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Abstract Our analyses of three human induced pluripotent
stem cell (hiPSC) and six human embryonic stem cell
(hESC) lines showed marked variability in differentiation
potential into specific lineages, which often hampers their
differentiation into specific cell types or cell lineages of

interest. Simultaneous inhibition of both Activin/Nodal and
BMP pathways with small molecules, SB431542 and
dorsomorphin (DM), respectively, promoted significant
neural differentiation from all human pluripotent stem cell
(hPSC) lines tested, regardless of their differentiation
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propensity. On the contrary, differentiation into other cell
lineages and the number of undifferentiated cells were
significantly reduced after differentiation by the dual
inhibition. These results demonstrate that innate differenti-
ation propensity of hPSCs could be overcome, at least in
part, by modulation of intracellular signaling pathways,
resulting in efficient generation of desirable cell types, such
as neural cells.

Keywords Pluripotent stem cell . Differentiation
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Introduction

Due to their pluripotent nature, human pluripotent stem
cells (hPSCs) including human embryonic stem cells
(hESCs) and human induced pluripotent stem cells
(hiPSCs) could serve as an inexhaustible source of diverse
cell types for future cell replacement therapies. Further-
more, hPSCs are useful for screening drugs and exploring
early embryonic development as cellular model systems. In
all cases, efficient and strict differentiation of hPSCs into
specific cell types of interest is a prerequisite.

A recent report claimed a very important issue in stem
cell research that each hESC line has its own differentiation
inclination toward a specific cell lineage [1]. In the light of
the importance of strict differentiation of hESCs for their
successful uses, this issue of differentiation propensity
among different hESC lines awaits further corroboration
by subsequent studies from other groups. In this study, we
showed that hESCs generated from various institutions
display their own distinctive propensity to be differentiated
into certain cell lineages. Furthermore, we demonstrated for
the first time that each hiPSC line also retains a unique
differentiation propensity.

The innate differentiation propensity of hPSCs often
negatively affects differentiation into desirable cell line-
ages. Therefore, a thorough examination of the differenti-
ation propensity of all hESCs and hiPSCs in advance is
highly advisable so that appropriate cell lines can be chosen
for specific therapeutic applications. Since the screening for
the innate differentiation propensity of all hPSCs is
laborious, time-consuming, and costly, it would be much
beneficial if there is a way to induce differentiation of any
hPSC line into desirable cell types, regardless of its innate
differentiation propensity.

Derivation of specific cell types from hPSCs becomes
more significant due to the recent approval of the world’s
first clinical trial using hESCs as well as rapid development
of hiPSC research field, which make both hESCs and
hiPSCs a realistic option for cell replacement therapy. In

this study, we demonstrate that hESC and hiPSC lines,
regardless of their own differentiation propensity, can be
efficiently coaxed into neural lineage by modulating
intracellular signaling pathways such as Activin/Nodal
and BMP pathways with small molecules.

Materials and Methods

hESC and hiPSC Culture

The 6 hESC lines used in this study, H9 (P31-45, WiCell
Inc, Madison, USA), Miz-hES4 (P67–75) and Miz-hES6
(P34–45) (MizMedi Hospital, Seoul, Korea), CHA-hES3
(P88–93, CHA Hospital, Seoul, Korea), SNU-hES3 (P30–36)
and SNU-hES16 (P71–76) (Seoul National University Hospi-
tal, Seoul. Korea), were routinely cultured in DMEM/F12
medium supplemented with 20% KSR (Invitrogen, Carlsbad,
USA), 1x non-essential amino acid (Invitrogen), 0.1 mM beta-
mercaptoethanol (Sigma, St. Louis, USA), and 4 ng/ml of
basic fibroblast growth factor (bFGF) (Invitrogen). Most
hESC cell lines were grown on the layer of mitotically-
arrested mouse embryonic fibroblasts (MEFs), except SNU-
hES3 and 16 which were cultured on STO (ATCC, Manassas,
USA) feeder cells. hESC colonies were transferred onto a
fresh feeder layer in every 5–7 days by mechanical passaging
as previously described [2]. Three human iPSCs, dH1f-iPS2-
2, MSC-iPS2-3, and BJ1-iPS12 [3] were from Dr. George
Daley’s lab at Harvard Medical School and cultured in the
same condition as hESCs.

Spontaneous Differentiation of hPSC and Subsequent
Derivation of Neural Cells and Dopaminergic Neurons

EB formation from hESC and hiPSC colonies was initiated
by detaching the colonies from feeder cells by treatment
of 2 mg/ml of type IV collagenase (Invitrogen) for 30 min
and transferring the colonies to Petri dish containing
normal hESC culture medium without bFGF (EB medi-
um). For spontaneous differentiation, the EBs were
cultured for 10 days with medium change every 2 days.
To examine the effect of dorsomorphin (DM) (also known
as Compound C, Sigma) and SB431542 (Calbiochem, San
Diego, USA) in spontaneous differentiation, various con-
centrations of the two small molecules were added in the
EB medium during the 10-day EB culture. The expression
of several markers was analyzed by qRT-PCR and
immunocytochemistry.

Neural precursor cells (NPCs) formed in EBs were
expanded in suspension culture in N2 medium (DMEM-
F12 & 1×N2 supplement, Invitrogen) containing bFGF
(20 ng/ml, Invitrogen) for additional 8–10 days with
changing of medium every other day. The expanded NPCs
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were then triturated and grown on Matrigel (BD Scientific,
Bedford, USA)-coated cover-slips either in N2 medium
supplemented with 2% FBS (Invitrogen) for additional
4 weeks (to examine the tri-potency of NPCs) or in N2
medium containing 500 ng/ml of Sonic Hedgehog (SHH)
(R&D Systems, Minneapolis, USA) and 100 ng/ml of
FGF8 (R&D Systems) (to induce dopaminergic commit-
ment as previously reported [4]). Dopaminergic maturation
was performed by the treatment of 20 ng/ml brain-derived
neurotrophic factor (R&D Systems), 20 ng/ml glial cell
line-derived neurotrophic factor (R&D Systems), and
200 µM ascorbic acid (Sigma) in DMEM/F12 media
supplemented with N2.

Directed Neural Differentiation of hPSCs

Directed differentiation of hPSCs into neural lineage cells
was performed using the previously reported method with
minor modification [5]. Briefly, EBs were cultured in
suspension for 4 days in EB medium with and without
5 µM DM and 5–10 µM SB431542, and then cultured
attached on Matrigel-coated dish in N2 media supple-
mented with 20 ng/ml bFGF for additional 6 days. Samples
were analyzed by colony counting, immunocytochemistry
and qRT-PCR.

Immunostaining and Quantitative Analysis

Cells were fixed in 4% para-formaldehyde/PBS solution for
30 min. EBs were also fixed in the same fixative for 1 h,
cryoprotected with 30% sucrose, frozen in O.C.T. compound
(Tissue Tek, Torrance, USA), and sectioned at 10 μm
thickness with a cryostat. The sections were permeabilized
with 0.1% Triton X-100/PBS (for intracellular markers),
blocked with 5% normal donkey serum for 1 h at room
temperature, and then treated with primary antibodies at 4°C
over-night. Primary antibodies used in our study were as
follows: Oct4 (1:200, Santa Cruz Biotechnology, Santa-Cruz,
USA); SSEA4 (1:500, Santa Cruz Biotechnology); Sox1
(1:200, Millipore, Billerica, USA); Pax6 (1:200, DSHB, Iowa,
USA), nestin (1:1,000, Millipore); α-fetoprotein (AFP)
(1:100, Santa Cruz Biotechnology); Tuj1 (1:1,000, Covance,
Berkeley, USA); GFAP (1:300, Millipore), and O4 (1:200,
R&D systems). After the primary antibody incubation,
appropriate fluorescence (Alexa-Fluor®-488 or 594)-
tagged secondary antibodies (Molecular Probes, Eugene,
USA) were used for visualization. Cells were treated with
DAPI (4’, 6-diamidino-2-phenylindole, Vector, Burlin-
game, USA) for 5 min during the staining procedure to
visualize the nuclei. Cells generated after DA differenti-
ation were also fixed in 4% para-formaldehyde/PBS
solution and subjected to subsequent incubations with
appropriate primary and secondary antibodies as described

above. Cell images were captured with Olympus IX71
microscope and DP71 digital camera, and analyzed by
Image-Pro Plus ver5.1 (Media Cybernetics, Silver Spring,
USA). Quantitative evaluation was performed by counting
immuno-labeled cells or colonies from three independent
experiments. Values were expressed as means ± s.e.m.
Student t-test or one-way ANOVA test using the SPSS
software Version 12.0 was used to determine statistical
significance.

Quantitative RT-PCR (qRT-PCR) Analyses

Total RNAs were extracted using a Easy-Spin® total RNA
purification kit (iNtRON Biotechnology, Seoul, Korea)
according to the manufacturer’s instructions and then 1 μg
of the total RNAs were reverse transcribed with Power
cDNA synthesis kit (iNtRON Biotechnology). qRT-PCR
was performed using SYBR Premix Ex Taq TM (Takara Bio
Inc, Shiga, Japan) and the reaction was carried out using the
My-iQ or CFX96 Real-Time System (Bio-Rad, Hercules,
USA) under the following conditions; (step 1) 1 min at
95°C; (step 2) 40 cycles of 20 s at 95°C, 20 s at 63°C,
and 20 s at 72°C; (step 3) final extension for 1 min at
72°C. Expression values (Ct values) of specific marker
genes were collected and normalized according to those
of β-actin, and then the normalized expression levels of
the markers were compared between chemical-treated
samples and vehicle-treated control samples according to
the ΔΔCt method [6]. All of the data was confirmed by at
least three independent experiments. The primer sequences
are listed in Supplementary Table 1.

Western Blot Analyses

To confirm if treatment of hESCs with DM inhibits BMP
signaling pathway, H9 cells were treated with various
concentrations of DM or 1 μg/ml of noggin (R&D Systems)
for 30 min, followed by another 30-minute treatment with
BMP4 (50 ng/ml, R&D Systems). The cells were then
immediately lysed in RIPA buffer (Sigma) containing both
phosphatase inhibitor cocktail (Sigma) and protease inhibitor
cocktail (Roche Applied Science, Mannheim, Germany) and
subjected to Western blot analysis.

To compare the basal BMP signaling activities between
H9 and Miz-hES4 cells, phosphorylation level of Smad1/5/
8 in the cells were examined by measuring the ratio of
phospho (p)- and total Smad1/5/8 by Western blot. In ad-
dition, EBs derived from H9 and Miz-hES4 cells in the
presence and absence of DM (5 µM) and SB431542
(10 µM) were also examined for the level of Smad1/5/
8 phosphorylation at day 4 of EB differentiation.

For Western blot analyses, total protein (30 μg) was
electroporesed on 10% polyacrylamide gel containing
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sodium dodecyl sulfate and immediately transferred onto
the nitrocellulose membrane (Bio-Rad, Hercules, USA).
Blots were incubated overnight at 4°C with the appropriate
primary antibodies, followed by incubation with secondary
antibody for 1 hr at room temperature, and then visualized
using ECL substrate solution (Pierce, Rockford, USA). The
following primary antibodies were used for our Western
blot analyses: p-Smad1/5/8, p-Smad2/3 (Cell Signaling
Technology, Danvers, USA), Smad1/5/8, Smad2/3 (Santa-
Cruz Biotechnology), and β-actin (Sigma).

Results

Differences in Differentiation Propensity among hiPSC
as well as hESC Lines

One of the critical issues to be resolved for clinical
applications of hESCs is a strict differentiation of the cells
into desirable cell types. A recent study claiming that each
hESC line has different innate differentiation propensity [1]

emphasizes the need for careful choice of hESC lines
depending on the nature of applications. Since this issue of
differentiation propensity is not a trivial matter, further
close scrutiny will be needed, hopely with some solution to
overcome the problem. To resolve this issue, we set out to
examine total nine hPSC lines (six hESC lines established
by four institutions and three hiPSC lines) for their
differentiation propensity under spontaneous differentiation
condition. Each hPSC line was differentiated into EBs for
10 days in EB medium without any differentiation inducing
molecule, and then expression level of markers specific for
three germ layers (Sox1, neuroectoderm; Brachyury, medo-
derm; GATA4, endoderm) and undifferentiated cells (Oct4)
were assessed by qRT-PCR.

Our results demonstrated significant difference in differ-
entiation propensity among the six hESC lines tested,
which is in consistent with the previous report [1] (Fig. 1).
H9 and Miz-hES6 cells retain higher potential to differen-
tiate into neuroectodermal lineage than the other hESC lines.
On the other hand, Miz-hES4 cells are prone to become
meso/endodermal cells, while SNU-hES3, SNU-hES16, and
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Fig. 1 Variations in differentiation propensity among hPSCs. Total 6
hESC lines (H9, Miz-hES4 and 6, SNU-hES3 and 16, CHA-hES3)
and 3 human iPSC lines (BJ1-iPS12, MSC-iPS2-3, dH1f-iPS2-2) were
examined for their differentiation propensity. After 10 days of
spontaneous differentiation in EB medium, expression levels of
representative neuroectoderm (Sox1) a, mesoderm (Brachyury) b,
endoderm (GATA4) c, and undifferentiation markers (Oct4) d were
assessed by qRT-PCR. The y-axis represents means ± s.e.m of relative

expression level of each gene over the lowest one (arbitrarily
designated as 1) among tested cell lines. Statistical significance was
estimated using one-way ANOVA (analysis of variance) test with
multiple comparisons among cell lines. To reduce a type I error rate,
we applied Bonferroni correction as Post Hoc. Miz6, Miz-hES6;
Miz4, Miz-hES4; SNU3, SNU-hES3; SNU16, SNU-hES16; CHA3,
CHA-hES3; BJ1-12, BJ1-iPS12; MSC2-3, MSC-iPS2-3; dH1f2-2,
dH1f-iPS2-2
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CHA-hES3 cell lines are less efficiently committed to
differentiation than the other hESC lines (Fig. 1).

In addition, we noticed that hiPSC lines also displayed
different potential to differentiate into specific cell lineages
(Fig. 1). The three hiPSC lines tested in our analysis, BJ1-
iPS12, MSC-iPS2-3, and dH1f-iPS2-2, have been derived
from BJ1 neonatal fibroblasts, mesenchymal stem cells, and
H1 hESC-derived fibroblasts, respectively [3]. Among the
hiPSC lines, BJ1-iPS12 has differentiation propensity
toward meso/endodermal lineages as judged by significant
expression of Brachyury (medodermal marker) and GATA4
(endodermal marker) (Fig. 1).

Taken together, our results indicate that not only hESCs but
also hiPSCs retain their own unique differentiation propensity.

Effect of Blocking BMP Pathway using a Small Molecule,
Dorsomorphine (DM), on Differentiation of hESCs

We have been interested in efficient derivation of neural
cells from hPSCs for future cell therapy of neurological
diseases. In this regard, innate differentiation propensity
unfavorable to neuroectodermal lineage might be an
obstacle in obtaining pure population of neural cells from
some hPSC lines. Therefore, we attempted to establish a
method that efficiently drives all hPSC lines toward neural
lineage (i.e. formation of neural precursor cells (NPCs)),
regardless of their innate differentiation propensity.

Our strategy focused on manipulating cell signaling
pathways critically involved in neural induction during
early embryonic development. Since inhibition of bone
morphogenetic protein (BMP) signaling pathway was
shown to enhance neural induction during early embryonic
stage [7, 8], we examined if blocking the signaling using a
small molecule would promote neural differentiation of
hPSCs while repressing differentiation into the other
lineages. To this end, H9 cells were treated with dorsomor-
phin (DM) during their spontaneous differentiation. DM
was recently identified as a selective inhibitor of the BMP
type I receptors, activin receptor-like kinases (ALKs) 2, 3,
and 6, and was shown to block BMP-mediated phosphor-
ylation of Smad1/5/8 in zebrafish embryos [9].

We first assessed the effectiveness of DM as well as its
optimal dose for the treatment. Undifferentiated H9 cells
were first treated with DM (0.1 µM–5 µM) or DMSO
(vehicle, control) for 30 min and then with 50 ng/ml of
BMP4 for 30 min. Western blot analysis demonstrated that
pretreatment with DM effectively blocked BMP4-induced
phosphorylation of Smad1/5/8 in a dose-dependent manner,
when compared to the control sample (Fig. 2a). We then
confirmed that DM (0.1 µM–5 µM) treatment diminished
the expression level of Id1 and Id3 genes, the indicators of
BMP signaling activity, in dose dependent manner in
differentiating EBs (Fig. 2b). Intriguingly, DM-treatment

(0.1 µM–5 µM) for 4 days in EB culture increased expression
of neural markers such as Sox1, Pax6, and nestin dose-
dependently (Fig. 2c), which indicates that inhibition of
BMP signaling pathway promotes differentiation of H9 cells
toward neural lineage. Collectively, our results demonstrated
that DM more efficiently inhibits BMP signaling pathway
than a peptide antagonist noggin and the most prominent
effect can be seen at 5 µM DM (Fig. 2a-c).

Next, we closely investigated whether the inhibition of
BMP pathway by DM sufficiently induced neural differenti-
ation of hESCs while reducing differentiation into the other
lineages. In this experiment, H9 cells were differentiated for
10 days in EBmedium supplemented with DM (1 and 5 µM),
and then expression of representative markers for each germ
layer as well as undifferentiated hESCs was examined by
qRT-PCR and immunocytochemistry (Fig. 3). DM-treatment
during the spontaneous differentiation significantly enhanced
the expression of neural markers (Sox1 and nestin) in a
dose-dependent manner, while markers for mesoderm
(Brachyury and Cerberus), endoderm (GATA4 and alpha-
fetoprotein (AFP)) and undifferentiated hESCs (Oct4 and
Nanog) tended to decrease (Fig. 3a). In support of this,
nestin-positive cells were robustly increased after DM-
treatment (Fig. 3b, top panels). However, although reduced,
the expression of endo/mesoderm- and undifferentiated cell
markers were still considerable (Fig. 3a, b), implying that
blocking BMP pathway alone is not sufficient to generate
highly pure population of neural cells with minimal
contamination of endo/mesodermal and undifferentiated
cells. This conclusion prompted us to look for additional
signaling pathway the inhibition of which would further
enhance the differentiation of hESCs toward neural lineage.

Simultaneous Inhibition of BMP and Activin/Nodal
Pathways using DM and SB431542, Respectively, Induces
Highly Pure Population of Neural Cells from hESCs

Activin/Nodal pathway has been known to play a pivotal
role during early embryonic development by inducing
endodermal and mesodermal differentiation [10], while
suppressing differentiation into neuroectodermal lineage
[11, 12]. In addition, a recent report demonstrated that
Activin/Nodal signaling is also important for maintaining
stemness of hESCs [13, 14]. Therefore, we postulated that
interfering of Activin/Nodal signaling would drive differ-
entiation of hESCs favorably toward neuroectoderm rather
than other lineages and undifferentiated cells.

To test this hypothesis, we blocked Activin/Nodal
signaling pathway, in addition to BMP pathway, by treating
with a small molecule antagonist called SB431542 (5 or
10 μM) during spontaneous differentiation of H9 cells. SB-
431542 was characterized as a competitive inhibitor of
ALKs 4, 5, and 7 implicated in Activin/Nodal signaling. In
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detail, SB431542 inhibits ALK4/5/7-mediated phosphory-
lation of Smad 2/3 and this inhibition prevents Smad2/3
from entering into the nucleus where they function as
transcriptional regulators. SB431542, however, has no
effect on the ALK family members involved in other
signaling pathways. For example, SB431542 does not
inhibit ALKs 2, 3, and 6 which phosphorylate Smad1/5/8,
critical mediators of BMP signaling pathway [15].

After 10 days of differentiation, the expression of neural
markers (Sox1, Pax6, and nestin) was enhanced, while the
level of both endoderm (GATA4 and AFP) and mesoderm
(Brachyury and Cerberus) markers were dramatically
reduced (Fig. 4a). More importantly, markers for undiffer-
entiated hESCs (Oct4 and Nanog) were also greatly
reduced (Fig. 4a). The enhanced expression of neural
markers (Pax6 and nestin) and reduction of endo/meso-
dermal markers (AFP and Brachyury) were confirmed by
immunocytochemistry (Fig. 4b).

Expression of trophoblast marker genes (GATA2 and
GCM1) was decreased by inhibition of either BMP
pathway alone (DM-treatment) or both BMP and Activin/

Nodal pathways (DM/SB431542-treatment) (Fig. 4c).
This result is in line with the previous observation that
blocking of Activin/Nodal pathway leads to differentiation
of hESCs into trophoblasts only when BMP signal is
active [16].

The NPCs generated in our experiments were readily
differentiated into dopaminergic (DA) neurons by treatment
of SHH and FGF8 [4] (Supplementary Fig. 1c), indicating
that NPCs generated by simultaneous inhibition of BMP
and Activin/Nodal pathways could be a useful cell source
for cell therapy for neurologic diseases. In addition, all
neural cell types, neurons (Tuj1+), astrocytes (GFAP+), and
oligodendrocytes (O4+), were produced from the NPCs
(Supplementary Fig. 1a, b), suggesting that the NPCs
generated by DM/SB431542-treatment were multipotent
cells that could give rise to all neural cell types.

In summary, our data suggested that inhibition of both
BMP and Activin/Nodal signaling pathways led to efficient
and exclusive neural induction from H9 cells. These results
are consistent with the recent work showing that simulta-
neous and continued suppression of BMP and Activin/
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Nodal signaling is required for neural induction in Xenopus
embryo development [17].

Simultaneous Inhibition of BMP and Activin/Nodal Signals
Induces Efficient Generation of NPCs from Both hESC
and hiPSC Lines Regardless of their Innate Differentiation
Propensity

One important question to address is whether the simulta-
neous treatment of DM and SB431542 could efficiently
direct the fates of all hESC and hiPSC lines toward neural
lineage, regardless of their innate differentiation propensity.
To address this question, nine hPSC lines (six hESC and
three hiPSC lines) were differentiated through EB forma-

tion in the presence of both DM (5 µM) and SB431542
(10 µM) for 10 days. Our qRT-PCR analyses demonstrated
that treatment with DM and SB431542 significantly
enhanced neural induction with concomitant reduction of
cells of the other lineages (Fig. 5a). Interestingly, the fold
increase of neural marker expression between control
(vehicle (DMSO)-treated cells) and DM/SB431542-treated
cells were much higher in the cell lines that had innate
differentiation inclination unfavorable to neural lineage;
these were Miz-hES4, SNU-hES3, SNU-hES16, CHA-
hES3, and BJ1-iPS12 cells (Figs. 1 and 5a). Immunocyto-
chemical analyses also clearly demonstrated that more cells
expressed nestin, a neural precursor marker, when both BMP
and Activin/Nodal signaling pathways were suppressed by the
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small molecules (Fig. 5b). In consistent with the qRT-PCR
results, increase in expression of nestin, a neural marker, by
the treatment with DM and SB431542 was much greater
when hPSC has lower differentiation propensity toward
neuroectodermal lineage (Figs. 1, 5a and b). These
observations indicate that blocking both BMP and Acti-
vin/Nodal signaling pathways enhances neural formation
from hPSCs regardless of their innate differentiation
propensity. Additionally, we have not detected any undif-
ferentiated cells after the DM/SB431542-treatment by
immunocytochemistry (data not shown).

It is plausible that different differentiation propensity
among various hPSC lines may reflect on the basal level of
intracellular signaling activity critically involved in cell fate
determination. To examine this possibility, we investigated
BMP signaling activity between H9 and Miz-hES4 cells,
the two cell lines that displayed the most significant
difference in neural differentiation propensity (Fig. 1a).
During both undifferentiated and spontaneously differenti-
ated state, intensity of phosphorylated form of Smad1/5/
8 was higher in Miz-hES4 than H9 cells (Fig. 5c, top panel,
the first four lanes), indicating that Miz-hES4 cells retain
higher BMP signaling activity than H9 cells in those
conditions. Interestingly, the treatment of DM and
SB431542 dramatically reduced the level of p-Smads in
both H9 and Miz-hES4 cells to a minimal level (Fig. 5c, top
panel, the last two lanes), which explains highly efficient
neural differentiation from both cell lines by the treatment.

Different Differentiation Propensity among hPSC Lines
after Directed Neural Differentiation and Enhanced
Generation of NPCs by Simultaneous Inhibition
of BMP and Activin/Nodal Signals

Our results so far indicate that different differentiation
propensity is evident among hPSCs after spontaneous
differentiation, and efficient neural cell formation could be

achieved by simultaneous inhibition of BMP and Activin/
Nodal signaling pathways regardless of their innate differ-
entiation propensity. Next, we examined if similar results
were obtained when hPSCs were forced to differentiate into
the neural lineage using a directed differentiation protocol.
For this experiment, we chose H9 and Miz-hES6 lines with
strong propensity towards formation of neuroectodermal
lineage, and Miz-hES4 and BJ1-iPS12 lines with weak
neuroectodermal differentiation propensity (Fig. 1a).
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Fragmented colonies of the hPSCs were first cultured in
suspension in EB medium for 4 days, and subsequently
grown on Matrigel-coated dish in N2 medium supple-
mented with 20 ng/ml bFGF for 6 more days. As expected,

H9 and Miz-hES6 cells produced a lot of colonies with
NPC-containing rosette structures, while rosette structures
were hardly observed in differentiating colonies from Miz-
hES4, and BJ1-iPS12 cells (Fig. 6a, b). This observation
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indicates that formation of neural cells from hPSC lines is
also affected by the innate differentiation propensity of the
cells even after directed differentiation.

When treated with DM and SB431542 for the first 4 days of
suspension culture in EB medium, H9 and Miz-hES6 cells
generated slightly higher number of neural rosette-containing
colonies (> 90% of total colonies) compared with vehicle-
treated samples (Fig. 6a and b). Strikingly, the percentage of
neural rosette-containing colonies was increased from about
2% to about 90% when Miz-hES4, and BJ1-iPS12 cells were
differentiated in the presence of DM and SB431542 (Fig. 6a
and b). qRT-PCR analyses also showed that DM/SB431542-
treatment dramatically increased the expression of neuro-
ectodermal markers (Sox1, Pax6 and nestin), whereas reduced
the expression of endo/mesodermal (Brachyury, Cerberus,
AFP and GATA4), trophoblast (GATA2 and GCM1), and
undifferentiated hESC (Oct4 and Nanog) markers in Miz-
hES4, and BJ1-iPS12 cells (Fig. 6c). Taken together, these
results indicate that innate differentiation propensity seen after
spontaneous differention of hPSCs is still evident after
directed differentiation and this can be overcome, at least in
part, by modulation of intracellular signaling pathways.

Collectively, our results suggested that neural cells are
efficiently generated from hESCs and hiPSCs by simulta-
neous modulation of BMP and Activin/Nodal signaling
pathways no matter what spontaneous or directed differen-
tiation procedure was used. This study presents an
interesting possibility that hPSC lines with various differ-
entiation propensity can be efficiently coaxed into specific
cell types of interest by modulating key signaling pathways
involved in the fate determination of the cells.

Discussion

Recent study using hESC lines demonstrated huge differ-
ences in differentiation propensity among some lines; after
spontaneous differentiation, many three germ layer marker
genes were differentially expressed more than 100-fold
among different hESC lines [1]. In this study, we also
reported significant differences in differentiation propensity
among hESC lines. Furthermore, we demonstrated for the
first time that hiPSC lines also retained varing innate
differentiation potential. The innate differentiation propen-
sity of hPSCs was thought to be attributed to both genetic
diversity and diverse epigenetic regulation among different
hESC lines [1]. Additionally, we speculate that innate basal
activities of intracellular signaling cascades implicated in
cell fate determination might be different among hPSC lines
with different differentiation propensity. In support of this
notion, BMP signaling activity in Miz-hES4 line which has
low neural differentiation potential were found to be higher
than that in H9 cells (Fig. 5c).

The innate differentiation propensity may pose problems
in future patient-specific cell therapy using hiPSCs, let
alone hESC-mediated cell therapy, since only a handful
hiPSC lines established from a single patient may not
possibly contain hiPSC lines with desirable differentiation
propensity. Therefore, an efficient method of coaxing
hPSCs with different differentiation propensity into specific
cell types of interest needs to be established for both basic
research and clinical applications of hPSCs. In this study,
we investigated whether various hiPSC as well as hESC
lines with significantly different differentiation propensity
can be efficiently coaxed into neural cells by inhibiting both
BMP and Activin/Nodal pathways. BMP pathway is shown
to be involved in differentiation into trophoblast [18] or
extraembryonic endoderm [19]. Intriguingly, blocking of
BMP pathway with noggin was shown to promote
differentiation of ESCs into neural lineage [19, 20]. On
the other hand, Activin/Nodal signaling pathway is impli-
cated in mesoderm/endoderm specification during early
development (“gastrulation” stage) [10, 21]. Paradoxically,
this pathway is also known to play an important role in the
maintenance of stemness of hESCs [11, 13, 14, 22, 23]. In
vivo evidence suggests that Activin/Nodal pathways inhibit
neuroectoderm formation during early embryo development
and precocious neural differentiation occurs when this
pathway is malfunctioning [12]. Based on this information,
we reasoned that blocking of both BMP and Activin/Nodal
pathways would promote neural differentiation of hPSCs.
To block BMP or Activin/Nodal pathways, we used small
molecules, DM and SB431542, respectively, instead of
peptide antagonists described in previous studies [19, 20,
24, 25]. Small molecules are advantageous since they are
relatively inexpensive, have higher penetrating capability
into cell masses, and tend to be more stable than peptide
inhibitors. In fact, we found that DM, a small molecule
inhibitor, produced more drastic effect than noggin, a
peptide antagonist (Fig. 2b and c).

As expected, our results clearly demonstrated that
inhibition of both pathways robustly increased neural cell
differentiation, while suppressing the differentiation into the
other lineages (Figs. 4, 5, and 6). Interestingly, the fold
increase of neural marker expressions between control
(vehicle (DMSO)-treated cells) and inhibitor (DM/
SB431542)-treated cells were much higher in the cell lines
that had innate differentiation inclination unfavorable to
neural lineage, such as Miz-hES4, SNU-hES3, SNU-
hES16, CHA-hES3, and BJ1-iPS12 cells (Figs. 1 and 5a).
This result indicated that the huge difference in differen-
tiation propensity among various hPSCs could be over-
come, at least in part, by the inhibition of both BMP and
Activin/Nodal pathways, leading to efficient neural for-
mation even from the hPSCs with unfavorable differenti-
ation propensity towards neuroectodermal lineage (i.e.
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Miz-hES4 and BJ1-iPS12; Fig. 6a and b). In support of
this result, the difference in the level of p-Smad1/5/8, active
form of Smad1/5/8, between H9- and Miz-hES4-derived EBs
was reduced by the treatment with DM and SB431542
(Fig. 5c).

In summary, we show in this report that simultaneous
inhibition of BMP and Activin/Nodal pathways promotes
efficient neural differentiation from hiPSCs as well as
hESCs, regardless of their innate differentiation propensity.
This type of approach would be especially important for
future patient-specific cell therapy using hiPSCs, let alone
hESC-based cell therapy, since it could allow us to effi-
ciently generate any cell type of interest even from a small
number of cell lines established from a single patient.
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