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Abstract Human amniotic fluid mesenchymal stem cells
(huAFMSCs) are emerging as a promising therapeutic op-
tion in regenerative medicine. Here, we characterized
huAFMSC phenotype and multipotentiality. When cultured
in osteogenic medium, huAFMSC displayed a significant
increase in: Alkaline Phosphatase (ALP) activity and
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mRNA expression, Alizarin Red S staining and Runx2
mRNA expression; whereas maintaining these cells in an
adipogenic culture medium gave a time-dependent increase
in PPARy and FABP4 mRNA expression, glycerol-3-
phosphate dehydrogenase (GPDH) activity and positivity
to Oil Red Oil staining. These results confirm that
huAFMSCs can differentiate toward osteogenic and
adipogenic phenotypes. The canonical Wnt/Bcatenin signal-
ing pathway appears to trigger huAFMSC osteoblastogenesis,
since during early phases of osteogenic differentiation, the
expression of Dishevelled-2 (Dvl-2), of the non-
phosphorylated form of -catenin, and the phosphorylation of
glycogen synthase kinase-38 (GSK38) at serine 9 were
upregulated. On the contrary, during adipogenic differentiation
Dvl-2 expression decreased, whereas that of B-catenin
remained unchanged. This was associated with a late increase
in GSK38 phosphorylation. Consistent with this scenario,
huAFMSCs exposure to Dickkopf-1, a selective inhibitor of
the Wnt signaling, abolished Runx2 and ALP mRNA
upregulation during huAFMSC osteogenic differentiation,
whereas it enhanced FABP4 expression in adipocyte-
differentiating cells. Taken together, these results unravel novel
molecular determinants of huAFMSC commitment towards
osteoblastogenesis, which may represent potential targets for
directing the differentiation of these cells and improving their
use in regenerative medicine.

Keywords Human amniotic fluids - Mesenchymal stem
cells - Osteogenic/adipogenic differentiation - Wnt signaling

Abbreviations
AF Amniotic fluid
APC Allophycocyanin-conjugated
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ALP Alkaline phosphatase

ARS Alizarin Red S

DKK-1 Dickkopf-1

DMEM Dulbecco-Modified Essential Medium

Dvl Dishevelled

FABP4 Fatty acid binding protein 4

FBS Foetal Bovine Serum

FITC Fluorescein isothiocyanate-conjugated

GPDH Glycerol-3-phosphate dehydrogenase

GSK-3f3 Glycogen synthase kinase-33

hu-AFMSCs Human-amniotic fluid derived
mesenchymal stem cells

IBMX 3-isobutyl-1-methylxanthine

MEM «-Minimal Essential Medium

MFI Mean Fluorescence Intensity

MSCs Mesenchymal stem cells

PE Phycoerithrin

PPARY Peroxisome proliferator-activated
receptor-y

PBS Phosphate saline buffer

RUNX-2 Runt-related transcription factor-2

RT Room temperature

SDS Sodium dodecyl sulphate

Wnt Wingless

Introduction

Mesenchymal stem cells (MSCs) possess high self-renewal
capacity and multipotency [1, 2]. These characteristics make
these cells a promising resource in tissue engineering and
regeneration. Indeed, accumulating evidence indicates that
MSCs can treat bone damage [3—5] as well as a variety of
other diseases [reviewed in [6]. One limiting factor for the
use of MSCs is their availability, since they are represented
at low frequency, which further decreases with aging [7], in
the bone marrow and dental tissue. Moreover, collection
from these sites requires invasive procedures associated
with pain and morbidity. Therefore, the isolation from more
accessible sources of MSCs that can be expanded to large
numbers, and carry a good multi-lineage differentiation
potential, would be ideal.

The human amniotic fluid (huAF) has been recently
proposed as source of stem-like cells [8, 9]. These cells,
termed human AF-derived MSCs (huAFMSCs), show a
higher proliferation rate and differentiation potential, com-
pared to adult stem cells [10—13] and have the advantage of
being primitive cells with very low risk of tumor develop-
ment and no evident antigenicity [14, 15]. Therefore,
huAFMSCs are employed as a tool for basic research and
studied in prevision of their use for cell-based therapies [16,
17], although some irregularities in their epigenetic control

system detected at late-passages suggest that for therapeutical
purposes these cells should be used at early stages of culture
[18]. Additionally, mid-trimester huAFSCs may show
pluripotency gene expression upon switch of culture condi-
tions and form tumors [19]. This evidence imposes caution
although tumorigenicity of huAFMSCs has been excluded by
a number of studies [17, 19, 20].

In vitro, osteogenic or adipogenic differentiation of
huMSCs recapitulates many of the developmental steps
during normal in vivo processes [21, 22]. A plethora of
molecules have been identified to have a role in modulating
stem cell fate [23]. Among them, the Wnt signaling is
recognized as a key regulator of adult tissue homeostasis
and remodeling [24] through multiple so called “canonical”
and “non canonical” pathways. Wnt comprises a group of
secreted glycoproteins that bind to the frizzled family of
receptors as well as to low density lipoprotein-related pro-
tein (LRP) co-receptors (see [25] and references therein).
While the non canonical pathway is still poorly defined, the
canonical Wnt cascade converges on the transcriptional
modulator (-catenin. The binding of Wnt ligands to cell-
surface receptors of the Frizzled family inactivates a protein
complex containing axin, the adenomatous polyposis coli
protein (APC) and glycogen synthase kinase 33 (GSK3f3),
which normally primes phosphorylated 3-catenin for
ubiquitination and proteasomal degradation. As a conse-
quence, non phosphorylated 3-catenin accumulates in the
cytoplasm from which it is translocated to the nucleus where
it activates Wnt responsive genes. The canonical Wnt signal
transduction pathway has been implicated in bone formation
as Wnt signaling stimulates osteoprogenitor proliferation
and osteogenesis (see [26, 27] for review). On the other
hand, the Wnt signaling represses adipogenesis by blocking
the induction of CCAAT/enhance-binding protein-«
(CEBPA) and peroxisome proliferator-activated receptor-y
(PPARY), two master adipogenic transcription factors. Con-
versely, disruption of the Wnt/3-catenin signaling leads to
spontaneous adipogenesis [28]. Although not unequivocally
[29-31], the canonical Wnt signaling seems to be crucial for
MSC cell commitment toward osteogenesis [32, 33].
Whether this also applies to huAFMSCs remains to be
established.

Materials and Methods

Materials

Disposables for tissue culture were from Falcon (Steroglass,
Perugia, Italy). Low and high glucose Dulbecco-Modified
Essential Medium (DMEM) and Foetal Bovine Serum

(FBS) were from PAA Culture Company (M-Medical,
Milan, Italy); ascorbic acid, dexamethasone, 3-isobutyl-1-

@ Springer



644

Stem Cell Rev and Rep (2013) 9:642—-654

methylxanthine (IBMX), 3-glycerophosphate disodium salt,
Dickkopf-1 (DKK-1) as well as all the other chemicals,
unless differently indicated, were from Sigma-Aldrich
(Milan, Italy); human recombinant insulin was from
ProSpec (Elettrofor, Rovigo, Italy). Human fibroblasts and
optimized fibroblast medium were purchased from Lonza
(Walkersville, MD, USA).

Cell Culture

Two or three milliliters of AF samples were obtained from
16 to 19 week pregnant women who underwent amniocen-
tesis for fetal genetic determination in routine prenatal diag-
nosis. Cell samples were used only when a normal
karyotype was detected by the cytogenetic analysis. All
patients received detailed information about the experimen-
tal protocol, which was approved by the Ethics Committee
of the University of Chieti, and each participant gave her
written informed consent. Cells were immediately isolated
from AF and debris by centrifugation at 150 x g for 10 min
at room temperature (RT). The cell pellet was suspended
with 5 ml of DMEM low glucose with 20 % of FBS, 1 %
penicillin/streptomycin (Invitrogen, Milan, Italy), 1 %
L-glutamine and 5 ng/ml b-FGF, seeded on a T25 tissue
culture flask, and incubated at 37 °C in humidified 5 % CO,,
5 % O, for 34 days. The medium and non-adherent cells
were removed after 7 days and then every 3—4 days. The
huAFMSCs were allowed to expand to 70 % confluence and
then routinely subcultured at 1:3 dilution. Cells were
maintained in culture for up to 68 passages and used for
all the experiments.

Experimental Protocol

Cells were seeded at 4x 10 cell/well onto 6-well plates to
evaluate mineralization by Alizarin Red S (ARS) and non
tissue specific alkaline phosphatase (ALP), whereas they
were plated at 1x10* cell/well onto 24-well plates to mea-
sure ALP and glycerol-3-phosphate dehydrogenase (GPDH)
enzyme activities or at 25-50x10* cell/well onto 100 mm
plates for immunophenotyping by flow cytometry; evalua-
tion of osteogenic and adipogenic markers by real time
PCR; and analysis of factors of the Wnt pathway by western
blotting. Human fibroblasts, used as a control for osteogen-
esis induction and changes in the Wnt pathway, were plated
at 1x10° cell/well onto 100 mm plates.

Assays were performed at different times, which were
selected on the basis of indications from the literature or
preliminary evidence, this leading to unavoidable temporal
differences to measure the two differentiative processes. The
Wnt antagonist DKK-1, when present, was administered to
AFMSCs growing in non-differentiating or differentiating
medium, starting 24 h after seeding. Afterwards, it was
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added to the cultures at each medium change for the indi-
cated period.

Flow Cytometry

To analyze the expression of typical cell surface and intra-
cellular protein markers, adherent cells were incubated with
anti-human primary antibodies as previously described [34].
Anti-CD13, -CD44, -CD45, -CD105, -CD166 fluorescein
isothiocyanate-conjugated (FITC) and anti-CD29
phycoerythrin-conjugated (PE) were obtained from Ancell
(MN, USA); anti-CD14-FITC and -CD133-PE were pur-
chased from Miltenyi Biotec (Bergisch Gladbach, Germa-
ny); anti-CD90-FITC, -CD73-PE, -Sox2-Alexa488-
conjugated (Sox2-Alexa488), -SSEA4-FITC, -CD146-
PE, -CT3/4-PE and -CD117-allophycocyanin-conjugated
(CD117-APC) were obtained from Becton Dickinson (BD,
San Jose, CA); anti-CD144-FITC was from Acris Anti-
bodies (Herford, Germany); anti-CD34-PE was purchased
from Beckman Coulter (Fullerton, CA, USA); anti-hTERT
primary antibody was obtained from Calbiochem
(Dermastadt, Germany) and appropriate secondary FITC-
conjugated antibody was obtained from Jackson
ImmunoResearch Laboratories (West Grove, PA, USA). At
the end of the incubation, cells were washed, centrifuged,
resuspended in 0.5 % paraformaldehyde, incubated for
5 min at room temperature (RT), washed, centrifuged again
and kept at 4 °C in the dark until analysis with a
FACSCalibur flow cytometer (BD), using the CellQuest™
3.2.1.f1 software (BD). Quality control was performed by a
regular check-up with Rainbow Calibration Particles (BD
Biosciences). Debris was excluded from the analysis by
gating on morphological parameters; 20,000 non-debris
events in the morphological gate were recorded for each
sample. To assess non-specific fluorescence we used isotype
controls. All antibodies were titrated under assay conditions
and optimal photomultiplier voltages (PMT) were
established for each channel [35]. Data were analysed using
the FlowJo™ software (TreeStar, Ashland, OR). Mean
Fluorescence Intensity Ratio (MFI Ratio) was calculated
dividing the MFI of positive events by the MFI of negative
events [36].

In Vitro Osteogenic and Adipogenic huAFSC
Differentiation

After seeding, huAFMSCs were maintained for 3 days with
normal medium, which was then substituted with an Osteo-
genic Differentiation Medium, constituted of high glucose
DMEM, 10 % FBS, 1 % penicillin/streptomycin, 0.05 mM
ascorbic acid, 10 mM {3-glycerophosphate, 100 nM dexameth-
asone, or with an Adipogenic Medium, containing high-
glucose DMEM, 10 % FBS, 1 % penicillin/streptomycin,
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500 uM IBMX, 1 uM dexamethasone, 10 uM insulin. Differ-
entiation media were replaced twice a week. Human fibro-
blasts were grown in undifferentiating medium, included in the
kit assay, for 24 h after plating, as indicated in the manufac-
turer’s instructions. Then, the medium was switched to that
used for huAFMSC osteogenic commitment and maintained
for 3 days. Mineralization was evaluated by (ARS) staining
and (ALP) activity assay, whereas adipogenic differentiation
was monitored by GPDH activity and Oil Red Oil staining.

Quantification of Mineralization Visualization of calcium
deposition and extracellular matrix mineralization was
obtained by ARS staining assay performed after 21 days, as
previously reported [37]. Stained monolayers were visualized
by phase contrast microscope (Eclipse TS100, Nikon),
equipped with D200 digital camera (Nikon). For staining
quantification, samples were treated as previously described
[38]. Briefly, 800 pl 10 % (v/v) acetic acid were added to each
well; cells were incubated for 30 min with shaking, then
removed by scraping, transferred into a 1.5-mL vial and
vortexed for 30 s. The obtained suspension was overlaid with
500 ul mineral oil (Sigma—Aldrich), heated to 85 °C for
10 min, then transferred to ice for 5 min, carefully avoiding
the opening of the tubes until fully cooled, and centrifuged at
20,000 x g for 15 min. The samples were acidified (pH
between 4.1 and 4.5) with 200 pl of 10 % (v/v) ammonium
hydroxide. Aliquots (150 ul) were read in triplicate at 405 nm
by a spectrophotometer (Spectramax SM190, Molecular
Devices, Sunnyvale, CA, USA).

Alkaline Phosphatase Activity Assay Tissue-nonspecific
ALP activity was determined as previously reported [39].
Cell monolayers were washed with PBS, lysed with 1 ml of
Tris buffer (10 mM, pH 7.5, 0.1 % Triton X-100) and
centrifuged (2,000 rpm; 1 min). Then, 20 pl of supernatant
from each sample were combined with 20 ul of 1 mM p-
nitrophenyl phosphate (p-NPP, Sigma; solution at pH 10.3
with MgCl,-diethanolamine buffer) substrate and dispensed
into 96-well plates. The samples were incubated in the dark
at RT for 30 min. The reaction was stopped with 10 ul of 2
N NaOH. The amount of p-NPP released was measured as
absorbance at 405 nm on a microplate spectrophotometer
(Spectramax SM190). The protein content of each sample
was determined by the BioRad protein assay (Bio-Rad Lab-
oratories, Milan, Italy). The enzyme activity was expressed
as nmoles of p-NPP released per mg of protein per 30 min.

Quantification of Adipogenesis Staining with Oil Red O
(Sigma) was performed 14 days after cell exposure to
adipogenic medium to elicit fat vacuoles after commitment
of huAFMSCs toward the adipose phenotype. Cells were
washed twice with PBS, fixed with 4 % formaldehyde for
10 min at room temperature, rinsed once with 3 %

isopropanol and stained for 1 h at RT with filtered Oil Red
O staining solution. Cells were rinsed with water and then
photographed by using a Cool-SNAPcf digital CCD camera
(PhotoMetrics, Huntington Beach, CA). To quantify lipid
accumulation, cells were incubated for 10 min with 100 %
isopropanol and the absorbance was measured at 500 nm
using a microplate spectrophotometer (Spectramax SM190).
Adipogenic differentiation was also verified by measuring
the activity of the enzyme GPDH, that belongs to the
triglyceride biosynthetic pathway and is highly induced
during cell adipogenic differentiation [40]. The assay was
performed by using a commercial kit (Takara Bio, Shiga,
Japan) following the manufacturer’s instructions.

RNA Isolation and Real Time-PCR Analysis

Osteogenic and adipogenic markers were evaluated by real-
time PCR. To this end, total RNA was isolated using the
RNeasy Plus Universal Mini Kit (Qiagen Inc., Valencia, CA)
according to the manufacturer’s instructions. The M-MLV
Reverse Transcriptase reagents (Applied Biosystems) were
used to generate cDNA. Real-Time PCR was carried out with
the ABI Prism 7900 Sequence Detection System (Applied
Biosystems, Foster City, CA, USA). HUAFMSC expression
of Runt-related transcription factor-2 (RUNX-2) and ALP was
evaluated after 3, 7 and 14 days in culture, whereas PPARy
and fatty acid binding protein 4 (FABP4) expression was
assessed after 1, 3 and 10 days in culture. Expression levels
in cells cultured with normal medium and with differentiating
medium were compared. Commercially available TagMan
Gene Expression Assays (RUNX-2 Hs00231692 ml; ALP
Hs01029144 ml1; PPARy Hs01115513 ml; FABP4
Hs01086177 ml) and the TagMan Universal PCR Master
Mix (Applied Biosystems, Foster City, CA, USA) were used
according to standard protocols. Beta-2 microglobulin (B2M
Hs99999907 m1) (Applied Biosystems, Foster City, CA,
USA) was used for template normalization. Duplicate deter-
minations were carried out for each sample.

Western Blot Analysis

To examine the levels of dishevelled-2 (Dvl-2), non
phophorylated (at ser 33 and 37 and thr 41)-f3-catenin
(non-p-f3-cat) and glycogen synthase kinase 33 phosphory-
lated at serine 9 (p-GSK3f3, ser9) three downstream factors
in the Wnt pathway, total protein extracts were prepared to
perform western blot analysis as previously described [41,
42]. Protein concentration was determined by the BioRad
protein assay. The antibodies used were: polyclonal rabbit
anti-Dvl-2, 1:200 dilution (Santa Cruz Biotecnologies); anti-
p-GSK3p3, ser9, 1:1,000 dilution and anti-non- p--cat,
1:1,000 dilution (both from Cell Signalling Technology) and
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Fig. 1 Characterization of the immunophenotypic profile of
undifferentiated huAFMSCs (panels a—b). Flow cytometric analysis
was performed in cells previously incubated with fluorescent-conjugated
antibodies against surface antigens (CD13, CD29, CD44, CD73, CD90,
CD105, CD133, CD146, CD166, CD34, CD117, CD14, CD45, CD144)
and intracellular antigens (OCT3/4, SSEA4, Sox-2 and hTERT). a Filled

donkey anti-rabbit HRP-conjugated secondary antibody (GE
Healthcare Life Sciences; final dilution 1:5,000). To deter-
mine the equal loading of samples, the blots were stripped
and re-probed with an anti-B-actin antibody (Santa Cruz Bio-
technologies, 1:100 dilution). Immunocomplexes were
visualised using the enhancing chemiluminescence detection
system (GE Healthcare Life Sciences) and quantified by den-
sitometric analysis (Molecular Analyst System).

Immunocytochemical Analysis

Cells were seeded in 24-well plates containing 12 mm round
glass coverslips. After two washes with PBS, cells were
fixed using freshly prepared 4 % paraformaldehyde in PBS
(10 min at RT), washed with PBS (5 min), and incubated
with anti PPARy rabbit monoclonal antibody (diluted 1:50;
Cell Signaling) in NET gel (150 mM NaCl, 5 mM EDTA,

@ Springer

hTERTFITC

histograms represent cells stained with the relevant antibody; open histo-
grams show the correspective IgG isotype control (background control).
b Table with a semi-quantitative evaluation of antigen expression,
obtained dividing the mean fluorescence ratio (MFI) of positive events
by the MFI of negative events. Data are representative of three indepen-
dent samples obtained from 3 different donors

50 mM Tris—HCI, pH 7.4, 0.05 % NP-40, 0.25 % carragenin
lambda gelatin, 0.02 % NaN3;) for 2 h at RT. After several
washes, cells were incubated with a flourescein-conjugated
anti rabbit secondary antibody (1:150 dilution; Jackson
ImmunoResearch) in NET gel for 45 min at RT. After one
wash with NET gel and one with PBS, samples were stained
(5§ min) with 0.5 pg/ml DAPI (in PBS), then washed with
PBS, dried with ethanol (70 %, 90 %, 100 %) and finally
mounted in glycerol containing 1,4-diazabicyclo[2.2.2]octane
to minimize fading. Negative controls were represented by
samples incubated with the secondary antibody only. Slides
were observed with a 50i Eclipse microscope (Nikon) and
images were acquired with a Cool-SNAPc¢f digital CCD cam-
era (PhotoMetrics, Huntington Beach, CA). Digital acquisi-
tion, processing and analysis of fluorescence were performed
by Meta Image Series 7.5 (MetaMorph, Metafluor, MetaVue)
software obtained from Molecular Devices [43].
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Statistical Analysis

Experimental values are expressed as mean + SEM. Statis-
tical significance was assessed by the Student’s ¢ test using
the Prism3 software (GraphPad, San Diego, CA, USA). P
values <0.05 were considered statistically significant.

Results
Immunophenotyping of huAFSCs

As shown in Fig. 1, HTAFMSCs did not display surface
expression of haemopoietic markers (CD14, CD34 and
CD45). On the contrary, they expressed a variety of
established mesenchymal markers (CD73, CD90, CD105),

several surface adhesion molecules (CD29, CD44, CD146,
CD166), and the stemness markers hTERT, Sox-2, Oct3/4
and SSEA-4. CD117 and CD133 were also not expressed, in
accordance with previously reported findings [16].

Osteogenic Differentiation

Differentiation of huAFMSCs towards an osteogenic phe-
notype was achieved by culturing huAFMSCs in appropri-
ate differentiation media (see Materials and Methods).
Osteogenic differentiation was assessed by the increase in
ALP activity, which reached statistical significance at day 7
and 14 (Fig. 2a), coupled to a remarkable increment in ALP
staining at day 14 (Fig. 2b). Moreover, huAFMSCs grown
in osteogenic medium for 21 days showed significant extra-
cellular matrix mineralization, revealed by ARS staining

Alkaline Phosphatase assay

d

a
= 1.009 3 Undifferentiating medium
E 1 EER Osteogenic medium
8 o8
2 | ook
o
E 0.50- ik
o i
2
L 1
e 1 |
3 7 14 days
Alizarin Red S assay

Cc

0.1, == Undifferentiating medium

R Osteogenic medium

~ *
E 0.10-
g ==
[=}
< 0.05-

0.00

21 days

Fig. 2 Osteogenic differentiation. HUAFMSCs were exposed to dif-
ferentiation medium for varying times (3-7-14 and 21 days). Osteo-
genesis was evaluated by monitoring ALP activity and staining (panels
a-b) and extracellular matrix mineralization (panels c¢—d). a-b ALP
staining and activity were assayed as described in the Materials and
Methods section. For ALP staining representative images are shown
(scale bar=80 um), whereas the enzyme activity is expressed as
nmoles of p-nitrophenol produced per mg of cell protein within
30 min (nmol/mg protein/30 min). Values are the mean = SEM of four

separate experiments. ¢—d The mineralization of huAFMSCs, grown
for 21 days in either basal or osteogenic medium, was evaluated by
Alizarin Red S staining. Representative images from n=6 are reported
(scale bar=80 pum) (d). Quantitative analysis was carried out by
spectrophotometric reading at 405 nm of ammonium hydroxide ex-
tracts (c). Values, expressed as units of optical density (O.D.), are the
mean + S.EM. of four independent experiments, with cells from 4
different donors. *p<0.05, **p<0.01, ***p<0.001
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(Fig. 1d) and spectrophotometric readouts at 405 nm wave-
length (Fig. 2c). Consistent with this, ALP and RUNX-2
mRNAs were upregulated at days 3 and 7 (Fig. 3a and b)

Adipogenic Differentiation

When maintained in adipogenic medium, huAFMSCs
displayed fat accumulation within the cytoplasmic vacuoles
after 14 days in culture, as revealed by enhanced Oil Red Oil
staining and absorbance at 500 nm wavelength (Fig. 4b and c).
They also exhibited an increase in GPDH activity, that
was maximal at 10 days (Fig. 4a). Real time PCR anal-
ysis showed a significant time-dependent increase of
PPARY (at day 3 and 10) and FABP4 (at day 1, 3 and
10) mRNA, both considered as the main initiators of
adipogenesis (Fig. 5a and b). Additionally, immunofluo-
rescence microscopy showed the increase in PPARYy

a
- Pp<0.008 p<0.02
100 P<0.008

ALP mRNA
(arbitrary units)

0-
days
10.05 P<0.01 p<0.04
<% |
&5
E>
N g
xx
53
€2
3 7 days

3 Undifferentiating medium

IR Osteogenic medium
23 Osteogenic medium + DKK-1

Fig. 3 Analysis of osteogenic markers. ALP and RUNX-2 expression
was evaluated by real time PCR in huAFSCs cultured in
undifferentiating or osteogenic for the indicated times. In some exper-
iments, cells undergoing osteogenic differentiation, were exposed to
DKK-1 (100 ng/ml), inhibitor of Wnt signal. Data are the mean + SEM
of three separate experiments with cells from 3 different donors
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Glycerol 3-Phosphate Dehydrogenase (GPDH) Assay

a == Undifferentiating medium
2(- ™ Adipogenic medium
*
25 161
=%
—
E : 124
ZE
a> B8
CE
4+
0-
10 14 days
b Oil Red Oil Assay
Undifferentiating medium
o C

3 Undifferentiating medium
0.75 mmm Adipogenic medium
k%

0D 500 nm

0.25+4

14 days

Fig. 4 Adipogenic differentiation of huAFMSCs. AFMSC differenti-
ation upon exposure to adipogenic medium for 14 days was evaluated
by GPDH activity and Oil Red Oil Staining. GPDH activity, expressed
as mU/mg protein (1 mU=1 numol NADH/min), indicates the ability
of the enzyme to consume NADH, a co-enzyme present in the reaction
mixture and used by GPDH to catalyze the reaction between dihy-
droxyacetone phosphate and glycerol 3-phosphate (a). Oil Red Oil
staining (b) and quantitation of the staining by spectrophotometer
reading at 500 nm of the isopropanol extracts (c¢). Representative
images are shown (scale bar=80 um). The bar graph shows units of
optical density (O.D.). Results are the mean + S.E.M. of four indepen-
dent experiments, with cells from 4 different donors. *p<0.05; **p<
0.01

nuclear staining in huAFMSCs maintained in adipogenic
medium for 10 days as revealed by digital acquisition,
processing and analysis of fluorescence (Fig. 5c).

Molecular Signaling

To dissect molecular events involved in osteogenic and
adipogenic differentiantion of huAFMSCs, we examined
time-dependent changes in the Wnt signaling pathway. We
consistently observed a transient upregulation of Dvl-2 ex-
pression at very early stages of osteogenic induction
(3 days) (Fig. 6¢ and d). A similar increase was observed
in cultured human fibroblasts (Fig. 6a and b), routinely used
as a control for osteogenesis commitment. Dvl-2 was
downregulated during adipogenic differentiation (Figs. 6e
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Fig. 5 Evaluation of
adipogenic markers. PPARy
and FABP4 expression was
evaluated by real time PCR
assay (panels a and b). In some
experiments, cells undergoing
adipogenic differentiation, were
exposed to DKK-1 (100 ng/ml),
an inhibitor of the Wnt signal.
Data are the mean + SEM of
four separate experiments.
Panel ¢ Immunofluorescence
microscopy localization of
PPARY in undifferentiated
huAFMSC (lower-left),
showing exclusively the blue
fluorescence of DAPI staining,
or in adipocyte-differentiated
huAFMSCs (lower-right),
showing nuclear green
fluorescence from the
translocated PPARy. Upper
histograms represent the
analysis of fluorescence
intensity and distribution by
using Meta Image Series 7.5.
Images are representative of
three separate experiments with
cells from 3 different donors,
which gave similar results

GRAY LEVEL (AVG) ©

L]
J

E-3
'l

PPARY mRNA
(arbitrary units)

801

60+

FABP4 mRNA
(arbitrary units)

p<0.001

p<0.0001

p<0.0001

s

il

I Undifferentiating medium

579
Distance

-] 1ns7

Undifferentiating medium

3 10

IR Adipogenic medium
Adipogenic medium + DKK-1

days

E

= 132

-

Em sy

-

>.

§ &4

o
04— | I L J
1 24 585 &9 172

Distance

Adipogenic medium

@ Springer



650

Stem Cell Rev and Rep (2013) 9:642—-654

a c e
- L 3 7 1 3 7 days
ND Osteo ND Osteo ND Osteo ND Osteo ND Adipo ND Adipo ND Adipo
Dvl.z--! ---i-- — | — | ——
p-GSK38 . - - . gy S —
(ser9)
non-p-B cat - pra— . =
{ser33.-‘§?s‘thr41) - - - - - - .
B | | —— - —— | "

b[_ e, d o 1.00 f o 1.00)
- i s g
£ 0.753 * g 0751 ) . 5 o.?s'i
;i 050 io.w- L i 0.50 & .
s s | s | :
z 933 H % 025 $ 025
{ a a |
0.00-——= oco- M 1M 1M ooo- '™ 1M |1M
3 days 1 3 7 days 1 3 7 days
1.00 05, 0.75,
§ .
c 0751 g 041 i ‘i; | '
- £ sl £ 00
= 0501 - . St B |
s | = 021z = L 2 =
§ 025 : i §oas) @
¢ 1] g § | ﬂl
S 0,00l . 2 gl lH & o.00 -LLIE - .l |
3 days z 1 3 7 days 1 3 T days
g 1.00 * ﬁ 1.004 e § 1.00
g 0.75] ;SF 0.751 g 075
i:o,so- io,so- § 050
§ oas| %o.zs« Soas
) -3
0.00! - - J
g 3 g 000" 3 7 days g
[ Undifferentiating medium 3 Undifferentiating medium 3 Undifferentiating medium
I Osteogenic medium I Osteogenic medium I Adipogenic medium

Fig. 6 Analysis of the Wnt pathway in differentiating huAFMSCs and
human fibroblasts. Dvl-2, (3-catenin expression and GSK3 3 phosphor-
ylation at serine 9 were evaluated during osteogenic differentiation of
fibroblasts (panel a) and huAFMSC (panel ¢) or adipogenic differen-
tiation of huAFMSCs (panel e). Cells were grown in normal medium
(ND) or differentiating medium for the indicated times. Dvl-2, (3-
catenin and phosphorylated GSK33 were visualized by Western blot

and f). Phosphorylation at serine 9 of GSK38, which inhibits
the activity of this kinase, was also denoted in cells exposed
to osteogenic medium for 3 days (Fig. 6a and c). This is
consistent with the increase in the expression of B-catenin,
non phosphorylated just in the sites dependent on GSK30
activity, observed at 3 and 7 days of culture (Fig. 6a—b and
c—d).

On the contrary, the induction of huAFMSCs toward
the adipocyte lineage did not modify the expression of
[3-catenin, whereas GSK3B phosphorylation was signifi-
cantly enhanced at a later time (7 days) compared with
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analysis (60 pg of proteins were loaded per lane). Immunoblots,
reprobed with antibodies against (3 actin, to assure equal sample
loading, were quantified by densitometric analysis. Values, normalized
to {3 actin, are reported in the histograms (panels b, d and f). Densito-
metric values are the mean + SEM of three independent experiments
with cells from 3 different donors. *p<0.05, **p<0.01

osteogenic differentiation (Fig. 6e and f). The involve-
ment of the Wnt signaling pathway during osteo/adipogenic
differentiation of huAFMSCs was confirmed by cell
exposure to Dickkopf-1 (DKK-1), a known antagonist
of LRP5/6 Frizzled co-receptors [44, 45]. DKK-1 abro-
gated the ALP and RUNX-2 mRNA upregulation in-
duced by osteogenic medium (Fig. 3a and b) whereas it
slightly enhanced PPARYy expression and significantly
increased FABP4 expression levels in huAFMSCs ex-
posed to adipogenic differentiation medium (Fig. Sa
and b).
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Discussion

Our study confirms that AF collected during routine amnio-
centesis contains multi-potential progenitor cells, which
share a pattern of cell surface antigens with MSCs from
other sources [13, 46], and are negative for haemotopoietic
markers. This profile is typical of cultured cells, as both
murine and human freshly isolated AF cells express some
haemotopoietic markers [11]. Of interest, huAFMSCs ex-
press also some, but not all, human embryonic stem cell
markers that likely make these cells similar but not identical
to embryonic stem cells, a feature that prevents them from
being tumorigenic, but endowed with a greater

differentiation potential than adult stem cells [8, 47, 48].
Noteworthy, huAFMSCs stained negative (at least with the
cut-off MFI ratio positivity >2,0 adopted for our assay) for
CD117, also known as cKit. This marker is recognized as
the cell surface receptor for stem cell factor and is expressed
in embryonic and hematopoietic stem cells. Although cKit
has also been used to select, within the heterogeneous
huAFMSC population, those cells with higher differentia-
tion potential [14, 49] and immunomodulatory properties
[50], the expression of this protein in MSCs deriving from
varying sources is at present controversial. In fact, in accor-
dance with our findings on huAFMSCs (Fig. 1), other in-
vestigators were unable to detect CD117 expression on

Oste

medium

| Adimﬂq
: medium

OSTEOGENIC
DIFFERENTIATION

@&

Fig. 7 Simplified network controlling the fate decisions between
osteogenic and adipogenic lineages in huAFMSCs. Stem cells, in
appropriate cell culture conditions, initiate osteogenic or adipogenic
differentiation. Osteogenic commitment is linked to the stimulation of
the canonical Wnt pathway that sequentially involves: activation of the
LRP5/6 co-receptor via the frizzled receptors, signal transmission
through Dishevelled (Dvl), phosphorylation of GSK-33 leading to
the inactivation of a cytoplasmic complex composed of CK1, Axin,
APC and GSK-3f3, detachment of (3-catenin phosphorylation from the
complex. These events result in {3-catenin stabilization and in the
transcriptional activation of target genes mediated by (3-catenin, i.c.

Ubiquitination

/ =" ADIPOGENIC

> _* DIFFERENTIATION

the early osteogenic markers RUNX-2 and ALP. DKK1 is a secreted
Wnt antagonist that may be used as a drug to inhibit Wnt signal.
Adipogenic commitment involves early inhibition of Wnt signal lead-
ing to recruitment of (3-catenin to the protein complex, which facili-
tates the GSK-3f-dependent phosphorylation and proteosomal
degradation of (3-catenin. These events favors the transcription of
PPARYy and FABP4, considered as the main initiators of adipogenesis.
APC, adenomatous polyposis coli; (cat, B-catenin; CK1, casein kinase
1; DKK1, dickkopf 1; Dvl, Dishevelled; GSK30, glycogen synthase
kinase 3f3; LRP5/6, low density lipoprotein receptor-related protein 5/6
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MSCs [51]. A possible explanation is that CD117" cells
represent a very small percentage of the total huAFSC
population and if not selected at the very early stages of cell
culturing, they can be obscured to flow cytometric detection
by the more abundant CD117 cell population, which be-
comes more and more predominant passage after passage in
culture. Noteworthy, regardless of being CD117, in our
hands and in agreement with previous findings [52-54],
huAFSC showed a good differentiation potential, even after
a number of passages in culture. They were able to undergo,
when grown in appropriate medium, osteogenic or adipogenic
commitment, as documented by the upregulation of early
molecular markers and the occurrence of phenotypic changes
(Figs. 2, 3, 4 and 5). The up-regulation of RUNX-2 during the
first week of the osteogenic differentiation of our cells is in
agreement with the current literature. It has been, in fact,
observed that RUNX-2 is key for osteoblast differentiation
within the immature bone, whereas its expression has to be
downregulated for cell differentiation into mature osteoblasts
[55]. Likewise, ALP is considered a marker of early osteo-
genic differentiation [56], although the enhancement of its
expression and activity during osteogenesis may occur at
different times, depending on the type of MSC. Indeed, we
observed early ALP expression during the osteogenic differ-
entiation of MSC from dental tissues, whereas in other stem
cells, such as those from the bone marrow, ALP expression
occurs at a later time [42, 57]. Taken together, these results
encourage the use of huAFMSCs in regenerative medicine
[16], although extensive preclinical investigation is still need-
ed. On the other hand, these cells may constitute a valuable
model to dissect the molecular/biochemical events occurring
during osteogenic/adipogenic differentiation. This may be
helpful to expand our knowledge of the pathophysiolo-
gy of these events as well as to engineer stem cells
with more efficient and longer lasting tissue regeneration/repair
activity.

With this in mind, we examined the Wnt signaling path-
way in differentiating huAFMSCs. We showed that, during
osteogenic commitment, Wnt pathway is activated in our
cells (Fig. 6a-b), as demonstrated by the early upregulation
of Dvl-2, leading to enhanced GSK3[3 phosphorylation/
inhibition, which unlocks cytosolic [3-catenin expression
[25, 58, 59]. Accordingly, DKK-1, an established inhibitor
of the Wnt pathway, abrogated the early up-regulation of
RUNX-2 and ALP, recognized as markers of cells undergo-
ing osteogenic differentiation (Fig. 3). Taken together, these
findings indicate that the Wnt signaling triggers huAFMSC
commitment towards osteogenesis, as summarized in Fig. 7.
They are consistent with the observation that the Wnt path-
way stimulates bone formation in vitro and in vivo [60, 61]
as well as with the finding that a decreased GSK3f
expression/activity stimulates bone formation, via the
upregulation of RUNX-2 transcription [62].

@ Springer

On the other hand, we found that huAFMSC commitment
towards adipogenesis does not depend on Wnt signal, as
demonstrated by downregulation of Dvl-2 coupled to no
modification in the expression level of non phosphorylated
[3-catenin in the cytosol (Fig. 6¢ and d). Accordingly, the
blockade of Wnt signaling with DKK-1 gave a significant
upregulation of FABP4, a marker of adipogenic differentiation
(Figs. 5 and 6). Together, these results are consistent with
previous data showing that the activation of the Wnt pathway
keeps pre-adipocytes in an undifferentiated state and blocks
fat development in vivo [28, 63] and that the inhibition of the
Wnt/[3-catenin signaling promotes adipogenesis [64]. Along
these lines, the observation of a delayed GSK3[3 phosphory-
lation occurs during adipogenic commitment (Fig. 6¢) sug-
gests that the activity of this enzyme is needed in the initial
phase of huAFSC differentiation into adipocytes. This is
consistent with previous reports showing that: i) GSK3f3
activity is required to enable PPARy-dependent [(3-catenin
degradation during pre-adipocyte differentiation [65]; ii) inhi-
bition of GSK3f3 activity, restricted to the early step of differ-
entiation, is sufficient to impair adipogenic differentiation of
human adipose-derived stem cells [66]. Moreover, since the
canonical Wnt signal does not appear to be activated during
adipogenic differentiation of huAFMSCs, the delayed
GSK3f inactivation (Fig. 6¢) might be attributed to insulin,
which is present in the adipogenic culture medium and is
essential for adipogenic differentiation. Insulin can, in fact,
induce GSK3{ (ser9) phosphorylation/inhibition via the acti-
vation of the phosphoinositide 3 kinase/protein kinase B path-
way (reviewed in [67]).

In conclusion, our study provides an accurate phenotypic
characterization of huAFMSCs and establishes that the ca-
nonical Wnt/Bcatenin signaling pathway triggers the osteo-
genic commitment of these cells. On the contrary, the early
inactivation of this pathway promotes adipogenic differen-
tiation. Thus, modulating the Wnt signaling may represent a
novel approach to direct cells towards a more definite dif-
ferentiation that may result useful in the clinical use of
huAFMSCs in regenerative medicine. Future studies are
however awaited to assess the validity of this strategy.
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