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Abstract Acute myocardial infarction is a major problem
of world public health and available treatments have limited
efficacy. Cardiac cell therapy is a new therapeutic strategy
focused on regeneration and repair of the injured cardiac
muscle. Among different cell types used, mesenchymal stem
cells (MSC) have been widely tested in preclinical studies
and several clinical trials have evaluated their clinical effi-
cacy in myocardial infarction. However, the beneficial
effects of MSC in humans are limited due to poor engraft-
ment and survival of these cells, therefore ways to overcome
these obstacles should improve efficacy. Different strategies
have been used, such as genetically modifying MSC, or
preconditioning the cells with factors that potentiate their
survival and therapeutic mechanisms. In this review we
compile the most relevant approaches used to improve
MSC therapeutic capacity and to understand the molecular
mechanisms involved in MSC mediated cardiac repair.
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Introduction

Cardiovascular diseases are a major problem of world public
health, being the leading cause of mortality and morbidity.
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Among them, heart failure triggered by acute myocardial
infarction (AMI) is the main protagonist, causing the major-
ity of deaths [1]. Although early reperfusion with fibrino-
lytic therapy or coronary angioplasty have reduced mortality
[2], damage in the myocardial wall is irreversible and the
available pharmacological and surgical treatments are limit-
ed to palliative effects. Thus, heart transplantation is the
only effective approach in the later stages of AMI even
though the low number of suitable donors restricts its
application [3].

In AMI, severe ischemia induces apoptosis and necrosis
of myocardial tissue [4] that is progressively replaced by
fibrous tissue, due to the inability of the heart to regenerate
itself [5]. This process leads to left ventricular remodelling
characterized by left ventricular chamber dilatation, wall
thinning and impairment of left ventricular function with a
final stage of congestive heart failure and death [6].

Cardiac cell therapy is a new therapeutic strategy that
could help to regenerate or to repair the injured cardiac
muscle in order to prevent cardiac remodelling and heart
failure. Many different stem/progenitor cells from a great
variety of tissue sources have been used in experimental
and/or clinical settings such as embryonic stem cells, MSC,
hematopoietic stem/precursor cells (HSPC) neonatal or fetal
cardiac stem cells, skeletal myoblasts and induced pluripo-
tent stem cells (iPS) [7—10]. Several of these cell types have
been employed in combination with different strategies to
boost their positive effects like tissue engineering, genetic
engineering or preconditioning with hypoxia or biological
factors [11-13].

In the clinical setting, whole bone marrow mononuclear
cells and skeletal myoblasts are the most frequently used
cell types [14]. Overall, stem cells appear to be safe both in
animal models and patients with minimal collateral effects
[14-16]. However, it has been reported that skeletal myo-
blasts tend to induce arrhythmias due to lack of electrophys-
iologic integration with heart muscle and independent
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contractility [17—19]. Thus, the possibility that other types
of cell precursors could induce arrhythmias with a low
incidence cannot be discarded. Regarding the safety of
MSC based therapies, there has been some concern about
the tumorigenic potential of MSC [20], although it should
be taken into account that human MSC possess a minimal
risk of molecular transformation and preclinical and clinical
studies have demonstrated their safety regard to cancer
formation [21].

The efficacy of enriched stem cells populations in restor-
ing cardiac function and promoting regenerative mecha-
nisms such as revascularization and fibrosis reduction has
also been demonstrated in clinical trials, but current results
are modest and insufficient to repair injury of patients with
AMI, due to several hurdles in heart stem cell therapy such
as limited stem cell migration, survival, engraftment, prolif-
eration and differentiation in the infarcted heart [14, 22].

This review focuses on MSC, one of the main types of
stem cells used today in cardiac repair and extensively
evaluated in diverse clinical settings [23-26], and explores
the potential use of genetically manipulated MSC to in-
crease their therapeutic potential.

Mesenchymal Stem Cells: Main Features

MSC are multipotent cells that were identified by Frieden-
stein [27] and first isolated from bone marrow stroma by
Pittenger and coworkers in 1999 [28]. These cells are able to
differentiate into adipocytes, chondrocytes and osteoblasts
in vitro [29-31] and to engraft and differentiate into multiple
tissues following in utero transplantation [32]. Although
abundance of MSC in fresh bone marrow is low (0.01—
0.0001%) [33] they can be easily expanded due to their
ability to adhere to plastic surfaces and their proliferative
potential [34].

MSC have been isolated from adult pheripheral blood
[35], adipose tissue [36], skin tissue [37], dental pulp [38],
liver [39], synovial membrane [40], skeletal muscle [41],
lung [42], umbilical cord blood [43], amniotic fluid [44] and
placenta [45], amongst others [46]. MSC isolated from
different tissues share common antigenic markers, namely
CD13, CD29, CD31, CD44, CD54, CD63, CD73, CD90,
CD105, CD106, CD140b and CD166 and are negative for
the antigenic markers on hematopoietic stem cells (CD34,
CD45, CD14 and CD133) [47]. However, studies of micro-
arrays show differences in gene expression and multilineage
differentiation depending on their source of origin [48].

MSC can be expanded for up to 29 population doublings
before entering into senescence, although they tend to pro-
duce better outcomes when they are isolated from young
donors [49]. Indeed, Asumda and colleagues found lower
expression of Oct 4 in MSC isolated from young rats

(4 month old) than from older animals (15 months) [50].
The authors failed to detect Sox2 and Nanog in “old” BM-
MSC and were able to induce cell differentiation after
21 days culture in adipogenic, osteogenic and chondrogenic
differentiation media. Accordingly, the telomerase activity
and secretion of paracrine factors was higher in young MSC.

MSC are an attractive cellular type for cardiac therapy
because they are relatively easy to obtain from different
tissue sources like bone marrow or adipose tissue.

These cells have been reported to be immunoprivileged
due to lack of or low levels of surface expression of MHC
class I and MHC class II molecules [51] which enables them
to evade detection by T cells in an allogeneic setting [52].
Furthermore, MSC have demonstrated immunosuppressive
properties through modulation of cellular and innate im-
mune pathways [53, 54]. However, it should be taken into
account that some authors have reported immune rejection
of allogeneic MSC [55, 56]. These features, together with
the paracrine effect through secretion of angiogenic, anti-
apoptotic and anti-fibrotic factors, are the most likely ther-
apeutic mechanisms by which MSC are able to attenuate the
pathological effects of cardiac remodelling in AMI, increasing
angiogenesis, reducing ventricular dilatation and improving
global cardiac function [57-59].

MSC Direct Effects in Cardiac Therapy: Migration,
Engraftment and Differentiation

During the first 7 days after myocardial infarction a complex
and acute inflammatory process is observed [60] that pro-
vokes the release of a great variety of chemokines, growth
and inflammatory factors by the ischemic tissue. This injury
response attracts and induces recruitment of different types
of leukocytes that promote healing [61, 62]. Inflammatory
factors released shortly after the infarction include IL-8, IL-
10, monocyte chemotactic protein-1 (MCP-1), macrophage
inflammatory protein 1 and 13 (MIP-1a and MIP-103),
HGF and SDF-1 [60, 63, 64]. Several of these up-regulated
biological factors post-AMI have also been reported to be
involved in MSC migration into infarcted tissue like SDF-1
and HGF [65, 66]. In this context, MSC express CXCR4
and c-Met which are receptors of SDF-1 and HGF respec-
tively. Treatment of MSC with proinflammatory cytokines
increase adhesion and susceptibility of these cells to migrate in
respond to trophic factors [67, 68], indicating the ability of
MSC to exert an adaptive response to inflammatory signals.
Concomitantly, once MSC migration process starts they need
to adhere and go through endothelium in order to reach myo-
cardial infarction. Several adhesion molecules and integrins
have been identified in MSC membrane surface such as vas-
cular cell adhesion molecule-1 (VCAM-1), very late antigen-4
(VLA-4), intercellular adhesion molecule-1/3 (ICAM-1 and

@ Springer



268

Stem Cell Rev and Rep (2013) 9:266-280

ICAM-3), 31 integrins, activated leukocyte-cell adhesion
molecule (ALCAM) and CD44 [65, 69, 70]. Moreover, MSC
secrete matrix metalloproteinases such as MMP-2 which
facilitate invasion into infarcted heart [71]. In this context,
VCAM-1, VLA-4, 31 integrins and matrix metalloproteinase-
2 (MMP-2) secretion have been reported to be key players
involved in MSC adhesion and/or transendothelial migration
to infarcted tissue [71, 72].

Engraftment of MSC has been specifically addressed in
several studies. In general, MSC are capable of engraftment
in the host myocardium, but the percentage of retained cells
is quite low. The best engraftment results using MSC from
humans in transplantation experiments have been achieved
using immunodeficient animals to prevent cell rejection
[73]. Despite the relative immunoprivileged nature of
MSC, no engraftment was found 7 days after xenogenic
transplantation into immunocompetent rats [74, 75]. To
our knowledge, the longest engraftment of MSC in large
animal models was reported by Quevedo and colleagues
[76]. Using a swine allogenic model, 2x10* male MSC
were injected in chronically infarcted female swine
(12 weeks after MI) and were detected 12 weeks post-
transplantation by colocalization with Y-chromosome fluo-
rescence in situ hybridization. In these conditions, only a
small percentage of MSC were able to engraft and differen-
tiate into cardiomyocytes at this time point (less than 600
cells per 10° cardiomyocytes). Interestingly, the same re-
search group reported that transplantation of these cells was
able to stimulate endogenous cardiomyocyte cell cycling
and amplify resident c-kit+cardiac resident stem cells
2 weeks after injection [77]. Muller-Ehmsen and colleagues
evaluated the mid-term persistence of bone marrow mono-
nuclear cells (BMNC) and MSC in rat models of acute and
chronic myocardial infarction [78]. BMNC or MSC were
injected into myocardium immediately or 7 days after MI. The
study showed that after 6 weeks post-implantation the percent-
age of engrafted cells was around 0.3-3.5% independently of
cell type and application time. Overall, the engraftment per-
centage of administered cells rapidly decreased due to poor
mid-term persistence.

Engraftment efficiency is closely correlated with the
mode of administration of cells. Both intracoronary and
endocardial MSC injections showed an increased engraft-
ment within infarcted tissue when compared with intrave-
nous infusion since the later produce higher mortality and
loss of transplanted cells due to entrapment through the
pulmonary circulation in lung, liver and spleen. Intracoro-
nary injections produced a decrease in blood flow whereas
endocardial injections resulted in similar engraftment but
reduced collateral effects [79]. Thus, cell transplantation is
still an unsolved problem and methods able to increase the
retention of cells in the heart will undoubtedly increase the
efficacy of cell therapy. In this context, the use of scaffolds
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to deliver cells, loaded or not with growth factors, will also
help to improve the long term viability of stem cells in solid
organs [80-83]

MSC are able to initiate differentiation in vivo into mus-
cle or endothelium. Although few MSC engrafted in injured
heart frequently express some muscle, cardiac and/or endo-
thelial marker proteins such as smooth muscle alpha-actin,
desmin, 3-myosin heavy chain, x-actinin and cardiac tro-
ponin T [73, 84, 85] currently, general consensus indicates
that this process is extremely rare and may be product of
differentiation or cell fusion [86, 87]. However, whatever
mechanism, this minor differentiation process is not suffi-
cient to explain the restorative mechanisms observed after
MSC cell therapy in AMI [10, 86, 88]. Besides, MSC
beneficial effects appear shortly after cell transplantation
(around 3 days), which would give an insufficient time for
MSC to differentiate into cardiac lineages [86, 89].

MSC Indirect Effects in Cardiac Therapy: Paracrine
Factors

MSC are able to release a great variety of cytoprotective
cytokines and growth factors which are implicated in protect-
ing injured tissue from apoptosis, promoting angiogenesis,
reducing infarct scar and preventing tissue remodelling [57,
90]. The following molecules can be found among the most
relevant cytokines and growth factors secreted by MSC: Vas-
cular endothelial growth factor (VEGF), beta-fibroblast growth
factor (3FGF), insulin-like growth factor (IGF-1), stromal cell-
derived factor-1 (SDF1), transforming growth factor beta
(TGFf), and IL-6 interleukins, hepatocyte growth factor
(HGF), angiopoietin-1 (Ang-1) and platelet-derived growth
factor (PDGF) [91], monocyte/macrophage colony stimulating
factor (M-CSF) and granulocyte colony stimulating factor (G-
CSF) [92] (Table 1). At present, it is firmly suggested that the
main mechanism responsible for cardiac repair in MSC is the
secretion of paracrine factors rather than MSC differentiation
into cardiomyocytes [89, 93, 94]. Indeed, several studies have
reported that culture of endothelial cells with conditioned
medium released by MSC resulted in improved angiogenesis,
migration and survival in vitro and that intramyocardial injec-
tion of MSC conditioned medium in animals with AMI
resulted in functional improvement, increased capillary density
and reduction of infarct size [95-98]. In this context, there is
intense research to define the best combination of factors and
also the adequate way of administration of cells to the infarct
with the use of, for example, polymeric carriers that allowed
the delivery at the appropriate dose. These composite scaf-
folds, encapsulating cells or factors, could mimic the effects of
intramyocardial cell therapy whilst at the same time reducing
the complexity and cost of therapy in humans [80].
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Table 1 Cytokines and growth factors secreted by MSC

Cytokine/Growth  General role

factor

VEGF Stimulation and regulation of angiogenesis and
vasculogenesis [133]

bFGF Stimulation of the proliferation of multiple cell
types [134, 135]

IGF-1 Stimulation of the proliferation and growth of
multiple cell types [136]

SDF1 Chemotactic factor for monocytes, lymphocytes,
megakaryocytes and hematopoietic cells [137]

TGFpB Regulation of cell proliferation and differentiation
[138, 139]

IL-6 Mediator of inflammation and acute phase
reaction [140]

HGF Stimulation of the proliferation and motility of
epithelial and endothelial cells [141]

PDGF Regulation of cell proliferation and angiogenesis
[142]

G-CSF Stimulation of neutrophil proliferation and
differentiation [92]

M-CSF Stimulation of monocyte proliferation and
differentiation [92]

Ang-1 Stimulation and regulation of angiogenesis and

vasculogenesis [143]

VEGF vascular endothelial growth factor, hFGF basic fibroblast
growth factor, /GF-1 insulin growth factor 1, SDF serum derived
factor, TGF tumor growth factor, /L-6 interleukin 6, HGF hepatocyte
growth factor, PDGF platelet derived growth factor, G-CSF Granulo-
cyte colony-stimulating factor, M-CSF Macrophage colony-stimulating
factor, Ang-1 angiopoietin 1

Boosting Stem Cell Effects

In spite of MSC ability to trigger therapeutic biological
processes that contribute to cardiac repair, the use of these
cells produce only modest improvements in cardiac function
and the beneficial effects in humans with myocardial infarc-
tion are far from clinical implementation. As a result, many
different strategies are being developed in order to boost
these cell effects such as genetic engineering, tissue engi-
neering and pre-treatments with biological factors. Tables 2,
3 and 4 summarize studies performed using viral vectors to
overexpress transcription factors, cytokines or growth fac-
tors in MSC prior to administration. Although almost all of
these molecules show pleiotropic effects, they have been
classified by their main mechanism of action.

Strategies to Improve MSC Engraftmet
and Differentiation

After MI, chemotactic factors are upregulated in injured tis-
sues. Homing and engraftment of MSC in infarcted

myocardium is associated with various chemokine/chemokine
receptor axes including SDF-1oc (CXCL12) and its receptor
CXCR4, HGF and its receptor cMet and CXCL1 and its
receptor CCR1. In order to explore their role in cell engraft-
ment, several groups have genetically modified MSC to po-
tentiate these mechanisms and to test their therapeutical
potential in vitro and in vivo. Approaches to improve cell
engraftment have been mostly conducted with murine (mice
or rats) syngeneic models. Overexpression of CCR1 but not
CXCR2 led to improved cardiac function and vascular density,
reduced infarct size, and increased release of paracrine factors
in vivo, in comparison with MSC treated animals [99].

Implications of SDF-CXCR4 interactions in MSC in-
duced cardiac repair have been extensively studied either
by overexpressing the ligands or the receptors in MSC prior
to transplantation [99—-102]. Increased engraftment of MSC
overexpressing CXCR4 (CXCR4-MSC) versus MSC was
demonstrated by Y-chromosome positive cell staining and
by localization of GFP expressing cells at the border zone of
the infarct. CXCR4-MSC also increased paracrine activity
of infused cells with an upregulation of matrix metallopro-
teinases (MMPs) in CXCR4-MSC transplanted hearts [100].
When comparing studies from different groups that used
similar animal models, higher doses were required to obtain
similar therapeutic benefits when using the intravenous in-
fusion (i.v) than intramyocardial injection (IM) (Table 2).
Two different studies demonstrated that infusion of SDF-1
overexpressing MSC significantly improved stem cell en-
graftment (up to 5 fold relative to non-modified MSC), as
well as decreasing the number of TUNEL positive cardiac
myocyte nuclei and improving cardiac function [101, 102].
In one of the studies, MSC were labelled with BrdU prior to
injection [101]. No evidence of cardiac regeneration by the
infused MSC being derived from replicating cells was ob-
served, and the authors demonstrated that the beneficial
effects of stem cell transplantation were associated to cardiac
preservation rather than to cardiac regeneration.

In another study, monitoring of MSC engraftment by lumi-
nescence in vivo showed that overexpression of HGF and
VEGF prolonged MSC short term engraftment (2—-6 days)
[103]. However, the authors failed to detect MSC, overexpress-
ing or not these growth factors, at 10 days post-transplantation,
indicating that the incidence of these genetic modifications only
improve short term engraftment. Nevertheless, in most cases,
this presence is sufficient to induce long lasting therapeutical
benefits due possibly to paracrine mechanisms and induction of
stem cell homing [101, 102, 104].

Regarding the studies directed to potentiate the mecha-
nisms implicated in MSC differentiation, some studies are
based on genetic modifications with cardiac transcription
factor genes or kinases that regulated various intracellular
functions [105—-107]. Myocardin is a cardiomyogenic tran-
scription factor that regulates the expression of many
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Table 3 (continued)

In vivo results Ref.

Cardiac parameters

Proposed mechanism

of action

Animal model Route of delivery

Cell dose

Genetic

nd registration time

and trasplantation

schedule

modification

@ Springer

| fibrotic area, infarct size and

1 MSC survival through production =~ HM, AEF (%): 11.5. 21

of pro-survival factors

IM injection shortly

PI3K-C2a

apoptosis 1 Vascular density

days after AMI
ECHO, AEF (%): 25.

after LAD ligation

overexpression
L . s
Survivin overexpression 2x10” GFP-rat MSC

[147]

1 MSC survival fvascular density

| infarct size

1 MSC survival through

IM injection 1 h

Rat

28 days after AMI
ECHO, AEF (%): 22.1.

anti-apoptotic action of survivin

1 MSC integrin-mediated

after LAD ligation

[132]

1 MSC survival and adhesion

IM injection shortly

Rat

1x10° DAPI-rat MSC

tTG overexpression

AFS (%): 13.62. 21

after LAD ligation

days after AMI

adhesion 3 d post-transplantation

CM cardiomyocyte. EF ejection fraction. F'S shortening fraction. AMI acute myocardial infarction. ECHO echocardiography. MRI magnetic resonance imaging. HM hemodynamic measurements.
SPECT single-photon emission computed tomography. CT computed tomography. /M intramyocardial. IV intravenous. /C intracoronary. Q.D. qualitative data. The mean percentage difference (A%)

values of cardiac function parameters between genetically modified MSC and control MSC are indicated

cardiac and smooth muscle cell genes. Myocardin expres-
sion in MSC increased differentiation of transplanted cells
[108], although full differentiation was not achieved and the
vast majority of engrafted cells were only positive for one of
the cardiac markers analysed (i.e. cardiac troponin T, atrial
natriuretic peptide, and myosin heavy chain, among others).
However, although Myocardin-MSC showed improved
functional cardiac parameters in comparison with MSC,
the differences were low with only an increase in ejection
fraction of 2% relative to MSC treatment, 14 days after cell
transplantation. In contrast, genetic modifications leading to
improved MSC self-renewal and survival seem to induce
higher levels of cardiac function recovery. For instance,
overexpression of MSC with sFPR2, an inhibitor of the
Wnt pathway that has been associated with increased heal-
ing capacity, together with MSC survival and proliferation
[109, 110], the same factor was also able to increase the
ejection fraction in 6.24% using the same animal model and
the same cell dose as the Myocardin study, but 30 days after
cell transplantation [111], indicating that beneficial effects
induced by MSC are more influenced by the ability of MSC
to survive in the in the host than by the degree of MSC
differentiation.

Strategies to Improve MSC Survival and Proliferation

Strategies conducted to improve MSC survival have been
often developed using murine animal models [86, 112—119]
although some of the experiments have been performed in
swine [120, 121] (Table 3).

The first genetic modification approach directed to improve
MSC survival was reported by the group of Dr. V.J. Dzau
[112]. Transplantation of Akt overexpressing MSC in infarct-
ed rats significantly improved cardiac function and reduced
infarct size in comparison with MSC treated animals in a dose
dependent manner. Lim and colleagues [120] injected MSC
intracoronary in a swine model of ischemia-reperfusion. Cells
were injected 3 days after balloon occlusion to avoid interfer-
ence with the inflammation cascade triggered after MI. In
these conditions, Akt overexpressing cells significantly pre-
served cardiac function. In vitro, the authors demonstrated the
ability of Akt-MSC to reduce intracellular ROS levels induced
by H,0, treatment. In these modified cells, AKT and ERK
were found to remain in phosphorylated form longer than in
MSC. Akt overexpression induced transient beneficial effects
related to paracrine mechanisms. Since angiogenesis is a
major mechanism of repair and to obtain long lasting thera-
peutical benefits, further studies were conducted by co-
expression of Akt and angiopoietin (Ang-1) in MSC. After
3 months following Akt-Ang-1-MSC transplantation, authors
detected improved cell engraftment and increase in blood
vessel maturation index [113, 114]. Other authors
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E o 2 E overexpressed PI3K-C2« or heat shock protein 20 (Hsp 20) in
— [— = . . .
§ MSC to potentiate the Akt survival pathway, and obtained
o 2 similar results in terms of improvement of cardiac function
=i} 8
Sz «g 5] and cell engraftment [122, 123].
= 22 S 2 The second mostly studied strategy to improve MSC
> - 8 = y gy p
Z g8 : 2 therapeutic potential has been the overexpression of heme
@ 2o &°58 | g5 p p p
z ? % 8 % =2y oxygenase 1(HO-1), an anti-oxidant and anti- inflammatory
= =5 558 | €= rotein that catalyzes the enzymatic degradation of heme to
<3 o< = 2 S = p y y
z g i £ g JlE % carbon monoxide, biliverdin and iron. HO-1 is sensitive to
= — - % 3 hypoxia, oxidative stress and inflammatory cytokines. The
ns ‘i% transient expression of HO-1 in MSC was able to induce
— i g 51&38 anti-apoptotic and anti-oxidative stress mechanisms that
) 2 «“ 5 g = increased their survival ability in vivo [116]. In different
w £ < T » =5
= 5 22 S models of MI, it was also demonstrated that these cells
0 < =1 o\ kel E ..a . . . .
£2 s oo 4 g could attenuate cardiac remodelling and increase angiogen-
= > - = . . . . .
2 g 3 = S > esis through paracrine mechanisms mainly mediated b
7 - 22 gh p y y
é & & % P g 8 VEGF and FGF, [115, 118, 119].
S g E > 3 g 2 Other methods to potentiate cell survival in vivo like Bcl2
82 or connexin-43 overexpression in MSC induced modest im-
— . . . . . . . .
g E 2 provement in cardiac function (increase in ejection fraction
5] - . . .
E g 5_8 around 4% relative to non-modified MSC) using greater
B E g Jg g5 numbers of infused cells [124, 125].
- O «wn O O
. LE25F | 28
: |8222% |38
5] n S w 8 A
B é é 7 § EE| 258 Strategies to Improve MSC Paracrine Mechanisms
g §585<5 | 2%
= .2 SO ==1) = S =
‘g o B oY s | E . . . .
%E @28 3 é ';”E Genetic modification of MSC has also been directed to
G QO < . . . . . .
2 é SUSTE 5% potentiate their paracrine effect (Table 4). In similar animal
[+ . .
- 23 models to the ones described above, overexpression of
= = S o rowth factors like HGF, IGF or VEGF led to improvement
55 | =3 28 growth . . . [prov
Z & =2 Z:’D% in cardiac function, angiogenesis and reduction of infarct
o) =} . . .
:'3 _i é <Qc g g % size [95, 103, 104, 106, 126—-129]. However, the majority of
[} © . . . .
o £ Z E"; % § < these studies needed higher cell doses to induce beneficial
é ek é k= é - effects than strategies directed to potentiate engraftment and
R B e 8 survival. It is noteworthy that most of these genetic mod-
= . . . . .
&= ifications led to activation of PI3K-Akt pathway both in
o3 p y
=_ g & MSC and transplanted hearts indicating that this is a pivotal
é g " " 28 signaling pathway for MSC mediated repair. For instance,
S 9 Lo . .
< £ e ~ g g administration of HGF or VEGF overexpressing MSC im-
g E g proved ventricular wall thickness, angiogenesis and cardiac
o . . .
E O g performance of infarcted hearts [126, 127]. Calcineurin,
: g o L. .
N g SE hosphorylated Akt and Bcl-2 were significantly increased
> = s phosphory g y
2 5 s £ g in HGF-MSC treated hearts [126]. In vitro, conditioned
Q . .
= % B 27 medium of HGF-MSC and VEGF-MSC protected hypoxia
3 & = & g__.:J % exposed murine cardiomyocytes reducing LDH release. Akt
2 2 § activity was also increased in cultured cardiomyocytes and
- - é < correlated with a decrease in the apoptotic index, indicating
"!g % % § .5 g) that this molecule may also play a major role in cardiomyo-
g = ga PR cyte survival [127]. In another study, overexpression of
§ g g g § s g MiR-126 in MSC, an endothelial cell-specific miRNA, also
g & g £ 2 g resulted in increased levels of phosphorylated Akt in MSC
+| 238 2 2y 58 phosphory
2|8 3 S S k) ke and potentiated the capacity of MSC to induce angiogenesis
< |5} = L, I . .
=1 O 8 > > SEN in vivo [130].
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Infusion of MSC overexpressing paracrine factors often
induces pleiotropic effects. For instance, Tang and col-
leagues [102] demonstrated that infusion of SDF-MSC in-
creased myocardial HGF expression levels in comparison
with MSC treated hearts or control hearts. The same re-
search group demonstrated that infusion of VEGF overex-
pressing MSC increased levels of myocardial SDF-1« [95].
IGF-1 overexpression in MSC also increased myocardial
SDF-1«, phosphoinositide-3 kinase (PI3k) and Akt [104].
Moreover, as mentioned before, overexpression of the para-
crine factors IGF-1 or VEGF in MSC resulted in stem cell
homing to myocardium [95, 104]. Both VEGF and IGF-1
overexpressing MSC induced a massive c-kit+cardiac stem
cell mobilization via SDF-1« signalling that culminated in
increased angiogenesis in transplanted animals.

All these works show the interplay among SDF, VEGF,
HGF and IGF in myocardial repair and corroborate the main
contribution of paracrine mechanisms in MSC based
therapies.

Conclusion

Genetic engineering has managed to significantly increase
engraftment, homing, survival and differentiation of MSC,
therefore improving cardiac function in laboratory animals.
Indeed, thanks to these approaches, we better understand
some of the induced molecular pathways implicated in
cardiac repair.

Several obstacles continue to impair the use of these cells
in clinical trials. First of all, most of the studies were
developed with murine or porcine MSC, thus we cannot
discard differences in in vivo reactions when using human
MSC. Second in, depending on the vehicle used genetic
engineering is considered a risky approach for a clinical
set-up. Thirdly, genetic modification strategy does not allow
for a rapid treatment of the injured heart since it requires cell
expansion and genetic modification of cells. In this context,
MSC therapy should be done before the fibrous scar is
formed since MSC contribute and potentiate the natural
healing process, reducing infarct area and improving cardiac
function. To overcome these problems, the use of drugs to
stimulate MSC therapeutic mechanisms would be very help-
ful. Unfortunately, most drug treatments that stimulate these
pro-survival and restorative pathways have not achieved the
same results due to the transience of compounds in the body
tissues. Thus, promising results are expected from the com-
bination of cell therapy and controlled drug release fields.

Although it is still too early to justify a clinical strategy
based in genetically modified MSC, several clues can guide
research to improve therapy.

In general, strategies based of improvement on MSC
differentiation are not supported enough mainly due to the

limited degree of differentiation and impaired connection
with healthy cardiac tissue. On the contrary, strategies to
promote MSC survival showed significant improvement in
cardiac function relative to treatments with wild type MSC,
despite of the modest improvement in MSC engraftment and
short term persistence of cells achieved in most cases with
these genetic modifications.

Due to the difficulty to compare studies performed in
different experimental conditions, we cannot conclude
which of the many are the best strategies to potentiate
MSC repair. It is necessary to perform comparative studies
in the same experimental conditions to determine the most
effective way to repair cardiac tissue, before going into the
clinical setting [10]. Nevertheless, it is noteworthy that
many genetic modifications potentiate MSC survival with
the activation of the PI3K/Akt signalling pathway in vivo
and in vitro, that is sufficient to trigger a significant restor-
ative response based on paracrine mechanisms leading to
angiogenesis and stem cell mobilization [86, 101, 112, 113,
117, 120, 122, 123, 125-127, 130-132].

Redundant mechanisms involving CXCR4/SDF-1«,
HGF, IGF and VEGF appear to be also closely implicated
in the repair process [95, 102, 104].

In summary, overexpression of survival molecules and
growth factors appears to be a potent strategy to potentiate
stem cell therapeutics. Exploring and dissecting the mecha-
nisms triggered by MSC transplantation guarantee the im-
provement of MSC based therapies.

In this context, although we are far from this point, if we
were able to achieve a clear improvement in cardiac func-
tion it would be possible to reach the clinic with genetically
modified MSC and future cell based therapies could be
developed, opening new horizons as banking of engineered
MSC designed for healing different tissues and different
pathologies.
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