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Abstract
Introduction The lack of large panels of validated anti-
bodies, tissue handling variability, and intratumoral hetero-
geneity potentially hamper comprehensive study of the

functional proteome in non-microdissected solid tumors.
The purpose of this study was to address these concerns
and to demonstrate clinical utility for the functional analysis
of proteins in non-microdissected breast tumors using
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reverse phase protein arrays (RPPA).
Methods Herein, 82 antibodies that recognize kinase and
steroid signaling proteins and effectors were validated for
RPPA. Intraslide and interslide coefficients of variability
were <15%. Multiple sites in non-microdissected breast
tumors were analyzed using RPPA after intervals of up to
24 h on the benchtop at room temperature following
surgical resection.
Results Twenty-one of 82 total and phosphoproteins dem-
onstrated time-dependent instability at room temperature
with most variability occurring at later time points between
6 and 24 h. However, the 82-protein functional proteomic
“fingerprint” was robust in most tumors even when
maintained at room temperature for 24 h before freezing.
In repeat samples from each tumor, intratumoral protein
levels were markedly less variable than intertumoral levels.
Indeed, an independent analysis of prognostic biomarkers
in tissue from multiple tumor sites accurately and repro-
ducibly predicted patient outcomes. Significant correlations
were observed between RPPA and immunohistochemistry.
However, RPPA demonstrated a superior dynamic range.
Classification of 128 breast cancers using RPPA identified six
subgroups with markedly different patient outcomes that
demonstrated a significant correlation with breast cancer
subtypes identified by transcriptional profiling.
Conclusion Thus, the robustness of RPPA and stability of the
functional proteomic “fingerprint” facilitate the study of the
functional proteome in non-microdissected breast tumors.

Keywords Functional proteome . RPPA . Breast cancer .

Kinase signaling . Steroid signaling

Abbreviations
AcCoA acetyl coenzyme A carboxylase
AcCoAp phosphorylated acetyl coenzyme A carboxylase

at serine 79
AMP adenosine monophosphate
AMPK AMP-activated protein kinase
AMPKp phosphorylated AMP-activated protein kinase

at serine 172
ANOVA analysis of variance
BCA bicinchoninic acid
CCNB1 cyclin B1
CCND1 cyclin D1
CCNE1 cyclin E1
CMF cyclophosphamide, methotrexate,

and 5-fluorouracil chemotherapy
CV coefficients of variation
DAB diaminobenzidine
DFS disease-free survival
EGF epidermal growth factor
EGFR epidermal growth factor receptor
ERα estrogen receptor alpha

FC fold change
FFPE formalin-fixed paraffin-embedded
FISH fluorescent in situ hybridization
FT frozen tumor
GSK3 glycogen synthase kinase 3
HER2 human epidermal receptor 2
HR hormone receptor
IRB Institutional Review Board
IHC immunohistochemistry
Log2 log to the base 2
MDACC The University of Texas M. D. Anderson

Cancer Center
mRNA messenger ribonucleic acid
mTor mammalian target of rapamycin
PI3K phosphatidylinositol-3 kinase
PR progesterone receptor
RPPA reverse phase protein lysate array
S serine
Stat3 signal transducer and activator of transcription
T threonine
Y tyrosine

Introduction

Much progress has been made in genomic breast cancer
classification [1–10]. However, as mRNA levels may not
translate precisely into protein function due to posttransla-
tional modifications and other factors, mRNA profiling may
not be able to fully characterize the functional proteome.
Proteins are the ultimate effectors of cellular outcomes.
Thus, the lack of a validated, practical, moderate- to high-
throughput, quantitative functional proteomics platform
applicable to patient tumors remains a key barrier to the
identification of solid tumor biomarkers.

Traditional protein assays including enzyme-linked
immunosorbent assay, immunoblotting, and immunohisto-
chemistry (IHC) can assess only small numbers of proteins
and are expensive, semiquantitative, and require large
amounts of material. Although mass spectroscopy is
promising, it is not currently sufficiently robust or cost-
effective for clinical implementation.

By providing high-throughput, low-cost, objective anal-
ysis of multiple proteins in small amounts of sample,
reverse phase protein lysate arrays (RPPA) offer an
emerging approach to comprehensive quantitative profiling
of the levels and function of multiple proteins in tumors and
have the potential to map protein levels and function in
intracellular pathways in a comprehensive, convenient, and
sensitive manner [11–23].

Although RPPA has been extensively validated for in
vitro analyses [11–23], several obstacles remain to be
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Table 1 Eighty-two monospecific antibodies used in this study

Antibody name Protein name Companya cat# Host Dilution

4EBP1 4E Binding Protein 1 Cell Signaling Technology, Inc. CS 9452 Rabbit 1 in 100

4EBP1p37 4EBP1 phosphorylation at T37/T46 Cell Signaling Technology, Inc. CS 9459 Rabbit 1 in 100

AcCoA Acetyl CoA Carboxylase Epitomics, Inc. 1768-1 Rabbit 1 in 250

AcCoAp AcCoA phosphorylation at S79 Cell Signaling Technology, Inc. CS 3661 Rabbit 1 in 250

Akt Protein Kinase B Cell Signaling Technology, Inc. CS 9272 Rabbit 1 in 250

Aktp308 Akt phosphorylation at S308 Cell Signaling Technology, Inc. CS 9275 Rabbit 1 in 250

Aktp473 Akt phosphorylation at S473 Cell Signaling Technology, Inc. CS 9271 Rabbit 1 in 250

AMPK AMPK Cell Signaling Technology, Inc. CS 2532 Rabbit 1 in 250

AMPKp AMPK phosphorylation at S172 Cell Signaling Technology, Inc. CS 2535 Rabbit 1 in 250

β catenin B catenin Cell Signaling Technology, Inc. CS 9562 Rabbit 1 in 300

bcl2 bcl2 Dako M0887 Mouse 1 in 200

BRCA1 BRCA1 Upstate Biotechnology, Inc. 07-434 Rabbit 1 in 1,000

Caveolin 1 Caveolin 1 Cell Signaling Technology, Inc. CS 3232 Rabbit 1 in 250

CCNB1 Cyclin B1 Epitomics, Inc. 1495-1 Rabbit 1 in 500

CCND1 Cyclin D1 Santa Cruz Biotechnology, Inc. SC-718 Rabbit 1 in 1,000

CCNE1 Cyclin E1 Santa Cruz Biotechnology, Inc. SC-247 Mouse 1 in 500

CD31 CD31 Dako M0823 Mouse 1 in 500

CDK4 CDK4 Cell Signaling Technology, Inc. CS 2906 Rabbit 1 in 250

cjun Cjun Cell Signaling Technology, Inc. CS 9165 Rabbit 1 in 250

ckit Ckit Cell Signaling Technology, Inc. Rabbit 1 in 150

cleaved caspase
7

Cleaved caspase 7 (Asp198) Cell Signaling Technology, Inc. CS 9491 Rabbit 1 in 150

cleaved PARP Cleaved PARP (Asp214) Cell Signaling Technology, Inc. CS 9546 Mouse 1 in 250

cmyc Cmyc Cell Signaling Technology, Inc. CS 9402 Rabbit 1 in 150

Collagen VI Collagen VI Santa Cruz Biotechnology, Inc. SC-
20649

Rabbit 1 in 750

COX2 COX2 Epitomics, Inc. 2,169-1 Rabbit 1 in 500

E cadherin E cadherin Cell Signaling Technology, Inc. CS 4065 Rabbit 1 in 200

EGFR Epidermal growth factor receptor Santa Cruz Biotechnology, Inc. SC-03 Rabbit 1 in 200

EGFRp1045 EGFR phosphorylation at Y1045 Cell Signaling Technology, Inc. CS 2237 Rabbit 1 in 100

EGFRp922 EGFR phosphorylation at Y992 Cell Signaling Technology, Inc. CS 2235 Rabbit 1 in 100

ER Estrogen receptor alpha Lab Vision Corporation (formerly
Neomarkers)

Sp1 Rabbit 1 in 250

ERK2 Mitogen-activated protein kinase Cell Signaling Technology, Inc. SC-154 Rabbit 1 in 250

ERp118 ER phosphorylation at S118 Epitomics, Inc. 1091-1 Rabbit 1 in 200

ERp167 ER phosphorylation at S167 Epitomics, Inc. 2492-1 Rabbit 1 in 200

GSK3 Glycogen synthase kinase 3 beta Santa Cruz Biotechnology, Inc. SC-7291 Mouse 1 in 1,000

GSK3p21_9 GSK3 phosphorylation at S21/S9 Cell Signaling Technology, Inc. CS 9331 Rabbit 1 in 250

HER2 Human epidermal receptor 2 Epitomics, Inc. 1148-1 Rabbit 1 in 250

HER2p1248 HER2 phosphorylation at Y1248 Upstate Biotechnology, Inc. 06-229 Rabbit 1 in 750

IGF1R Insulin-like growth factor receptor 1 Cell Signaling Technology, Inc. CS 3027 Rabbit 1 in 500

IGFRp IGF1R phosphorylation at Y1135/Y1136 Cell Signaling Technology, Inc. CS 3024 Rabbit 1 in 200

JNK cjun N terminal Kinase Santa Cruz Biotechnology, Inc. SC-474 Rabbit 1 in 200

JNKp183-185 JNK phosphorylation at T183/Y185 Cell Signaling Technology, Inc. CS 9251 Rabbit 1 in 150

MAPKp MAPK1/2 phosphorylation at T202/T204 Cell Signaling Technology, Inc. CS 4377 Rabbit 1 in 1,000

MEK1 MAPK/ERK kinase 1 Epitomics, Inc. 1235-1 Rabbit 1 in
15,000

MEK12p MEK1/2 phosphorylation at T217/T221 Cell Signaling Technology, Inc. CS 9121 Rabbit 1 in 800

mTOR mammalian target of rapamycin Cell Signaling Technology, Inc. CS 2983 Rabbit 1 in 400
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addressed prior to its routine application to non-microdissected
human breast tumors. These potential obstacles include:

1. Antibody validation: The validation of a large panel of
antibodies is required since RPPA is essentially a high-
throughput “dot-blot” and therefore is unable to
distinguish between specific and off-target antibody–
protein interactions.

2. Variability in tissue handling prior to freezing: Vari-
ability in tissue handling may result in unpredictable
changes in the levels and posttranslational modification
(e.g., phosphorylation) of proteins.

3. Intratumoral heterogeneity: RPPA does not provide
information concerning spatial organization. Intratumoral
heterogeneity in protein expression and activation thus
poses a potential challenge.

Table 1 (continued)

Antibody name Protein name Companya cat# Host Dilution

p110alpha p110alpha subunit of phosphatidylinositol-3-
kinase

Epitomics, Inc. 1683-1 Rabbit 1 in 500

p21 p21 Santa Cruz Biotechnology, Inc. SC-397 Rabbit 1 in 250

p27 p27 Santa Cruz Biotechnology, Inc. SC-527 Rabbit 1 in 500

p38 p38 MAPK Cell Signaling Technology, Inc. CS 9212 Rabbit 1 in 300

p38p180_2 p38 MAPK phosphorylation at T180/T182 Cell Signaling Technology, Inc. CS 9211 Rabbit 1 in 250

p53 p53 Cell Signaling Technology, Inc. CS 9282 Rabbit 1 in 3,000

p7056 Kinase p70S6 Kinase Epitomics, Inc. 1494-1 Rabbit 1 in 500

p70S6Kp389 p70S6 Kinase phosphorylation at T389 Cell Signaling Technology, Inc. CS 9205 Rabbit 1 in 200

PAI1 Plasminogen activator inhibitor-1 BD Biosciences 612024 Mouse 1 in 1,000

pcmyc cmyc phosphorylation at T58/S62 Cell Signaling Technology, Inc. CS 9401 Rabbit 1 in 150

PDK1 Phosphoinositide-dependent kinase 1 Cell Signaling Technology, Inc. CS 3062 Rabbit 1 in 250

PDK1p241 PDK1 phosphorylation at S241 Cell Signaling Technology, Inc. CS 3061 Rabbit 1 in 500

PKCalpha Protein Kinase C alpha Upstate Biotechnology, Inc. 05-154 Mouse 1 in 2,000

PKCaphap657 PKCalpha phosphorylation at S657 Upstate Biotechnology, Inc. 06-822 Rabbit 1 in 3,000

pmTOR mTOR phosphorylation at S2448 Cell Signaling Technology, Inc. CS 2971 Rabbit 1 in 150

PR Progesterone receptor Epitomics, Inc. 1483-1 Rabbit 1 in 400

PTEN PTEN Cell Signaling Technology, Inc. CS 9552 Rabbit 1 in 500

Rab25 Rab25 Courtesy Dr. Kwai Wa Cheng, MDACC Covance Rabbit 1 in 4,000

Rb Retinoblastoma Cell Signaling Technology, Inc. CS 9309 Mouse 1 in 3,000

Rbp Rb phosphorylation at S807/S811 Cell Signaling Technology, Inc. CS 9308 Rabbit 1 in 250

S6 S6 ribosomal protein Cell Signaling Technology, Inc. CS 2217 Rabbit 1 in 200

S6p235–236 S6 phosphorylation at S235/S236 Cell Signaling Technology, Inc. CS 2211 Rabbit 1 in 3,000

S6p240_4 S6 phosphorylation at S240/S244 Cell Signaling Technology, Inc. CS 2215 Rabbit 1 in 3,000

SGK Serum Glucocorticoid Kinase Cell Signaling Technology, Inc. CS 3272 Rabbit 1 in 250

SGKp SGK phosphorylation at S78 Cell Signaling Technology, Inc. CS 3271 Rabbit 1 in 250

src Src Upstate Biotechnology, Inc. 05-184 Mouse 1 in 200

srcp416 src phosphorylation at Y416 Cell Signaling Technology, Inc. CS 2101 Rabbit 1 in 150

srcp527 src phosphorylation at Y527 Cell Signaling Technology, Inc. CS 2105 Rabbit 1 in 400

stat3 Signal transducer and activator of transcription 3 Upstate Biotechnology, Inc. 06-596 Rabbit 1 in 500

stat3p705 stat3 phosphorylation at S705 Cell Signaling Technology, Inc. CS 9131 Rabbit 1 in 500

stat3p727 stat3 phosphorylation at S727 Cell Signaling Technology, Inc. CS 9134 Rabbit 1 in 250

stat6p641 stat6 phosphorylation at Y641 Cell Signaling Technology, Inc. CS 9361 Rabbit 1 in 150

stathmin Stathmin Epitomics, Inc. 1972-1 Rabbit 1 in 500

TSC2 Tuberous Sclerosis Kinase 2 Epitomics, Inc. 1613-1 Rabbit 1 in 500

TSC2p TSC2 phosphorylation at T1462 Cell Signaling Technology, Inc. CS 3617 Rabbit 1 in 200

VEGFR2 KDR2/VEGF Receptor 2 Cell Signaling Technology, Inc. CS 2479 Rabbit 1 in 700

XIAP X linked inhibitor of apoptosis Cell Signaling Technology, Inc. CS 2042 Rabbit 1 in 200

a Companies—Abcam, Inc. (Cambridge, MA), BD Biosciences (San Jose, CA), Cell Signaling Technology, Inc. (Danvers, MA), Dako (Carpinteria, CA),
Epitomics, Inc. (Burlingame, CA), Santa Cruz Biotechnology, Inc. (Santa Cruz, CA), Upstate Biotechnology, Inc. (Millipore)
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These problems could clearly impair the integrity of data
derived from the study of the functional proteome in human
breast tumors using RPPA. Thus, the goals of this study
were:

a. to address these obstacles to the successful application
of RPPA to the study of non-microdissected human
breast tumors

b. to investigate reproducibility and the correlation of
RPPA with standard IHC in human breast tumors

c. to evaluate the potential clinical utility of this approach for
the analysis of the breast cancer functional proteome.

Methods

Antibodies and Reagents

Eighty-two antibodies, chosen because of the importance of
the detected proteins to breast carcinogenesis [24–44], were
used (Table 1). The AKT inhibitor perifosine was obtained
from Keryx Pharmaceuticals (New York, NY). The
phosphatidylinositol-3 kinase inhibitor LY294002 was
obtained from Calbiochem (San Diego, CA). Rapamycin
was obtained from Cell Signaling, Inc. (Danvers, MA).

Epidermal growth factor (EGF) was purchased from R&D
Systems, Inc. (Minneapolis, MN).

Cell Lines and Tumor Samples

The MDAMB231, MDAMB468, MCF7, T47D, ZR75-1,
OVCAR3, and SKOV3 cell lines were obtained from the
American Type Culture Collection (Manassas, VA). Protein
lysates of 52 breast cancer cell lines were prepared as
previously described [29]. The human tumor sets used
herein were obtained using Institutional Review Board-
approved protocols and are as follows:

1. Set A (128 tumors): For comparison of RPPA with
transcriptional profiling (e.g., for protein–mRNA cor-
relations), 128 stored primary breast tumors were
obtained from patients treated in the Danish DBCG82
b and c studies [45] (Table 2).

2. Set B (ten tumors): For the studies of intratumoral
heterogeneity and total and phosphoprotein stability, a
prospective study was undertaken to collect primary
breast tissue at breast surgery in ten patients with breast
cancer under an Institutional Review Board (IRB)-
approved protocol. Each tumor was sectioned with
assistance from a breast pathologist and immediately

Breast tumor sample set: Origin Set A: DBCG82 b/c Set C: MDACC

Patient number 128 95

Tumor subtype

Hormone receptor (HR)-positive 42 (LumA), 27 (LumB), 17
(normal-like)

64

HER2-positive 18 (erbB2) 10

Triple (receptor)-negative 24 (basal) 21

Stage

Unknown 0 0

Ductal carcinoma in situ (DCIS) 0 3

1 1 17

2 63 46

3 64 22

4 0 7

Grade

1 19 6

2 52 38

3 30 49

Unknown 27 2

Adjuvant treatment

Tamoxifen 77 19

Aromatase inhibitor 0 38

Cytotoxic chemotherapy 51 (CMF) 65 (anthracycline
and/or taxane)

Trastuzumab 0 1

Table 2 Clinical details of
human breast tumors utilized in
this study

In the Danish DBCG82 b and c
breast cancer studies (Set A),
premenopausal women with
high-risk breast cancer were
randomized to receive radiation
therapy plus cyclophosphamide,
methotrexate, and fluorouracil
(CMF) or to CMF chemotherapy
alone, and postmenopausal
women with high-risk breast
cancer were randomized to
receive radiation therapy plus
tamoxifen (30 mg daily for
1 year) or tamoxifen alone
(PMID: 10335782)

CMF cyclophosphamide,
methotrexate, and fluorouracil,
Lum luminal, MDACC M. D.
Anderson Cancer Center
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snap frozen (three pieces) or left at room temperature in
closed eppendorf tubes without any added buffer for
0.5/1/2/4/6/24 h (1 piece/time point) prior to freezing
(−85°C). Protein was extracted from each piece of
tumor without thawing.

3. Set C (95 tumors): Ninety-five stored primary breast
tumors were obtained from the breast tumor frozen
tissue bank at M. D. Anderson Cancer Center under an
IRB-approved protocol (Table 2). Protein was extracted
from these 95 tumors, including from two independent
sections (“biologic replicates”) derived from 49 of the
95 tumors.

Note that Table 2 does not show the clinical data for Set
B since the clinical data for this set were not utilized in this
study.

MDAMB231 and MDAMB435 breast cancer xenografts
were assessed for total and phosphoprotein stability using
the same approach as with human tumor set B above. After
animal sacrifice, the xenograft tumors were sectioned and
immediately snap frozen or left at room temperature in
closed eppendorf tubes without any added buffer for 0.5/1/
2/4/6 h (1 piece/time point) prior to freezing (−85°C). As
with the human tumors, protein was extracted from each
piece of tumor without thawing.

Lysate Preparation and Array Spotting

Breast cancer cell lines were cultured in their optimal
medium (recommended by the American Type Culture
Collection) with 5% fetal bovine serum in 6-well plates.
For experiments involving cell line treatment or stimula-
tion, the cells were starved overnight and treated with
inhibitor with or without EGF stimulation (20 ng/ml for
10 min) where indicated. Cells were then washed twice
with PBS and lysed in ice-cold lysis buffer (1% Triton X-
100, 50 mm HEPES, pH 7.4, 150 mM NaCl, 1.5 mM
MgCl2, 1 mM EGTA, 100 mM NaF, 10 mM Na
pyrophosphate, 1 mM Na3VO4, 10% glycerol) supple-
mented with proteinase inhibitors (Roche Applied Science,
Indianapolis, IN). Cellular protein concentration was
determined by bicinchoninic acid reaction (Pierce, Rockford,
IL). Frozen tumor tissue (≤10 mg) was homogenized after
macrodissection without microdissection in lysis buffer at
40 mg/ml by PowerGen polytron homogenizer (Fisher
Scientific, Hampton, NH) and concentration of the protein
lysates corrected to 1.33 mg/ml. After centrifugation, post-
nuclear detergent lysates (three parts) were boiled with a
solution (one part) of 4XSDS (90%)/B mercaptoethanol
(10%). Five serial 2-fold dilutions were performed in lysis
buffer containing 1% SDS (dilution buffer). The diluted
lysates were spotted on nitrocellulose-coated FAST slides
(Whatman, Schleicher & Schuell BioScience, Inc., Keene,

NH) by a robotic GeneTAC (Genomic Solutions, Inc., Ann
Arbor, MI) G3 arrayer or an Aushon Biosystems (Burlington,
MA) 2,470 arrayer.

Antibody Probing and Signal Detection of RPPA

The DAKO (Carpinteria, CA) catalyzed signal amplification
system was used for antibody blotting. Each slide was
incubated with a primary antibody (Table 1) in the appropriate
dilution. The signal was captured by biotin-conjugated
secondary antibody and amplified by tyramide deposition.
The analyte was detected by avidin-conjugated peroxidase
reactive to its substrate chromogen diaminobenzidine. Sub-
sequently, the slides were individually scanned, analyzed,
and quantitated using MicroVigene software (VigeneTech
Inc., North Billerica, MA). This software provides automated
spot identification, background correction, and individual
spot intensity determination (expressed in logarithmic units).

Immunoblotting

Lysates were prepared as described above. Proteins were
resolved in SDS-PAGE and transferred to PVDF mem-
branes. The membranes were blocked by 5% BSA and
hybridized with different primary antibodies as indicated.
Signals were captured by horse radish peroxidase-
conjugated secondary antibody and visualized by enhanced
chemiluminescence (Amersham Pharmacia Biotech, Piscat-
away, NJ). The abundance of immunoreactive protein was
quantified using a computing densitometer (NIH Imaging)
and presented as arbitrary units of density.

Transcriptional Profiling

Expression data for Set A (Table 2) were generated at the
Norwegian Radium Hospital using the Applied Biosystems
Human Genome Survey Microarray version 2.0 consisting
of whole genome arrays spotted with 32,878 probes
covering 29,098 genes. Signal was detected by chemilumi-
nescence in a single channel system. Details can be found
at the website: http://www3.appliedbiosystems.com/cms/
groups/mcb_marketing/documents/generaldocuments/
cms_040420.pdf

Statistical Analysis

R and NCSS (Kaysville, Utah) software were used. The
spot signal intensity data from MicroVigene are processed
by the R package SuperCurve (version 1.01) [18], available
at “http://bioinformatics.mdanderson.org/OOMPA.” A fit-
ted curve (called “supercurve”) is plotted with the signal
intensities on the y-axis and the relative log2 concentration
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of each protein on the x-axis using the non-parametric,
monotone increasing B-spline model (Fig. 1) [18]. The
protein concentrations are derived from supercurve for each
sample lysate on the slide by curve fitting and then
normalized by median polish. Each total and phosphopro-

tein measurement is subsequently corrected for loading
using the average expression of all measured proteins. For
the study of total and phosphoprotein stability, the
expression of each protein in the three immediately frozen
replicate sections of ten primary breast tumors was

a

Fig. 1 a Akt and b Aktp473 antibody validation for reverse phase
protein array (RPPA). MDAMB468 (red), ZR75-1 (black) and T47D
(blue) cells were left untreated followed by no stimulation (control) or
by stimulation with epidermal growth factor (EGF) or were treated
with LY294002 (phosphatidylinositol-3-kinase (PI3K) inhibitor),
perifosine (Akt inhibitor), rapamycin (mTOR inhibitor), or ultraviolet
(UV) irradiation and then stimulated with epidermal growth factor
(EGF) in the case of treatment with the three inhibitors. Lysates were
then probed with antibody to total Akt (a) or to phosphorylated Akt at
serine 473 (Aktp473, b) by RPPA in triplicate (panels A–C) and by
western blotting (panel D) and the derived signals for total Akt and for
Aktp473 were quantified and correlated (panel E in a and b). For
RPPA, each lysate was arrayed in five serial 2-fold dilutions on
nitrocellulose slides (with increasing dilution from left to right on each
slide for each lysate as shown in panel B). A control spot (a mixed cell
line lysate) was placed at the end of each sample lysate’s five serial 2-
fold dilution series to give six spots. Four samples are arrayed in this
fashion in each grid of 24 spots on the nitrocellulose slides shown.

The correlation coefficients between signals derived using RPPA and
western blotting for Akt and Aktp473 were 0.897 and 0.93,
respectively (panel E in a and b). These correlation coefficients were
based on 18 data points as shown and indicate valid antibodies for
RPPA. Panel A in a and b demonstrates the process of curve fitting for
RPPA that is applied by the R package SuperCurve (version 1.01)18.
In the upper left of panel A, estimated protein concentration (x-axis) is
plotted against signal intensity (y-axis). In the upper right of panel A,
residuals from model fitting (y-axis) are plotted against estimated
protein concentration (x-axis). Ideally, the residuals should be
symmetrical about the horizontal 0 line and should not increase with
increasing concentration. In the lower left of panel A is an image plot
of squared residuals from model fitting. This plot shows that the
squared residuals are largely homogeneous. In the lower right of panel
A, the intensity differences of adjacent dilution steps are plotted
(y-axis) against the averaged intensities of adjacent dilution steps
(x-axis). If this curve is flat and close to the horizontal line, the
dilutions were unsuccessful and the data are not reliable
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averaged, measurements at six later time points (0.5/1/2/4/
6/24 h) were treated as separate observations, and the
effects of time to freezing on total and phosphoprotein
expression were tested using an analysis of variance
(ANOVA) model. The effects of intratumoral and intertu-
moral variability on protein expression were tested by
applying ANOVA models to RPPA data derived from the
three immediately frozen replicate sections of ten breast
tumors. To estimate disease-free survival (DFS), the time to
any breast cancer relapse or any death (whichever came
first) since diagnosis was computed. DFS time was
censored at last follow-up if neither relapse nor death
occurred. To estimate distant metastasis-free survival, the
time to distant breast cancer metastasis since diagnosis was
computed. Distant metastasis-free survival time was cen-
sored at last follow-up or death if no distant metastasis was
detected. To estimate overall survival (OS), the time to
death from any cause since diagnosis was computed. OS
time was censored at last follow-up if death had not
occurred. Survival probabilities were estimated using
Kaplan–Meier’s product limit method.

Results

A. Obstacles to the Successful Application of RPPA to the
Study of Non-microdissected Breast Tumors:

Obstacle 1: Antibody Validation
Antibody validation for RPPA is criti-

cal to ensure that the detected signal is
representative of the protein of interest.
We chose 82 antibodies that recognize
kinase and steroid signaling events and
their effectors (Table 1) because of the
importance of these proteins to breast
carcinogenesis [24–44]. The relative pro-
tein levels derived from RPPA [18] were
correlated with the density of the appro-
priately sized band on immunoblots of the
corresponding protein lysates. An arbi-
trary correlation coefficient (R) of ≥0.7 is
required for each antibody (Fig. 1). Anti-
bodies that interact with multiple “off-

b

Fig. 1 (continued)
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Table 3 Eighty-two protein–mRNA correlation coefficients (rho) and corresponding p values

Protein rho (128 human
breast tumors)

p value (128 human
breast tumors)

rho (52 breast cancer
cell lines)

p value (52 breast
cancer cell lines)

4EBP1 0.51 5.9E-12 0.688 0.000000875

4EBP1p37 0.43 0.000000025 0.736 0.000000141

AcCoA 0.37 0.0000022 0.6 0.0000302

AcCoAp 0.32 0.000042 0.594 0.0000385

Akt 0.33 0.000028 0.592 0.0000415

Aktp308 0.15 0.0503 −0.262 0.09

Aktp473 0.14 0.07 −0.186 0.231

AMPK 0.29 0.0002 0.0314 0.841

AMPKp 0.17 0.03 −0.153 0.328

B catenin 0.2 0.03 0.134 0.389

bcl2 −0.03 0.72 0.211 0.174

BRCA1 0.24 0.002 0.322 0.0355

Caveolin 1 0.47 3.2E-10 0.845 0

CCNB1 0.68 0 0.573 0.0000791

CCND1 0.52 1.5E-12 0.84 1.87E-12

CCNE1 0.59 2.2E-16 N/A

CD31 N/A N/A 0.151 0.332

CDK4 0.13 0.09 0.39 0.0102

Cjun 0.14 0.08 0.491 0.000955

Ckit 0.68 0 0.36 0.0182

cleaved caspase 7 0.14 0.08 0.159 0.308

cleaved PARP 0.08 0.15 −0.262 0.0896

Cmyc 0.41 0.000000078 0.52 0.000419

Collagen VI 0.09 0.28 0.394 0.00933

COX2 0.34 0.000013 N/A N/A

E cadherin 0.11 0.18 0.811 0

EGFR 0.42 0.000000038 0.576 0.0000725

EGFRp1068 0.01 0.85 0.0107 0.945

EGFRp922 −0.01 0.9 0.212 0.173

ER 0.85 0 0.621 0.0000137

ERK2 −0.04 0.66 0.381 0.0121

ERp118 0.35 0.0000084 N/A N/A

ERp167 0.09 0.24 N/A N/A

GSK3 0.08 0.34 0.37 0.0151

GSK3p21.9 −0.08 0.32 0.0474 0.762

HER2 0.75 0 0.707 0.000000413

HER2p1248 0.72 0 N/A N/A

IGF1R 0.65 0 0.522 0.000403

IGFRp 0.04 0.65 N/A N/A

JNK 0.04 0.59 0.0282 0.857

JNKp −0.08 0.31 −0.0914 0.559

MAPKp −0.1 0.22 −0.461 0.00187

MEK1 0.2 0.01 0.646 0.00000509

MEK12p −0.08 0.33 0.301 0.0501

mTOR 0.04 0.64 0.486 0.0011

p110alpha 0.13 0.11 0.326 0.0336

p21 0.07 0.36 0.156 0.318

p27 0.1 0.22 0.0689 0.66
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target” western blot bands or a dominant
non-specific band are not suitable for
RPPA, and an alternative antibody is
sought. For phospho-specific (p) antibod-
ies, cell lines are manipulated in a fashion
(e.g., with inhibitors and growth factors)
that will alter the phosphorylation site to
ensure that observed signal changes are

correlated between immunoblotting and
RPPA (Fig. 1). For proteins whose ex-
pression does not demonstrate a sufficient
dynamic range to facilitate antibody val-
idation, siRNA is used to manipulate the
signal to allow evaluation of RPPA–
immunoblotting correlations. Further,
protein and mRNA levels are compared

Table 3 (continued)

Protein rho (128 human
breast tumors)

p value (128 human
breast tumors)

rho (52 breast cancer
cell lines)

p value (52 breast
cancer cell lines)

p38 0.001 0.99 0.194 0.213

p38p180_2 −0.03 0.71 −0.0741 0.636

p53 0.15 0.06 0.716 0.00000029

p7056 Kinase 0.54 1.4E-13 0.672 0.00000171

p70S6Kp389 −0.1 0.23 0.291 0.0584

PAI1 0.06 0.46 0.643 0.00000579

pcmyc 0.23 0.004 0.418 0.00566

PDK1 −0.13 0.11 0.0136 0.931

PDK1p241 −0.08 0.34 −0.0637 0.684

PKCalpha 0.08 0.31 0.812 0

PKCaphap657 0.03 0.73 0.808 0

pmTOR 0.04 0.61 0.357 0.0189

PR 0.74 0 0.634 0.00000841

PTEN 0.22 0.005 0.642 0.00000601

Rab25 0.25 0.001 0.755 6.63E-08

Rb 0.15 0.06 0.56 0.000123

Rbp 0.05 0.5 0.648 0.00000469

S6 −0.08 0.34 0.286 0.0632

S6p235–236 −0.13 0.11 0.0521 0.739

S6p240_4 −0.12 0.13 0.00211 0.989

SGK 0.56 3.8E-14 N/A N/A

SGKp 0.16 0.05 N/A N/A

src −0.04 0.6 0.548 0.000178

srcp416 0.13 0.11 0.361 0.0178

srcp527 0.17 0.03 0.326 0.0333

stat3 0.22 0.004 0.416 0.00581

stat3p705 0.03 0.73 0.299 0.0515

stat3p727 −0.02 0.76 0.677 0.00000061

stat6p641 0.09 0.26 0.0177 0.91

stathmin 0.13 0.1 N/A N/A

TSC2 0.11 0.17 0.317 0.0389

TSC2p 0.003 0.97 0.114 0.467

VEGFR2 0.15 0.06 0.0375 0.811

XIAP N/A N/A N/A N/A

Proteins were quantified with reverse phase protein arrays (RPPA). Clearly, mRNA levels (from AB arrays) frequently do not correlate well with
protein function (e.g., phosphorylation, cleavage) in cell lines or human tumors. It is also notable that protein–mRNA correlations are not
consistent between human breast tumors and breast cancer cell lines for certain proteins. This may be related in part to the presence of stroma in
human tumors but not in cell lines (e.g., with collagen VI and caveolin 1). In addition, the rho value for the PTEN protein–mRNA correlation is
clearly poorer in human tumors than in cell lines, possibly related in part to the presence of relatively high levels of PTEN in endothelial cells in
human tumors
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(Table 3); when levels are concordant, as
they are with 41% of assayed targets in
human breast tumors in Set A (at p≤
0.05), this provides additional confidence
in the validity of the RPPA analysis (these
correlations must be interpreted in the
context of the other data above for
antibody validation since a poor protein–
mRNA correlation does not necessarily
indicate that an antibody is not valid).
Using these approaches, we continue to
expand the antibody list with particular
emphasis on proteins implicated in
breast carcinogenesis. A web site will
be made available with publication of

this manuscript with demonstration of
the utility of all antibodies in Table 1 in
the format shown in Fig. 1 (http://
10.106.178.152:8080/AntibodyDatabase/
index.html).

Obstacle 2: Variability in Tissue Handling Prior to
Freezing

A major challenge to the study of
patient tumors is the potential that protein
levels and particularly posttranslational
modifications will change between the
time of tissue collection and analysis. To
evaluate total and phosphoprotein stabili-
ty, ten human breast tumors (Set B) were
obtained at surgery, processed, and ana-
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Fig. 2 Changes in proteins with increasing time to breast tumor
freezing. Ten human breast tumors were collected immediately at
surgery and frozen after increasing time intervals up until 24 h. Of the
nine total and phosphoproteins shown as examples, three showed a
progressive increase with increasing time to breast tumor freezing
(cleaved caspase 7, cleaved PARP, and phosphorylation of S6 at
serines 235/236 (S6p235–236)), three showed a progressive deterio-
ration with increasing time to breast tumor freezing (phosphorylation
of AMP-activated protein kinase (AMPKp), MAPK (MAPKp), and src

(srcp527)) and three did not change with increasing time to breast
tumor freezing up to 24 h (4EBP1 expression and phosphorylation
(4EBP1p37) and Akt expression). The mean expression of each total
and phosphoprotein across the ten tumors relative to the mean
expression level at time 0 was expressed in log2 units on the y-axis
of each plot (with 95% confidence intervals (CI) also shown) and the
series of times until breast tumor tissue freezing is shown on the x-axis
of each plot (0, 0.5, 1, 2, 4, 6, and 24 h)

Clin Proteom (2010) 6:129–151 139

http://10.106.178.152:8080/AntibodyDatabase/index.html
http://10.106.178.152:8080/AntibodyDatabase/index.html
http://10.106.178.152:8080/AntibodyDatabase/index.html


lyzed by RPPA (see the “Methods”
section). Strikingly, the levels of 61/82
proteins including several phosphopro-
teins were stable (defined using an
ANOVA p≤0.05) up to 24 h after tumor
collection before freezing (Figs. 2 and 3
and Table 4). Indeed, only 13 of the
assessed proteins actually showed a 40%
or greater percentage change from base-
line with increasing time to freezing
(Table 4). Thus, most of proteins were
very stable in the samples over the
analyzed time course. Of all proteins,

only phosphorylated acetyl coenzyme A
carboxylase at serine 79 showed marked
loss with an estimated half-life of 2.7 h.
The remainder of the proteins did not
reach an estimated half-life by 24 h at
room temperature prior to freezing. In-
deed, the RPPA data demonstrated less
variability over time than western blot-
ting (Fig. 3). This could be due to RPPA
being a “dot-blot” approach which is less
susceptible to proteolysis than immuno-
blotting. Thus, although human breast
tumors should be frozen as soon as
possible after excision to preserve the
ability to assess signaling events, many
total and phosphoprotein levels do not
change markedly over time, potentially
allowing analysis of stable proteins in
samples that have not been rapidly
frozen. Importantly, this was also con-
firmed in MDAMB231 and MDAMB435
breast cancer xenografts. For example, no
significant changes (at p≤0.05) were
observed in phosphorylation of AKT
(Ser473), glycogen synthase kinase 3
(Ser21/9), mammalian target of rapamy-
cin (Ser2448), p70S6K (Thr389), or JNK
(Thr183/Tyr185) after xenograft tissue
was left at room temperature for up to
6 h from the time of animal sacrifice
before freezing. In contrast, as in human
tumor tissue (Table 4), phosphorylation of
MAPK (Thr202/Tyr204) and p38 (T180/
182) did decrease over time prior to
freezing. Importantly, in neither the hu-
man tumor nor the xenograft experiments
did we observe early increases in the
majority of phosphorylation events when
tumor tissue was left at room temperature
for 30 min prior to freezing.

0 0 0 0 5 hrs 1 hr 2 hrs 4 hrs 6 hrs 24 hrs

ERK2

MAPKp

Akt

Aktp473

AMPK

AMPKp

Fig. 3 Changes in total and phosphoproteins with increasing time to
breast tumor freezing. Six western blots demonstrate stability of
mitogen-activated protein kinase (ERK2), Akt, and AMP-activated
protein kinase (AMPK) expression and of Akt phosphorylation
(Aktp473) with increasing time to tumor freezing. In contrast,
consistent with RPPA data, a progressive deterioration was seen with
increasing time to breast tumor freezing in the phosphorylation of
mitogen-activated protein kinase (MAPKp) and in the phosphorylation
of AMPK (AMPKp). The time before tumor freezing is shown along
the top of the figure

Table 4 Time-dependent variability in total and phospho (p) protein expression with increasing time to breast tumor freezing

Apoptosis: Cleaved caspase 7, cleaved PARP

Energy sensor pathway: AcCoAp (i.e., phospho-AcCoA), AMPKp, TSC2, TSC2p

Hormonal signaling: ERp167, PR

Phosphatidylinositol-3-kinase (PI3K) pathway: Aktp308, p110 alpha, PTEN

Src-/mitogen-activated protein kinase (MAPK) pathway: MAPKp, p38, p38p180_182, srcp527

Translation: total p70S6 Kinase, S6p235–236

Other: B catenin, COX2, E cadherin, stat3p705

The expression of 21/82 total and phosphoproteins displayed significant (at p≤0.05) time-dependent variability with increasing time to tumor
freezing up to 24 h. These 21 proteins are subdivided by function in this table. Of all 82 assessed proteins, the 13 proteins that showed a 40% or
greater percentage change from baseline with increasing time to freezing are underlined in this table
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Table 5 Inter- versus intratumoral heterogeneity

Protein A B C D

4EBP1 0 0.1219 2.47 0.52

4EBP1p37 0 0.94719 2.55 0.47

AcCoA 0 0.17774 4.15 0.79

AcCoAp 0 0.11817 4.4 0.85

Akt 0.00029 0.95098 1.51 0.41

Aktp308 0.00002 0.25644 3.57 0.72

Aktp473 0.00261 0.35564 3.21 0.91

AMPK 0.01602 0.83813 2.28 0.53

AMPKp 0.00009 0.84344 2.15 0.56

B catenin 0 0.00737 3.18 0.49

Bcl2 0 0.24915 4.46 0.87

BRCA1 0.01167 0.74802 2.35 0.71

Caveolin 1 0.00001 0.06764 4.99 1.19

CCNB1 0 0.54217 4.72 0.72

CCND1 0 0.88443 2.31 0.27

CCNE1 0 0.07275 3.98 0.5

CD31 0 0.18066 4.39 0.6

CDK4 0 0.11566 1.75 0.34

cjun 0.00001 0.84812 3.0 0.57

ckit 0 0.765 6.32 1.06

cleaved caspase 7 0 0.42661 3.73 0.45

cleaved PARP 0.00004 0.72989 3.64 0.84

cmyc 0.00006 0.45661 1.95 0.45

Collagen.VI 0 0.01389 6.17 1.2

COX2 0.00041 0.1167 1.76 0.49

E cadherin 0 0.45206 2.79 0.53

EGFR 0 0.02095 2.87 0.47

EGFRp1045 0.08967 0.57635 6.49 1.75

EGFRp922 0.00011 0.72074 3.94 0.8

ER 0 0.30028 6.78 1.17

ERK2 0.00003 0.69498 2.6 0.54

ERp118 0.00001 0.37716 4.04 0.9

ERp167 0.00001 0.09904 1.74 0.3

GSK3 0.00002 0.69576 3.17 0.57

GSK3p21.9 0.00002 0.25323 6.84 1.38

HER2 0 0.10058 10.25 1.2

HER2p1248 0 0.16499 7.04 0.77

IGF1R 0 0.73024 3.5 0.45

IGFRp 0.00446 0.28133 2.72 0.65

JNK 0.05615 0.99488 2.06 0.58

JNKp 0 0.11185 2.88 0.32

MAPKp 0 0.03292 4.38 0.96

MEK1 0.00003 0.66118 1.65 0.42

MEK12p 0.00026 0.97569 1.21 0.35

mTOR 0 0.45838 2.44 0.33

p110alpha 0 0.96268 1.97 0.31

p21 0.00007 0.71856 2.47 0.4

p27 0 0.27306 2.18 0.28

p38 0.00049 0.47474 1.68 0.39

Table 5 (continued)

Protein A B C D

p38p180_2 0.00002 0.49019 2.74 0.63

p53 0.00456 0.96661 5.07 0.95

p7056 Kinase 0.00023 0.24569 2.25 0.4

p70S6Kp389 0.01012 0.30403 1.66 0.45

PAI1 0.00002 0.75364 5.63 0.66

pcmyc 0.0041 0.63759 1.96 0.46

PDK1 0 0.30491 1.5 0.31

PDK1p241 0.00002 0.28734 1.64 0.39

PKCalpha 0 0.40225 2.58 0.55

PKCaphap657 0.00001 0.15371 2.48 0.53

pmTOR 0.00018 0.50565 2.87 0.5

PR 0.00001 0.53572 6.05 0.88

PTEN 0.0002 0.04241 2.49 0.5

Rab25 0 0.89192 2.7 0.45

Rb 0.00852 0.63485 2.03 0.63

Rbp 0.00082 0.0172 6.86 2.19

S6 0 0.45463 3.9 0.72

S6p235–236 0 0.62345 2.8 0.61

S6p240_4 0 0.64948 3.92 0.71

SGK 0.00266 0.19466 2.77 0.86

SGKp 0.00004 0.80613 4.87 0.89

Src 0 0.90358 3.04 0.5

Srcp416 0.00386 0.96558 4.91 1.01

Srcp527 0 0.01943 1.7 0.39

Stat3 0 0.65719 2.61 0.34

Stat3p705 0 0.0244 2.68 0.42

Stat3p727 0 0.75202 6.09 0.52

Stat6p641 0.04498 0.44092 3.47 0.91

Stathmin 0.02785 0.94217 2.11 0.55

TSC2 0 0.1177 1.81 0.28

TSC2p 0.00004 0.42417 1.4 0.25

VEGFR2 0 0.05401 1.48 0.26

XIAP 0.00012 0.92235 2.68 0.56

The effects of intratumoral and intertumoral variability on breast
cancer protein and phosphoprotein expression were tested by applying
analysis of variance (ANOVA) models to reverse phase protein array
(RPPA) data derived from ten breast tumors that were each divided
into three separate pieces with assistance from a breast pathologist that
were frozen immediately after surgical excision. Fold change is
presented on a log2 scale. Of 82 proteins in three time 0 breast tumor
replicates, the expression of 80 total and phosphoproteins demonstrat-
ed significant (ANOVA, p≤0.05) variability across the ten different
breast cancers (all except EGFRp1045 and JNK), while the expression
of only eight total and phosphoproteins demonstrated significant
intratumoral variability within these primary breast tumors (B catenin,
Collagen VI, EGFR, MAPKp, PTEN, Rbp, srcp527, stat3p705)

A ANOVA p value for intertumor variability, B ANOVA p value for
intratumor variability, C maximum intertumoral fold change, D mean
intratumoral fold change
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Obstacle 3: Intratumoral Heterogeneity
The effects of intratumoral and intertu-

moral variability on protein and phospho-
protein expression were assessed by
applying ANOVA models to RPPA data
derived from Set B. Of 82 proteins in three
time 0 breast tumor replicates, 80 demon-
strated significant (at p≤0.05) variability
across the ten tumors, while the expression
of only eight total and phosphoproteins
demonstrated significant intratumoral var-
iability (Table 5). Clearly, intratumoral
total and phosphoprotein levels are much
less variable than intertumoral levels.
Therefore, RPPA has the potential to
provide accurate and reproducible analysis
of protein expression and function across
patient samples despite potential chal-
lenges with intratumoral heterogeneity.

To determine the impact of intratumoral
heterogeneity on the robustness and
reproducibility of functional proteomic bio-
markers, we firstly determined the correla-
tion coefficients between protein expression
levels in protein lysates derived from each of
two separate sections (“biologic replicates”)
obtained from 49 primary hormone receptor-
positive breast tumors in Set C (Table 6).
These correlation coefficients were not as
high as those associated with replicate
protein lysates derived from the same tumor
sections (“technical replicates”) likely due
in part to the modest degree of intratumoral
heterogeneity described above. However,
72% of the correlation coefficients between
“biologic replicates” were statistically sig-
nificant (at p<0.001).

Next, the total and phosphoproteins
associated with differential DFS times were
determined using either of the two 49

Table 6 Reproducibility associated with biologic replicates in reverse
phase protein arrays (RPPA)

Antibody Correlation coefficient

AcCoAp 0.642918568

Akt 0.618759766

Aktp308 0.254004137

Aktp473 0.410063812

AMPK 0.513727089

AMPKp 0.536678994

B catenin 0.730700092

BADp 0.369340325

CCNB1 0.870882305

CCND1 0.625891268

Cleaved caspase 7 0.633270435

E cadherin 0.6183121

EGFR 0.68801607

EGFRp1068 0.405450715

ER 0.841639703

ERK2 0.736704897

ERp118 0.430508819

FKHRL1p318 0.691993326

GSK3 0.678269861

GSK3p21_9 0.592290954

HER2 0.217455474

HER2p1248 0.403034203

IGFR1 0.595481674

IGFR1p 0.436972091

JNK 0.424603378

JNKp183_5 0.543731864

MAPKp 0.79987626

MEK 0.579451091

MEK1-2p 0.659646302

mTOR 0.626602561

p110alpha 0.436998926

p27 0.849943011

p38 0.716704432

p38p180_2 0.608686332

p53 0.655654172

p70S6 Kinase 0.649534728

p70S6Kp389 0.115625786

PKCalphap657 0.58393973

pmTOR 0.006433235

PR 0.758475654

PTEN 0.529437664

Rab25 0.769013148

S6p235–236 0.720622398

S6p240_4 0.866983533

Src 0.71789969

srcp416 0.210019805

srcp527 0.625513318

stat3p705 0.539502613

Table 6 (continued)

Antibody Correlation coefficient

stat3p727 0.550006586

stat6p 0.287410482

TSC2 0.647454784

TSC2p 0.538756346

Correlation coefficients for the expression of 52 proteins and
phosphoproteins across two independent sections obtained from each
of 49 frozen human hormone receptor-positive breast cancers are
shown. Cutoff for significance—0.282 (p=0.05), 0.46 (p=0.001)
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“biologic replicates” in Set C. High expres-
sion of p53 and cyclin B1, which both
showed minimal intratumoral variability,
were significantly associated with short
DFS times regardless of which biological
replicate was used to classify the patient
(Fig. 4), while, low levels of phospho-
MAPK (Thr202/Tyr204) were significantly
associated with short DFS in both biopsy
sets (not shown). In both biopsies, low
levels of estrogen (ERα) and progesterone
receptors (PR) and low phosphorylation of
stat3 at Ser727 were associated with a trend
(p=0.05–0.1) to shorter DFS times.

An integrated analysis of multiple pro-
teins may facilitate more accurate prediction
of clinical end points than analysis of
individual proteins. Thus, we next deter-
mined if the expression and activation
levels of multiple proteins yield a stable
functional proteomic “fingerprint” despite
intratumoral heterogeneity and variability in

tumor handling prior to freezing. Using the
ten breast tumors obtained at surgery, on
unsupervised clustering, the 82-protein
functional proteomic “fingerprint” was
faithfully preserved across three snap frozen
(time 0) sections derived from nine of the
ten tumors (Fig. 5a). Further, the unique
“fingerprint” was maintained in most
tumors with increasing time to tumor
freezing up to 24 h after resection
(Fig. 5b). In two cohorts of separate
sections (“biologic replicates”) derived from
each of the 49 breast tumors in Set C, the
functional proteomic signatures associated
with each corresponding pair of sections
was significantly correlated (at p≤0.05) in
43 tumors (Fig. 6). Overall, in terms of
intratumoral heterogeneity, the data suggest
that the quantification of total and phos-
phoproteins by RPPA in primary breast
tumors is reproducible in snap frozen
tissue without microdissection. Although
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Fig. 4 The reproducibility of clinically important breast cancer
protein biomarkers detected by reverse phase protein array (RPPA)
despite intratumoral heterogeneity. In two cohorts of separate sections
derived from each of 49 non-microdissected hormone receptor-

positive breast cancers, high expression of cyclin B1 and of p53
proteins as determined using RPPA (>log mean centered cutoff of 0)
was associated with short disease-free survival times
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the expression of 21/82 total and phos-
phoproteins was affected by time to tumor
freezing as shown above, the functional
proteomic “fingerprint” is reproducible in
most tumors even after a delay of 24 h
before freezing.

B. Reproducibility and the Correlation of RPPA with IHC
in Human Breast Tumors:

Reproducibility
Intra- and interslide reproducibility was excellent

(see Figs. 7 and 8 for representative examples) for
validated antibodies. Antibodies with coefficients of
variation (CVs) that are not consistently <15% are
discarded and alternate antibodies are sought.

Correlations Between RPPA and IHC
In 95 breast tumors (Set C (Table 2)), the levels of

ERα and PR proteins, respectively, determined by
RPPA were significantly higher in tumors that are
categorized by IHC and fluorescent in situ hybridiza-
tion as hormone receptor-positive compared with levels
in triple receptor-negative (p=0.00004 and p<0.001,
respectively) and HER2-amplified breast cancers (p=
0.01 and p=<0.001). There were significant positive
correlations between ERα and PR levels determined by
RPPA and the percentage positivity of these proteins as
assessed using IHC (p=0.002 and p=0.0006, respec-
tively). Among 64 hormone receptor-positive tumors in
Set C, RPPA detected a 866-fold difference in ERα
between the tumor with the highest versus the lowest
level of ERα. The maximum fold change for PR was
142. This dynamic range may allow RPPA to identify
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Fig. 5 Stability of the primary human breast tumor functional
proteomic “fingerprint” despite variability resulting from intratumoral
heterogeneity and tissue handling/time to tumor freezing. The overall
total and phosphoprotein expression pattern or “signature” was
determined by unsupervised hierarchical clustering of data derived
from reverse phase protein array (RPPA) analysis of ten primary
human breast tumors using the antibodies shown in Table 1. This
“signature” was faithfully preserved in the majority of cases a across
three separate immediately (snap) frozen (time 0) sections derived

from each tumor (FT01–10) and b across nine separate sections frozen
at increasing time delays after surgical resection up to 24 h. Note that
all sections derived from the same tumor are designated with the same
color and that sections derived from different tumors are designated
with different colors in the figure. In b, the p=0.05 bar indicates the
position to the right of which dendrogram branches that emerge from
the same node represent samples that have statistically similar
functional proteomic “fingerprints” (at p≤0.05)
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clinically relevant biomarkers that may not be predic-
tive using IHC or that may require a larger sample set
to detect using IHC.

C. Potential Clinical Utility of RPPA for the Analysis of
the Breast Cancer Functional Proteome: Breast Cancer
Classification by Functional Proteomics

Based on the validation approaches described
above, protein quantification by RPPA in single
sections derived from human breast tumors has the
potential to provide sufficient information to faithfully
represent the tumor proteome, particularly if the tissue
is frozen expeditiously. In 128 tumors (Set A (Table 2)),
a highly significant correlation was found on cross
tabulation (p<0.000001) between six breast tumor
clusters defined by RPPA (details shown in Fig. 9a
(the six groups are described in some detail in the
legend of this figure)) and the subtypes defined by
transcriptional profiling [1] (Table 7).

The proteomic differences between luminal A and
luminal B breast cancers are not well understood [1].
We hypothesized [24–44] that a metric assessing ERα
function (ERα/PR/Bcl2), HER2 levels and activity
(HER2/HERp1248), apoptosis (cleaved caspase 7/
cleaved PARP/Bcl2), protein synthesis (p70S6K/S6
phosphorylation), cell cycle progression (cyclin B1),
and stroma (collagen VI) would accurately distinguish

luminal A from luminal B cancers (Fig. 9c). The
expression levels of these markers from RPPA were
weighted equally but in opposing directions for their
association with either the luminal A (positive weight-
ing) or luminal B (negative weighting) subtype and
summed to create a classifier. This analysis yielded a
log mean centered “luminalness” score cutoff of
−0.907, with 81% sensitivity, 90% specificity, 85%
positive predictive value, and 88% negative predictive
value for distinguishing luminal A from luminal B
breast cancers in Set A. Figure 10 demonstrates the
survival curves associated with the functional proteo-
mic breast cancer classification systems illustrated in
Fig. 9a and c. Just as luminal A tumors as defined by
transcriptional profiling did significantly better than
luminal B tumors in terms of distant metastasis-free
survival (at p<0.05 (not shown)), the “luminalness”
score defined by RPPA identified two groups of breast
tumors with significantly different distant metastasis-
free survival times (Fig. 10c). The receiver operator
curves for these analyses are shown in Fig. 11. The
ability of RPPA to assay total protein levels as well as
functional correlates (phosphorylation/cleavage) likely
contributes to the ability of RPPA to accurately
distinguish luminal A from luminal B breast cancers
(Fig. 9c) and to predict outcomes using a limited
number of markers.

p=0.05

-4.81

+6.21

Fig. 6 Stability of a human
breast tumor functional proteo-
mic “fingerprint” despite indi-
vidual protein variability
resulting from intratumoral
heterogeneity. This figure shows
unsupervised clustering of total
and phosphoprotein quantifica-
tion data obtained by applying
reverse phase protein arrays
(RPPA) to protein lysates
derived from two independent
sections obtained from each of
49 human hormone receptor-
positive breast cancers. In only
six of the 49 cases did the tumor
functional proteomic
“fingerprints” in each of the two
corresponding tumor sections
not significantly correlate with
each other (at p≤0.05)
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Fig. 7 Reverse phase protein array (RPPA) reproducibility for four
antibodies. Five serial 2-fold dilutions were made from 48 protein
lysates (experimental outline shown in Fig. 8) and the serial dilutions
were spotted in triplicate on three sets of nitrocellulose-coated slides at
two time points separated by 1 month (“technical replicates”) followed

by probing of each slide set with four antibodies to determine
intraslide, interslide, and interbatch reproducibility, respectively. The
individual correlation coefficients (R) for pairs of replicates for
intraslide, interslide, and interbatch reproducibility are shown under
each correlation plot for each antibody

R d ibilit i tReproducibility experimentReproducibility experiment

48 samples prepared from 7 breast and ovarian cancer cells lines48 samples prepared from 7 breast and ovarian cancer cells lines
ControlMDAMB468 Control
EGF

MDAMB468
MDAMB231 EGFMDAMB231
ZR LY294002 (PI3K inhibitor) / EGFZR75-1 ( )

Perifosine (AKT inhibitor) / EGFT47D Perifosine (AKT inhibitor) / EGF
Rapamycin (mTOR inhibitor) / EGF

T47D
MCF7 Rapamycin (mTOR inhibitor) / EGFMCF7
OVCAR3 UV irradiatedOVCAR3
SKOV3SKOV3

12 slides

T i li t lid probed withTriplicates on slide Printed 12 slidesTriplicates on slide Printed 12 slides 
4 antibodies in
t i li ttriplicateFreeze thaw three cyclesFreeze thaw three cycles

(I 384 ll l t ) AKTpS473(In 384 well plates)
AKT
p38pT180Y182p38pT180Y182
p38p38

P i d 12 lidPrinted 12 slidesPrinted 12 slides 
th l tone month later

Fig. 8 Experimental outline for
the reverse phase protein array
(RPPA) reproducibility experi-
ment in Fig. 7. Five serial 2-fold
dilutions were made from 48
protein lysates, and the serial
dilutions were spotted in
triplicate on three sets of
nitrocellulose-coated slides at
two time points separated by
1 month, followed by probing of
each slide set with four
antibodies to determine
intraslide, interslide, and
interbatch reproducibility for
the total and phosphoproteins
detected by these four antibodies

146 Clin Proteom (2010) 6:129–151



a b

c

Fig. 9 A functional proteomic classification of breast cancer. a
Unsupervised hierarchical clustering of 128 breast tumors with data
derived from reverse phase protein array (RPPA) using 82 antibodies
(Table 1). Six groups were identified as follows: groups 1 and 2—high
expression of estrogen receptor alpha (ER) ± progesterone receptor (PR);
groups 3 and 4—high expression of stromal markers, including collagen
VI and caveolin; group 5—high expression of proliferation markers,
including cyclin B1 (CCNB1), with very low expression of ER; and
group 6—high HER2 expression and phosphorylation at tyrosine 1248
(HER2p1248). b A log2 scale for the data used to generate the heat maps
in a and c. c Hierarchical clustering analysis using 12 markers to

distinguish luminal A from luminal B breast cancers in Set A (see
Table 2). Luminal A tumors are designated by a brown color to the right
of the heat map. The 12 markers can be subdivided into three functional
groups—a proliferation group (cleaved caspase 7, cleaved PARP,
CCNB1, p70S6 Kinase, and phosphorylation of ribosomal S6 protein
at serines 235–236 (S6p235–236) and 240–244 (S6p240_4)), a receptor
tyrosine kinase (RTK) group (HER2/HER2p1248), and a functional ER
alpha (“ERness”) group (ER, PR, and bcl2). The order of these 12
markers from left to right at the top of panel c are: cleaved caspase 7,
cleaved PARP, p70S6 Kinase, CCNBI, S6p240_4, S6p235–236,
HER2p1248, HER2, Collagen VI, PR, bcl 2, ER

Table 7 Significant correlation between subtypes of breast cancer identified by reverse phase protein array (RPPA) and by transcriptional profiling

Subtypes by transcriptional profiling Basal erbb2 Luminal a Luminal b Normal Total

Subgroups defined by RPPA

1 0 0 12 2 1 15

2 0 0 18 9 1 28

3 4 1 9 0 6 20

4 3 2 3 2 9 19

5 17 1 0 6 0 24

6 0 14 0 8 0 22

Total 24 18 42 27 17 128

Chi-square statistics section

Chi-square 170.128355

Degrees of freedom 20

Probability Level (p) 0.000000

This correlation was assessed by cross tabulation and the p value is shown below
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Conclusion

Much progress has been made in genomic classification of
breast cancer, with these results already impacting patient
care [1–10]. However, proteins are the ultimate effectors of
cellular outcomes, and functional proteomic data represent
an under-evaluated information resource for the identifica-
tion of useful biomarkers in solid tumors. RPPA represents
an emerging functional proteomic assay that has the
potential to provide a cost- and material-effective, high-
throughput, comprehensive, sensitive, and quantitative
approach to molecular classification and pathophysiology
studies [11–23]. RPPA has been demonstrated to have
utility in the analysis of functional proteomic events in vitro
[11–23] and allows exploration of the intricacy of cellular

signaling in a manner that cannot be accomplished by
immunoblotting or IHC.

Although the application of RPPA to analysis of the
functional proteome in cell lines and xenografts has proven
relatively straightforward, the application of this technology
to the study of non-microdissected human tumors presents a
number of potential obstacles. These include the need to
validate a large panel of antibodies, variability in tissue
handling prior to freezing, and intratumoral heterogeneity.
In this study, 82 antibodies that recognize kinase and
steroid signaling proteins and their effectors were validated
for RPPA. Further, our study demonstrates that both
increasing time to tissue freezing and intratumoral hetero-
geneity result in variability in protein levels in breast
tumors. However, the reproducibility and robustness of
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Fig. 10 Survival curves for subgroups identified by a functional
proteomic classification of breast cancer. a Distant metastasis-free and
b overall survival curves for six subgroups (Fig. 9a) identified by
unsupervised hierarchical clustering of 128 breast tumors (Set A) with
data derived from reverse phase protein array (RPPA) using 82
antibodies. The same color scheme is used to illustrate the six breast
cancer subgroups in Figs. 9a and 10a and b. c Distant metastasis-free

and d overall survival curves for two subgroups identified by
hierarchical clustering analysis of 69 luminal breast tumors using 12
markers (Fig. 9c). The same color scheme is used to illustrate the two
breast cancer subgroups in Fig. 9c and 10c and d. Subgroup i
represents “luminal a” breast tumors as defined using functional
proteomics and subgroup ii represents “luminal b” breast tumors as
defined using functional proteomics

148 Clin Proteom (2010) 6:129–151



RPPA, the faithfulness with which total and phosphopro-
teins and the functional proteomic “fingerprint” are pre-
served in different sections derived from snap frozen
primary breast tumors, and the stability of this “fingerprint”
with increasing time to freezing all facilitate the application
of RPPA to the study of individual and multiple protein
biomarkers in non-microdissected breast tumor specimens.

A previous study demonstrated the half-life of Aktp473
as measured by western blotting in human HT-29 human
colon tumor xenografts at room temperature to be 20 min,
whereas total Akt was lost with a half-life of 180 min [46].
Indeed, we also noted that the half-life for proteins on
western blotting was less than that for RPPA likely due to
RPPA being a dot blot approach that is less sensitive to the
protein degradation. During the preparation of this manu-
script, a study of protein stability in patient samples derived
from a number of human tissues and tumor types was
published [47]. This manuscript demonstrated transient
increases in phosphorylation of a number of proteins over
the first 30 min to 1-h post-collection with a return to the
original levels at later time points. The data showing a post-
collection increase in a number of phosphorylation events
followed by a return to the baseline steady state levels are
intriguing and will require exploration of potential mech-
anisms. In our study, we specifically assessed a larger set of
only breast cancers than in the study by Espina and
colleagues [47], as well as human breast xenograft tissues,
to determine the relative effect of protein stability as related
to the dynamic range of each marker across patient
samples. Our goal was to determine the effects of tissue
handling on the ability to characterize the functional
proteome in human breast tumors. For the majority of
markers characterized in breast tumors, we did not detect

early increases in phosphoprotein or other protein levels in
either human tumor or xenograft tissues that would alter our
ability to classify tumors based on protein levels. Both the
human breast tumor and xenograft tissues in our study were
left at room temperature in closed eppendorf tubes with no
added buffer until the point of freezing.

The primary purpose of this study was to address and
overcome obstacles to the successful application of RPPA
to the study of the breast cancer functional proteome.
Subsequent to our addressing a key set of potential
obstacles and our demonstration of the reproducibility of
RPPA and of significant (at p<0.05) correlations between
results derived using RPPA and IHC studies, we attempted
to evaluate the potential clinical utility of RPPA for the
analysis of the breast cancer functional proteome. We
selected 82 antibodies (Table 1) that recognize multiple
kinase and steroid signaling events and their downstream
effectors implicated in breast carcinogenesis [24–44].
Utilizing these markers, RPPA classifies breast cancer into
six groups by assaying functional correlates (e.g., phos-
phorylation, cleavage) in addition to total protein levels
(Fig. 9a). The ability to assess both total levels and
functional correlates likely confers upon RPPA the ability
to accurately distinguish luminal A from luminal B breast
cancers using a limited number of markers (Fig. 9c).
Further, the classification of breast cancer by RPPA
demonstrates a significant correlation on cross tabulation
with the well-established classification of breast cancer by
transcriptional profiling (Table 7). Thus, the information
content captured by RPPA reflects the underlying character-
istics of breast tumors, including the likely cell of origin,
and potentially patient outcomes and tumor responsiveness
to therapy.

Fig. 11 Receiver operator (ROC) curves. These panels show ROC curves associated with prediction of a luminal A vs. luminal B breast cancers,
b distant metastasis-free and c overall survival using the reverse phase protein array (RPPA) signature shown in Fig. 9c
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As with the current study, the studies of other groups
also support the feasibility and potential utility of compre-
hensive signal pathway activation profiling using RPPA for
molecular analysis of human cancers [19–23, 48, 49]. Many
of these studies utilized microdissected human tissue and
human tumor material. Our study also validates RPPA as a
robust tool for the study of the functional proteome in non-
microdissected human breast cancers, and this is clearly
important for a number of reasons. In terms of potential
clinical utility, RPPA could potentially be used to develop
signatures that may be useful in terms of prediction of
therapy responsiveness in specific subsets of women with
breast cancer. Such signatures could conceivably resemble
the mRNA-based test, Oncotype Dx® [44]. In addition to
potential utility in the identification of prognostic and
predictive biomarkers in breast cancer, RPPA has potential
utility for the identification of baseline and pharmacody-
namic biomarkers that predict benefit from novel therapies
targeting signaling pathways. Indeed, we have already
established a preclinical precedent for the latter approach
[13] and are currently testing this model in an ongoing
clinical trial of the Akt inhibitor perifosine in the treatment
of women with advanced ovarian cancer.

Several questions remain to be answered. RPPA has
advantages over IHC and immunoblotting, including
throughput, cost, sensitivity, amount of material required,
objective quantification, and a superior dynamic range.
However, since IHC provides information concerning
spatial organization and RPPA does not, the integrated use
of the two technologies may provide a complementary
approach to the study of functional proteomics in breast and
other solid tumors. Since the routine storage of frozen
tumor tissue is a relatively recent approach in most
institutions, it will be important to determine which proteins
are sufficiently robust to allow RPPA to be applied to the
study of the functional proteome in formalin-fixed paraffin-
embedded tumor tissue. Further, as the functional proteome
is composed of many more proteins than are shown in
Table 1, validation of additional high quality affinity
reagents could greatly extend the utility of the technology.
Ultimately, the true test of RPPA will lie in its ability to
determine robust functional proteomic biomarkers that can
impact clinical practice.
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