [70].

Singh et al. however postulated that different GSK3 com-
plexes are present in the cell, which perform separate bio-
chemical functions. They indicated that low concentrations of
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Fig. 3 Stem cell l]neages and the effect of Wnt signaling on differenti-
ation. Different stem cell lineages are depicted, starting from the blasto-
cyst and ending with the main differentiated cells of the human body. The
effect of canonical (white circles) and noncanonical (black circles) Wnt
signaling on adult stem cells is illustrated, whereby ‘plus sign’ indicates
stimulation and ‘minus sign’ indicates inhibition. In some stem cell types,

GSK3p inhibitors such as BIO will lead to proliferation of
ESC but not by activation of Wnt pathway target genes, as
hypothesized by Sato et al., but by stabilization of Myc, acting
through PI3K/Akt signaling [74]. Only at high concentrations
of GSK3 inhibitor will the Wnt pathway become active,
leading to loss of pluripotency markers and increased levels
of mesendoderm markers [75].

Another reason for the discrepancy between studies is the
applied time frame to study the effect of Wnt ligands on ESC
differentiation. While the addition of Wnt3a-conditioned me-
dium to ESC culture for <1 week maintained their undiffer-
entiated cell morphology [70], culturing these cells for longer
periods in the presence of Wnt pathway activating conditions
did significantly reduce their self-renewing capacity [67, 68].
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depending on the Wnt ligand, (co-)receptor usage, activation state of the
cell, environmental factors, ect. Wnt signaling can either stimulate or
inhibit differentiation. ESC, Embryonic stem cell; ASC, Adult stem cell;
MSC, mesenchymal stem cell; HSC, hematopoetic stem cell; ISC, intes-
tinal stem cell; GSC, gastric stem cell; HFSC, hair follicle stem cell;
MaSC, mammary stem cell; NSC, neural stem cell

It appears that only two signaling pathways, dynamically
interacting with each other, are required to maintain pluripotency.
First, the transforming growth factor 3 (TGFR)/Activin A
pathway leads to activation of Smad2,3 and its downstream
targets, including Nanog [76—78]. However, this pathway
switches to a pro-differentiation mode in absence of the
PI3K/Akt signaling pathway, which is the second pathway
required for maintaining pluripotency. When PI3K/Akt sig-
naling is inactive, Smad2,3 cooperates with (3-catenin to up-
regulate proteins required for early differentiation, such as the
mesendodermal marker MixL1 [75, 79]. Another target of
TGFf signaling is BAMBI (BMP and activin membrane-
bound inhibitor), a single-pass transmembrane decoy receptor
that was shown to inhibit TGF3 and Activin signaling, but
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enhance Wnt signal transduction [80]. In the PI3K/Akt sig-
naling pathway, PI3K and subsequent Akt activation inhibits
MAPK, whereby MAPK can no longer prevent GSK3{ ki-
nase action in the Wnt pathway, resulting in the downregula-
tion of Wnt pro-differentiation target genes [79]. Taken to-
gether, these data indicate that suppression of Wnt signaling
stabilizes pluripotent cells [75]. Consistent with this theory,
Davidson et al. reported that Wnt/3-catenin signaling is not
required for the self-renewal of pluripotent ESC and that Oct4,
a key pluripotency factor in hESC, functionally represses Wnt
signaling in self-renewing hESC [67].

Teo et al. stated that Wnt signaling can maintain
pluripotency of ESC when (3-catenin uses cAMP response
element-binding protein (CREB)-Binding Protein (CBP) as a
cofactor for transcription of target genes (e.g. Oct4, survivin)
in the nucleus. However, when switching to the use of p300, a
closely related homolog of CBP, differentiation is induced and
cellular potency is decreased [9, 81]. Both CBP and p300 are
protein acetyltransferases, able to acetylate histones and there-
by convert chromatin in an open, activated state, promoting
pluripotency [82]. The co-factor switch from CPB to p300 is
suggested to be induced by noncanonical Wnt signaling,
whereby activation of PKC leads to phosphorylation of
p300, thereby increasing the affinity of 3-catenin for p300.
PKC also activates CDC42, leading to the cytoskeletal rear-
rangements necessary for differentiation [9].

In a search for cancer therapeutics, ICG-001 was identified
as a highly selective inhibitor of the CPB-3-catenin interac-
tion by binding to CPB, but not p300. Confirming the use and
success of these type of agents, it has been shown that CBP/
catenin antagonism is able to target and eliminate drug-
resistant leukemic stem cells both in vitro and in vivo [83, 84].

Adult Stem Cells

One differentiation step further down the line are the
multipotent stem cells, no longer able to develop into cells
of all three germ lines, but still able to proliferate and maintain
the possibility of differentiating into a spectrum of specialized
tissues (Fig. 3). ASC are unique in their ability to self-renew
while simultaneously generating specialized cells. The bal-
ance between self-renewal and differentiation of these cells is
determined by factors coming from the stem cell microenvi-
ronment, also called the stem cell niche. Below, we will
discuss the presence and function of Wnt ligands in the stem
cell niches of bone, adipose tissue, muscle, intestine, hair
follicles, blood, mammary gland and neurons.

Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs), otherwise termed as mes-

enchymal progenitor cells or marrow stromal cells, were first
identified within the bone marrow stromal cell compartment,

and researchers at that time observed that different stromal cell
lines could be promoted under different culture conditions
[85, 86]. Later studies identified synovial tissue, periosteum,
blood, adipose tissue, muscle and dermis as alternative tissue
sources of MSCs [87, 88]. When supplied with appropriate
media and growth factors, MSCs are capable of differentiating
into osteoblasts, chondrocytes, adipocytes, and myoblasts
[89] (Fig. 3).

Human MSCs (hMSCs) were shown to express a number
of Wnt ligands, receptors and regulators, and both (3-catenin
dependent and independent Wnt pathways are believed to
play a crucial role in their capacities of self-renewal, prolifer-
ation and differentiation [90, 91]. Below, we will discuss the
role of the Wnt pathway in each of the established MSC
derived cell types.

a. Adipose tissue

The origination of a new adipocyte, starting from a
mesenchymal stem cell, involves a temporally regulated
cascade of transcription factor activities and gene expres-
sion events. During determination, multipotent MSCs
become pre-adipocytes and hereby commit to the
adipogenic lineage. A mature fat cell is formed when
pre-adipocytes differentiate further. Early in the differen-
tiation process, expression of CCAAT/enhancer binding
protein (C/EBP) 3 and & is induced and subsequently,
these transcription factors bind to the promoters of perox-
isome proliferator activated receptor y (PPARy) and
C/EBPx [92]. When activated, PPARy and C/EBP«x
induce expression of genes essential for the adipogenic
phenotype [93].

The observation that in vitro induction of Wnt1 expres-
sion in pre-adipocytes led to inhibition of adipogenesis in
the presence of lipogenic medium was the first link be-
tween the Wnt pathway and MSC fate [94]. Inhibition of
the Wnt pathway, on the other hand, led to adipogenesis
and the ligand responsible was shown to be Wnt10b [95].
A FABP4-Wnt10b mouse model was later developed, in
which Wntl10b is expressed after the fatty acid-binding
protein-4 (FABP4) promoter, and presented with a re-
duced amount of both white and brown adipose tissue
[96]. In mouse myoblasts, overexpression of Wntl0b
similarly resulted in inhibition of adipogenic gene expres-
sion [97].

In humans, we previously reported a genetic associa-
tion between WNTI0B polymorphisms and BMI and
weight, further indicating the importance of WNT10B in
the formation of fat tissue [98].

It has been shown that in hMSCs, transferred to a
lipogenic medium, expression of WNT2, WNT10B,
WNT13 and WNT14 decreases, whereas expression of
WNT/B-catenin independent WNT4 and WNTI1 in-
creases [99]. On the contrary, when activating the WNT/
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[3-catenin pathway by addition of SB-216763, a highly
selective small molecule inhibitor of GSK-3f3, induction
of adipocyte signature genes LPL, adipsin and PPARYy
were blocked and expression of WNT4 and WNTI1 de-
creased. This led the authors to conclude that the canon-
ical WNT/-catenin pathway, activated by WNT2,
WNTI10B, WNTI13 and WNTI4 inhibits adipogenesis,
whereas WNT/f3-catenin independent WNT4 and
WNTI1I promote adipogenesis [99].

Not only Wnt ligands, but also secreted regulators of
the Wnt pathway, such as DKK and sFRPS, have been
linked to human obesity.

DKK gene expression is transiently induced during
differentiation of human adipocytes. In vitro studies
showed that activating LRP5 mutations, resulting in a
decreased affinity for DKK, inhibit adipogenic differenti-
ation of hMSCs [100, 101]. This indicates that DKK
promotes human adipogenesis by inhibiting LRP5/6 me-
diated Wnt signaling [102].

sFRP5 is another extracellular regulator of the Wnt
pathway, that has been shown to be expressed in the
cytosol of mature adipocytes and to promote pre-
adipocyte differentiation [103]. Plasma sFRPS5 levels
shown to be differentially expressed in obese compared
to lean subjects [104, 105]. sFRP4, a related secreted Wnt
inhibitor, was up-regulated with adipogenesis of hMSCs
[106]

As discussed previously, in the canonical Wnt pathway
cytosolic [3-catenin accumulation leads to activation of a
TCF/LEF transcription complex. It has been shown that
this 3-catenin-TCF/LEF complex acts as a direct regulator
of chicken ovalbumin upstream promoter-transcription
factor IT (COUP-TFII). COUP-TFII then recruits the si-
lencing mediator for retinoic acid receptor and thyroid
hormone receptor (SMRT) corepressor complex, which
is able to maintain the PPARy-containing chromatin in an
hypoacetylated and repressed state, thereby inhibiting dif-
ferentiation of pre-adipocytes to mature fat cells [94, 95,
107]. However, activation of the (3-catenin independent
CaMKII-TAK1-NLK pathway through Wnt5a action sim-
ilarly results in repression of PPARy and therefore im-
pediment of adipogenesis. Wnt5a"~ mice present with a
significant increase of adipocyte numbers in the bone
marrow [108]. This shows that noncanonical Wnt signal-
ing can also cooperate with [3-catenin-TCF/LEF to block
adipogenesis.

Brown adipose tissue (BAT) is present in very small
quantities in humans compared to the lipid-storing white
adipose tissue (WAT). Although brown adipocytes
express most of the same genes as white adipocytes,
they differ in the expression of uncoupling protein 1
(UCP1), which is exclusive for BAT. UCP1 allows dissi-
pation of the electrochemical proton gradient generated by
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respiration in the form of heat [109]. In a therapeutic view,
increasing the ratio of BAT vs. WAT could potentially
increase fatty acid oxidation at the expense of the amount
of fat stored.

In the past, it was presumed that BAT is of the same
adipogenic linecage as WAT. However, recently it was
discovered that BAT develops from a myogenic lineage
[110]. Still, the main adipogenic transcription factors
PPARY and C/EBP« are induced during brown adipogen-
esis in an analogous fashion to white adipogenesis. As
shown by the FAB4-Wnt10b mouse model, in which the
development of BAT is completely blocked, Wnt signal-
ing also represses the differentiation to brown adipocytes
[93, 96].

Bone

Following the observation that Wnt10b is able to block
the differentiation of MSCs to adipose tissue, researchers
asked what would be the effect of this Wnt ligand on the
differentiation to other mesenchymal lineages. To address
this question, Bennett et al. analysed the bone characteris-
tics of the FABP4-Wntl0b mouse model. Overexpression
of Wnt10b in these mice results in skeletons with a higher
bone mass, bone strength and bone mineral density
(BMD) [111]. However, this was not the first indication
that Wnt signaling affects bone formation. In 2001,
inactivating mutations in the gene coding for the Wnt
coreceptor LRP5 were shown to be causative for
osteoporosis-pseudoglioma in human patients [112].
Correspondingly, gain-of-function mutations in LRP5 im-
pair the action of normal antagonists of the Wnt pathway
such as Dkk1 and increase Wnt signaling, which results in
a high bone mass phenotype [113—115]. Similarly, loss of
function mutations in the SOST gene, coding for
Sclerostin, lead to sclerosteosis characterized by high bone
mass [116-118]. SOST is expressed almost exclusively in
osteocytes, and the resulting Sclerostin protein is a circu-
lating inhibitor of the Wnt pathway which acts to inhibit
LRP co-receptor function [48]. A SOST neutralizing anti-
body is currently being tested in phase 3 clinical trials and
shows great promise as a therapeutic agent for conditions
such as osteoporosis, by enhancing bone formation [119].
Finally, loss of Wnt antagonists such as sfip1, Dkk, Apc or
Axin2 results in increased bone mass [120—123].

WNTs are expressed in marrow and appear to be
endogeneous regulators of bone formation [90, 124]. In a
previously performed genetic association study, we con-
firmed the importance of WNT10B in bone formation in
humans by showing an association between WNT10B
polymorphisms and BMD in a population of Danish males
[125]. The mechanisms whereby WNT10B induces osteo-
blastogenesis include C/EBP« and PPARY suppression in
addition to induction of the expression of osteoblastogenic
transcription factors such as Runx2, DIx5 and Osterix
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[111, 126—128]. Runt-related transcription factor 2
(Runx2) is the major transcription factor regulating the
differentiation of MSCs to osteoblasts, as indicated by
mouse studies [129]. Expression of Runx2, DIx5 and
Osterix may in fact be regulated through enhancer regions
consisting of adjacent Smad and TCF/LEF1 DNA-binding
sites, indicating a cooperative action of both the canonical
Wnt and Bone Morphogenic Protein (BMP) pathways
[130].

In addition, noncanonical Wnt signaling appears to
enhance bone formation of hMSCs. Wnt5a binding to
the cell surface leads to activation and homodimerization
of Ror2 receptors, which leads to osteogenic differentia-
tion by stimulation of Runx and Osterix expression [131].
Furthermore, CaMKII-TAK1-NLK signaling was shown
to repress PPARY transactivation and induce Runx expres-
sion in bone marrow MSCs [132].

In contrast, other studies indicated that high Wnt path-
way activation in Wntl-expressing hMSCs led to reduc-
tion of Runx2, DIx5 and Osterix expression thereby
inhibiting osteogenic differentiation. These two seemingly
opposite roles of Wnt signaling in osteogenesis can how-
ever be combined in a “Wnt gradient’-theory, as postulated
by Liu and coworkers [91]. This theory suggests the
presence of a Wnt activity gradient, resulting from the
asymmetrical localization of Wnts and antagonists, be-
tween hMSC stem/progenitor and osteoblasts/osteocyt
compartments. A high level of Wnt activity would permit
the expansion of hMSCs, whereas lower Wnt signaling
results in the differentiation to bone forming osteoblasts
[91].

In contrast, results refuting proliferative and differenti-
ation effects of Wnts in hMSCs may be attributed to the
specific Wnt ligands, mode of overexpression, method to
measure bone density and cell types used in different
studies. In addition, increasing evidence suggests that
Wnt signaling effects depend on the stage of differentia-
tion of the cells used. For example, proper osteoblast
terminal differentiation appears to require canonical Wnt
pathway inhibition by Dkk2, sfrp2 and/or Wifl [133,
134], instead of Wnt pathway activation.

As shown in human as well as murine in vitro osteo-
blast cell models, R-spondinl synergizes with Wnt3a to
promote osteoblast differentiation [135, 136]. All four
members (RSpol-4) of the R-spondin family antagonize
Dkk and thereby amplify Wnt signaling. R-spondins re-
quire Wnt ligands and LRP6 for activity and interfere with
DKK1 mediated LRP6 internalisation [137, 138]. In hu-
man osteoblasts, isolated from osteoarthritis patients,
Rspo2 can counteract the high Dkk activity (and therefore
low Wnt signaling) that is seen in osteoarthritic cells.
Rspo2 was shown to increase Wnt signaling in the pres-
ence, but not in the absence of Wnt3a [139]. R-spondins

therefore provide another link between Wnt signaling and
bone formation.
Cartilage

Chondrogenesis of human MSCs proceeds in different
stages. The first stage is characterized by cell condensation
(i.e., increased cell density due to cell aggregation), the
second stage by proliferation followed by chondrogenic
differentiation (i.e., synthesis of cartilage-specific extracel-
lular matrix proteins, such as type II collagen), and
the final stage by hypertrophy and acquisition of a
chondrocyte morphology. SOX9 is a high-mobility-
group (HMG) domain transcription factor that is
expressed in chondrocytes and is required at sequential
steps in this pathway [140].

Adding Wntl to hMSCs in vitro culture led to
sustained Wnt/[3-catenin signaling and suppressed expres-
sion of SOX9. Not only does Wnt/p-catenin signaling
favor osteoblastogenesis of MSCs, it appears that inacti-
vation of the pathway is necessary for chondrogenesis and
the maturation and maintenance of chondroid cells [141].
Muscle

In addition to regulating the bone-fat interplay, Wnt
signaling was also shown to be important for muscle
development and maintenance of skeletal muscle homeo-
stasis in the adult. Also, a role for the Wnt signaling
pathway in muscle regeneration after injury by enhancing
satellite cell proliferation and differentiation, was found.

Both canonical and noncanonical pathways perform a
role, whereby canonical signaling appears to induce dif-
ferentiation of both satellite stem cells and muscle cells,
and noncanonical signaling serves to prevent depletion of
the satellite stem cell pool (reviewed in [142]). (3-catenin
induced Wnt signaling in rat MSCs resulted in the induc-
tion of several pro-myogenic factors like Pax 7, MyoD
and myogenin, and the simultaneous inhibition of C/
EBPo and PPARYy expression [143]. Exogenous induc-
tion of canonical Wnt signaling through Wnt3a during the
carly phase of regeneration resulted in premature differ-
entiation of progenitor cells, thereby leading to depletion
of the satellite cell pool [144]. In mouse myoblasts, over-
expression of canonical Wnt10b suppressed C/EBP« and
PPARY expression. Consistent with these results,
Wnt10b™"~ mice show lipid accumulation in regenerating
muscle but in addition, muscle and isolated myoblasts
from these mice undergo myogenic differentiation more
efficiently. The authors suggested that Wnt7b, a more
myogenic Wnt ligand, may be compensating for Wnt10b
deficiency [97].

As for the (3-catenin independent pathways, Wnt7a was
shown to bind Fz7 and promote expansion of satellite stem
cells, by activating the Wnt PCP pathway [145].
Additionally, in differentiated muscle cells, Wnt7a can
activate PI3K and subsequently the Akt/mTor growth
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pathway. This way, Wnt7a appears to couple the expan-
sion of the satellite cell pool to the mass of the muscle
tissue [146].

Hematopoetic Stem Cells

Hematopoetic stem cell (HSC) give rise to all lineages of
blood cells, including red blood cells, platelets, lymphocytes,
monocytes and macrophages. Wnt signaling has emerged as
an important facilitator of HSC fate decisions during differen-
tiation in the bone marrow. HSCs themselves as well as the
bone marrow environment can provide Wnt ligands.
Conditioned medium containing WNTs promotes the multi-
plication of human HSCs and inhibits their differentiation,
implying that Wnt ligands function as hematopoietic growth
factors [147]. In addition, overexpression of activated [3-
catenin was shown to expand the HSCs in long-term cultures
and triggered increased self-renewal [148].

Later studies however indicated that both canonical and
noncanonical Wnt signaling in the HSC niche can limit pro-
liferation and are vital for HSC quiescence, which is a critical
feature of their reconstituting function [149, 150]. Also, non-
canonical Wnt4 ligand regulates HSCs and was shown to
activate genes required for cell maintenance in mice [151].

Intestinal Stem Cells

The observation that the deletion of (3-catenin or ectopic
expression of Dkk in mice resulted in the complete ablation
of intestinal crypts, indicated that Wnt signaling was also
important for the maintenance of adult intestine [152, 153].
Furthermore, it is known that deregulation of the Wnt path-
way, by mutations in APC, Axin or (3-catenin, occurs in over
90 % of human colorectal cancers [154].

The epithelium of the small intestine is folded into large
numbers of villi and crypts, thus maximizing the surface to
allow nutrient uptake. The colon epithelium is also folded into
crypts, but the surface does not carry villi. Intestinal stem cells
(ISCs) are located at the crypt base and produce progenitor
cells that are capable of differentiating towards all epithelial
lineages. The proliferating crypt precursors and differentiated
villus cells form an adjoining sheet that is in permanent
upward motion. These cells keep migrating to the tops of the
villi, where they eventually undergo apoptosis and are shed
into the lumen [155]. Evidence indicates that the Wnt cascade
is the dominant force in controlling cell fate along the crypt-
villus axis [154]. A Wnt gradient is established along this axis,
whereby (3-catenin signaling is highest in stem cells at the
base of the crypt and lowest at the villi [156, 157]. In the
crypts of the colon, loss of transcription factor TCF4 leads to
depletion of stem cells [158]. The Wnt gradient is inversely
proportional with a BMP gradient, whereby high Wnt and low
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BMP signaling results in proliferation of progenitor cells and
low Wnt and high BMP signaling allows cells to differentiate
[157].

Marker expression studies revealed that ISCs can be iden-
tified through their expression of leucine-rich repeat contain-
ing, G-protein—coupled receptor 5 (Lgr5) [159]. However, the
ligands for Lgr receptors 4, 5 and 6, which represent a sub-
family of Lgr receptors, were unknown for a long time.
Conditional deletion of Lgrd and 5 in mice led to the disap-
pearance of intestinal crypts and microarray analysis indicated
differential expression of Wnt pathway target genes [41].
Lgr 4, 5 and 6 appeared to be the receptors for R-spondins,
molecules that had previously been identified as Wnt pathway
agonists [138, 160]. Lgr5 receptors thus are ISC-markers
and interact with R-spondins to amplify Wnt {3-catenin
signaling, allowing proliferation and preservation of stem
cell properties.

Paneth cells are located at the base of the crypt, intermingled
with intestinal stem cells and thus reside in a high Wnt signal-
zone. Rather than proliferating, these post mitotic cells are the
only ones in the crypt that use Wnt signals for their terminal
differentiation [161, 162]. In vitro culture experiments showed
that maintenance of the intestinal stem cell phenotype is de-
pendent on Paneth cells presence. In fact, Paneth cells consti-
tute part of the ISC niche and produce essential stem cell
growth factors EGF and Wnt3. ICSs that lose contact with
Paneth cells lose multipotency and start differentiation and
migration towards the villi [163].

Gastric Stem Cells

Lineage tracing in neonatal mice revealed that cells from all
parts of the stomach epithelium originate from Lgr5-
expressing cells, as do epithelium cells in the small intestine
[164]. However, in adults, Lgr5 cells only occur in the
pylorus, the most distal segment of the stomach. Similar
to the crypt in the small intestine, the regenerative unit
of the stomach resides in an invagination, which is di-
vided in pit, isthmus and gland from top to bottom. It was
postulated that each of these gastric units contains more than
one multipotent adult stem cell [165]. Gastric stem cells
(GSCs) seem to reside at the gland bottom, and push their
differentiating progeny up toward the gland. GSCs likewise
depend on the presence of a Wnt ligand, and this ligand
appears to be Wnt3a [164].

Hair Follicle Stem Cells

Canonical Wnt signals do not appear to regulate epidermal
differentiation, but are essential in the normal skin to instruct
bulge stem cells toward the hair cell fate [82, 166]. Living
human bulge stem cells (or hair follicle stem cells, HFSC)
have been isolated in the past, starting from hair follicle



Stem Cell Rev and Rep (2014) 10:207-229

219

suspensions [167]. These stem cells were shown to reside in a
niche, were they respond to a variety of signaling ligands that
regulate hair follicle development, maintenance, and the re-
generation of hair follicles after wounding. In the mature skin,
hair follicles undergo repeated cycles of growth (anagen),
death/regression (catagen), and rest (telogen), and in each of
these phases, Wnt/[3-catenin was shown to play a role. Wnt
signaling is up-regulated at the end of telogen and hereby
promotes transition to anagen. Indeed, Wnt signaling provides
one of the mitogenic stimuli that are necessary for hair growth
[168]. During the telogen phase, Wnt upregulation, and sub-
sequent anagen, is repressed by BMP signaling [166]. In
addition, telogen follicular bulge cells express secreted Wnt
inhibitors such as Sfipl, Wifl and Dkk3, both in mice and
humans [166, 167, 169].

At different stages of the hair cycle, Lgr5 expression was
observed in several distinct locations in the hair follicle. Here,
Lgr5+ progeny repopulate stem cell compartments,
supporting the existence of a stem or progenitor cell hierarchy
[170]. Like the intestine and the stomach, the hair follicle
contains rapidly proliferating and unidirectionally migrating
epithelial cells, and it was therefore no surprise that hair
follicle stem cells could be identified by the presence of
Lgr5 on their membrane as well.

Melanocyte stem cells reside adjacent to the bulge stem
cells and are activated to differentiate to melanocytes by
Wntl10b, expressed by nearby hair germ keratinocytes [166].
Again, as in other adult tissues containing stem cell niches,
multiple signaling pathways work together to regulate differ-
entiation, proliferation and normal maintenance of tissue stem
cells and in this dynamic network, the Wnt pathway plays a
prominent role.

Mammary Stem Cells

Transplantation assays in mice have demonstrated the exis-
tence of a rare population of mammary stem cells (MaSCs)
that are able to re-form a functional mammary gland [171,
172]. As shown by in vitro and in vivo experiments, Wnt
signals serve as important self-renewing signals for
MaSCs. In the mammary stem cell niche, Wnt signaling
supposedly acts to inhibit differentiation by suppression
of Gata-3, a transcription factor that promotes differen-
tiation of mammary stem cells into luminal cells [173]. For
a normal mammary gland to develop, both canonical Wnt
signaling co-receptors Lrp5S and Lrp6 are required [174,
175]. In addition, loss of LrpS in MMTV-Wntl transgenic
mice reduces both the early proliferation of the progenitor cell
population and the subsequent formation of mammary tumors
[174]. Together, these results demonstrate that Wnt signaling
(through Lrp5/6) is an important component of normal mam-
mary stem cell function.

Neural Stem Cells

When looking at mouse models in which Wnt ligands (Wntl,
Wnt3a) are mutated, it is clear that Wnt signaling has an
important role to play in the proper development of telenceph-
alon, metencephalon and hippocampus [61, 176—178]. Also in
the adult neuronal tissue, it appears that sustained Wnt signal-
ing is necessary to regulate neural stem cell (NSC) activity and
maintenance [177, 179].

Several components of the canonical Wnt pathway (Wnt
ligands, Fz receptors and Wnt pathway inhibitors) have been
described in the adult mice neurogenic niche, consisting of the
subventricular zone (SVZ) of the lateral ventricle in the cortex
and subgranular zone (SGZ) in the hippocampus [177, 180].

When Wnt/3-catenin signaling is inhibited in adult neural
progenitor cells (aNPCs) co-cultured with hippocampal astro-
cytes, by the WNT inhibitor sSFRP2/3 or ectopic expression of
dominant negative Lefl, the percentage of neuronal lincage
cells decreases, indicating that 3-catenin-dependent Wnt sig-
naling is a principal positive regulator of neurogenesis in the
adult hippocampus [177]. Investigations on the role of [(3-
catenin signaling in SVZ neurogenesis demonstrated a
mitogenic effect of Wnt signaling in mice aNPCs.
Activation of (3-catenin by Wnt3a, Wnt5a, or Wnt7a [181,
182] or the ectopic expression of a stable 3-catenin form
increased the proliferation of neural progenitors in vitro,
whereas blockade of the canonical Wnt pathway by a Wnt
antagonist or ectopic expression of Axin had an opposite
effect [181].

It has been shown that Wnt3a signals through the Ryk
receptor-like tyrosine kinase in developing neurons. The
Ryk receptor is another single-pass Wnt receptor, character-
ized by an unusually short intracellular region and unique
substitutions in its catalytic tyrosine kinase domain.
However, Ryk is still able to activate downstream pathways
such as the Wnt pathway and has been shown to form a
ternary complex with Fz and Wntl [183]. Extracellularly,
Ryk contains a binding domain similar to the Wnt-inhibitory
factor (WIF) proteins, a group of secreted Wnt binding factors
[184]. Transgenic mice expressing anti-Ryk siRNA have de-
fects in axon guidance and in addition, Ryk allows Wnt3a to
induce neurite outgrowth in dorsal root ganglia explants,
suggesting that Ryk is a functional and key receptor for Wnt
in the nervous system [183].

Although most studies indicate that Wnt/3-catenin signal-
ing promotes the expansion of the neural progenitor pool
[181, 182, 185] and determination of neuronal fate [177,
182], conflicting results have been obtained as well [186].
This may be due to the context-dependent signaling ability of
the Wnt pathway, whereby [(3-catenin can activate different
and sometimes opposing genetic programs depending on
cellular signaling history, availability of signaling partners,
ect. [187].
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In humans, polymorphisms in several genes from the path-
way (WNT2 [188, 189], FZ3 [190, 191], TCF7L2 [192, 193],
DKK4 [194] and APC [195]) have been associated with
psychiatric disorders such as schizophrenia and autism
confirming the important role of Wnt signaling in adult neuron
activity and maintenance. In addition, recent studies indicate a
role of Wnt signaling in synapse maintenance and plasticity
[196], and link the increased expression of the Wnt antagonist
Dkk1 in brains of Alzheimer patients and in Alzheimer trans-
genic mouse models, to the pathology of Alzheimer’s disease
[197, 198]. It is not clear whether loss-of-function of Wnt
genes would affect proper neuronal maintenance and devel-
opment in the human brain, and whether this could lead to a
neuronal disorder, but it is definitely an interesting topic to
investigate further.

Cancer Stem Cells

Emerging evidence has indicated a subpopulation of
multipotent cells, termed cancer stem cells (CSC) within
cancer tissue. CSCs behave as both stem cells and cancer
cells, being able to self-renew and differentiate to cell types
present in the tumor [199, 200]. Indeed, there is an overlap
between the expression patterns of transcriptional regulators in
human embryonic and cancer SCs. The shared transcriptome,
including genes regulating stemness and pluripotency such as
NANOG and OCT3/4, determines in part the differentiation
status of a tumor and, in addition, tumor aggressiveness.
Among the genes expressed both in ESCs and CSCs is the
Fz7 receptor, an important Wnt receptor, known to activate
both canonical and noncanonical Wnt signaling [201, 202].

Several of the signaling pathways that are active in normal
adult stem cells (such as Wnt, Hedgehog, Notch) appear to be
involved in regulation of CSC as well, and aberrant regulation
of these same pathways leads to neoplastic proliferation and
tumor formation [202, 203]. Many of the genes activated by
the (3-catenin/TCF transcription complex, including cyclin D1
[204] and c-myc [205], which play critical roles in cell growth,
proliferation, and differentiation, are inappropriately activated
in colon cancer. In addition, up-regulation and overexpression
of DVL proteins has been reported in many cancers, including
those of prostate, mesothelioma and lung (non-small cell)
[206-208].

LaBarge and co-authors present a model whereby a malig-
nant cell overtakes a normal adult stem cell niche, becoming
the initial CSC that nurtures a tumor. The tumor microenvi-
ronment may then evolve, and impose CSC-like functions
onto other cells. As in normal tissue, this pool of undifferen-
tiated stem cells gives rise to less potent progenitors, which
then produce the most specialized cells of a given tissue [203].
In this hierarchical model, only the small, self-renewing pop-
ulation of CSCs in the tumor is responsible for tumor initiation
and growth maintenance.
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CSC present a challenge for cancer therapeutic treatment,
seeing that eradication of bulk tumor usually does not include
the population of CSCs, leaving them at liberty to re-establish
the complete heterogeneity of cancer tissue. This may be due
in part by the fact that CSCs, like normal adult stem cells,
express multidrug resistance genes such as MDR-1 and
BRCP1, making them resistant to chemotherapy [209]. In
addition, CSCs are often highly resistant to radiation therapy,
owing to their ability to rapidly induce DNA repair mecha-
nisms [209, 210]. Furthermore, CSCs appear to be particularly
adept in stimulating angiogenesis, nurturing tumor develop-
ment [209]. To circumvent these problems, alternative thera-
peutic methods of selectively targeting CSCs are currently in
development, including antagonists of the Wnt/3-catenin
pathway.

Future Perspectives

It is clear that Wnt signaling is a conserved, ubiquitously
functioning pathway that acts in both embryonal and adult
stages. In this review we discussed the specifics of the path-
way in stem cells residing in several main tissues and we tried
to focus on the knowledge in humans. Because of the fact that
this pathway exerts great control over stem cell behavior, it is
inevitable that deregulation results in grave cell and tissue
malfunctioning such as cancer. Further knowledge on the
pathway and on control points herein have definite therapeutic
potential, not in the least in the field of regenerative medicine
where the ex vivo fabrication of tissues, containing multiple
cell types, or even complete organs, will possibly revolution-
ize medicine.

Autologous pluripotent stem cells themselves can be used
for the ex vivo engineering of tissues, which can then be
applied for regenerative purposes [88]. There is a clear
immunological advantage of using autologous stem cells,
and in addition, these cells are not burdened with ethical
considerations.

A historically important source of adult stem cells is the
bone marrow, but pluripotent bone marrow cells may be as
rare as 1 in 107 to 10® [211]. A second possible source of
multipotent cells is processed lipoaspirate cells from adipose
tissue [212]. However, a common restriction for tissue engi-
neering is the necessity to grow and expand stem cells in a
culture. Protocols have been developed to allow long-term
culture of human adult stem cells, and these include
coculturing with other human or mammalian cell lines [213,
214], coating culture dishes with matrix components [215],
reducing oxygen tension [216] and the use of exogenous
scaffolds to guide the 3D organization of cells [217, 218],
among others. However, because stem cells reside within their
own, carefully organized niche in vivo, they will self-renew
and proliferate most efficiently when grown in a similar
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environment. Recently, Sato et al., developed self-organizing
3D intestinal epithelial organoids or “mini-guts” from a single
Lgr5" ISC. The minimal, essential stem cell maintenance
factor cocktail for these mini-guts consisted out of R-
Spondin, epidermal growth factor (EGF) and Noggin [219].
Colon crypt culture requires an additional Wnt ligand for the
maintenance of cells, once again showing the importance of
this pathway in stem cell preservation. Epithelial colon-
derived mini-guts were reintroduced into the colons of mice
with chemical-induced mucosal lesions and regenerated epi-
thelial patches indiscernible from surrounding recipient epi-
thelium. These patches lasted for several months without
changing histological appearance [219].

For the ex vivo development of such single or multiple cell-
derived tissues, it is crucial to have knowledge about signaling
molecules that are involved within the stem cell niche in vivo.
As discussed in this review, Wnt ligands have an important
role to play in the stem cell environment of multiple tissues
and an increased understanding of the Wnt pathways will
possibly lead to the development of therapeutic options for a
range of diseases manifesting in both embryonic and adult
stages.
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