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Abstract
Nucleotide-based molecules called DNA and RNA are essential for several biological processes that affect both normal and
cancerous cells. They contain the critical genetic material needed for normal cell growth and functioning. The DNA structure
patterns that make up the genetic code affect cells’ growth, behavior, and control. Different DNA structure patterns indicate
different physiological effects in the cell. Knowledge of these patterns is necessary to identify the molecular origins of cancer
and other disorders. Analyzing these patterns can help in the early detection of diseases, which is essential for the
effectiveness of cancer research and therapy. The novelty of this study is to examine the patterns of dinucleotide structure in
many genomic regions, including the non-coding region sequence (N-CDS), coding region sequence (CDS), and whole raw
DNA sequence (W.R. sequence). It provides an in-depth discussion of dinucleotide patterns related to these diverse genetic
environments and contains malignant and non-malignant DNA sequences. The Markovian modeling that predicts
dinucleotide probabilities also reduces feature complexity and minimizes computational costs compared to the approaches of
Kernelized Logistic Regression (KLR) and Support Vector Machine (SVM). This technique is effectively evaluated in
essential case studies, as indicated by accuracy metrics and 10-fold cross-validation. The classifier and feature reduction,
which are generated by Markovian probability, operate well together and can help predict cancer. Our findings successfully
distinguish DNA sequences related to cancer from those diagnostics of non-cancerous diseases by analyzing the W.R. DNA
sequence as well as its CDS and N-CDS regions.
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Introduction

The nucleus is the core of the cell, along with numerous
other essential parts. A human cell consists of 23 pairs of
chromosomes, and these chromosomes contain a variety of
genes. DNA, or “deoxyribonucleic acid”, is a huge double-
helix molecule that makes up the genes. It stores genetic
information in DNA, which is the basic biological macro-
molecule. The sugar phosphate and nitrogenous bases (also
known nucleotide pairs) that make up the “rungs” and this
nitrogenous basis of the ladder are adenine (A), thymine

(T), cytosine (C), and guanine (G), as shown in Fig. 1. The
complementary nature of these nucleotides is noteworthy,
as A combines a pair with T, and C combines a pair with G
[1–6].

Cancer is a disease that affects people all over the world
and is caused by abnormalities in cells. It may be dis-
tinguished from normal cell behavior by the complex
changes that occur inside the cells. The complexity of the
disease is apparent given the over 100 forms that have been
found, which include skin, lung, prostate, ovarian, breast,
and skin cancers. The deadly nature of cancer is mostly due
to the instability of genes such as cell cycle regulators,
tumor suppressors, and proto-oncogenes. Conventional
therapies such as chemotherapy are expensive and asso-
ciated with a great deal of side effects, but their effective-
ness is restricted. This highlights the pressing need for
fewer surgeries and more robust therapies to address this
leading cause of death in affluent nations [7–11]. Genetic
disorders can arise from “mutations” or variations in the
nucleotide sequence. These changes to the nucleotide
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sequence may affect the overall gene sequence. Further-
more, certain genetic diseases may not just result from
nucleotide changes; inherited features, environmental vari-
ables, and epigenetic modifications can all add to the
complexity of genetic disorders [12, 13].

The raw DNA sequence consists of nucleotides that are
added to the 3′ end of the building helix, as DNA is always
synthesized in a 5′-to-3′ orientation. There are two regions of
the raw DNA sequence: the non-coding region (denoted as N-
CDS) and the coding region (denoted as CDS) which is shown
in Fig. 2. The nucleotide sequence that codes for proteins is
known as the Coding Region Sequence (CDS), whereas the
nucleotide sequence that does not code for proteins is known
as the Non-Coding Region Sequence (N-CDS) [14]. The
whole raw sequence of DNA (denoted as W.R Sequence),
includes the CDS and N-CDS parts, as shown in Fig. 2.

Data mining has been used extensively to study DNA
sequences, both coding and non-coding, in the context of

cancer. These studies typically require the analysis of specific
genes, including mutations that are cancerous and non-
cancerous. Over last decade, a lot of scientific work has
focused on the analysis of DNA sequences to find unique
biological patterns. These patterns involve identifying the
locations of genes and employing DNA coding sequence
regions to distinguish between cancerous and noncancerous
DNA sequences [4]. DNA sequence study is currently inclu-
ded in big data analysis due to the exponential expansion of
DNA sequences. The rapid developments in sequencing
technology cause the number of DNA sequence data [3, 4, 6].
The study uses a variety of computational methods and signal
processing to extract characteristics [15, 16]. Using the elec-
trical stimulation of genomic sequence subunits as a basis for
segmenting categorization procedures is a unique method for
classifying sequence-type data. Furthermore, Roy et al.
effectively implemented this idea on many datasets [17, 18].
Several strategies for improving performance were put forth,
and the integration of earlier concepts was investigated to
signal better processing approaches employing computational
techniques. Both Das and Barman as well as Roy & Barman
looked at the corresponding amino acid analysis of genomic
sequences [19, 20]. Cancerous and non-cancerous DNA
sequences have significantly varying nucleotide lengths in
cancer classification. Data pre-processing is an important stage
in classification challenges, such as utilizing machine learning
models for cancer diagnosis from DNA sequences. ‘iACP-
GAEnsC’ is a sophisticated model for anticancer peptide
identification obtained by Shahid Akbar et al. and it combines
three distinct feature representation techniques for protein
sequences with evolutionary intelligent genetic algorithms [8].
Later, based on their use of FastText embeddings and a deep
neural network to distinguish ACPs, Shahid Akbar et al.
presented the cACP-DeepGram model for medication creation
and scientific study [9, 10]. subsequently following Shahid
Akbar et al.‘s analysis of peptide encoding techniques, with a
particular emphasis on KSAAP’s efficiency. To improve the
performance of their model, they test learning hypotheses
[11]. A multitude of other scholars also proposed pre-
processing techniques. Wei Huang et al. used max-min nor-
malization in their study’s pre-processing data to evaluate theFig. 1 Nucleotide Sequence in the form Ladder Shape “DNA”

Fig. 2 Raw DNA Sequence with
CDS and Non-CDS
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similarity of biological sequences [2]. An important problem
is the categorization of nucleotide sequences as cancerous or
non-cancerous based on nucleotide pairs found in the DNA
sequences of certain genes. According to the studies by K.
Kourou et al., M. Margaliot et al., N. SenthilVelMurugan
et al., A. A. T. Fernandes et al., L. Liu et al., the compre-
hension of feature extraction development in a large number
of datasets and classifying the binary output value can be
improved by using machine learning (ML) and data mining
techniques, but these techniques require a sufficient degree of
validation before they can be used in routine real-world
application practice [21–30]. Maverick Lim Kai Rong et al.
investigated the nucleotide mutation rate using the Kimura-2
parameter model, in the time series and spatial domains of the
SARS-CoV-2 genome sequence as a stochastic process [31].
By using logistic regression-based techniques for image
reconstruction in EIT and UST, Tomasz Rymarczyk et al.
aimed to improve industrial tomography [32]. Amin Khodaei
et al. developed a feature extraction method for classifying and
detecting cancerous DNA sequences based on the Markov
chain to overcome this difficulty. To address this problem,
researchers developed a pattern recognition model that uses
signal processing and support vector machines to discriminate
between DNA sequences that are cancerous and non-
cancerous [4, 5]. Applications such as DNA sequence chain
assembly are used to identify genes and estimate the locations
of protein-coding regions [33]. According to the reviewed
study, the comparative classification focuses only on coding
regions within DNA sequences. However, to advance the
scope of this study, non-coding DNA sequences must be
included, as well as whole raw sequences containing both
coding (CDS) and non-coding (N-CDS) regions.

We analyze a novel technique for feature extraction and
selection based on the first-order Markov chain of nucleotides.
This approach modifies adjacent nucleotide probabilities, with
a particular emphasis on a dinucleotide probability distribution
analysis in DNA sequence. Our research clarifies the appli-
cation of dinucleotide probability as a feature in large-scale
DNA sequence datasets for the classification of cancer. The
main objective of this work is to employ this novel approach
to analyze by dividing nucleotide DNA sequences into groups
that correspond to protein regions, non-protein regions, and
both combined regions. This includes information on DNA
sequences linked to cancer and non-cancer conditions. These
sequences provide essential information for comparing and
predicting both cancerous and non-cancerous DNA sequences
via Kernel Logistic Regression (KLR) and Support Vector
Machines (SVM). The remaining sections of this paper are
organized as follows: The useful tools, fundamental concepts,
and algorithms used in the study are described in depth in
“Materials and Methods”. A thorough explanation of the
approach and a presentation of the results analysis are pro-
vided in “Result and Discussion” and “Discussion”.

Materials and Methods

This work describes the modeling and analysis of DNA
nucleotide sequences, as well as the computational and sta-
tistical mapping of whole raw DNA sequences, non-coding
sequences (N-CDS), and coding sequences (CDS). A classi-
fier that uses the Kernel logistic regression (KLR) and support
vector machine (SVM) is combined with a feature extraction
methodology based on the first-order Markov chain of
nucleotides in this hybrid approach. The method uses the
Markov chain of nucleotides, more precisely the dinucleotide
analysis, for feature selection and extraction. Moreover, KLR
and SVM are used in the comparative analysis to classify the
samples according to the defined features. Additionally, a
pattern recognition technique for distinguishing between
cancerous and non-cancerous genes is proposed.

The suggested algorithm’s basic phases are shown in
Fig. 3 as a flowchart. This method extracts features using the
first-order Markov chain of nucleotides. Case studies are
classified using a non-linear kernel function method after an
efficient feature selection strategy has been used. Standard
criteria are used for evaluation, including the major metrics
TP, TN, FP, and FN, as well as supplementary metrics
including F1-Score, accuracy, specificity, recall, and precision.
10-fold cross-validation is used to improve the suggested
model evaluation method. The approaches and procedures
will be thoroughly explained in the parts that follow.

Data Compilation (Case Studies)

GenBank, a database maintained by the NCBI, offered
sample data for analysis and comparisons [34]. 338 cases
were used to categorize data and evaluate the accuracy of
the suggested approach, including CDS, N-CDS, and whole
raw sequences. In the selected samples, there is about an
equal distribution of cancerous and non-cancerous instan-
ces. In particular, genes connected to prostate, colon, and
breast cancer are linked to the selected DNA nucleotide
sequence samples. Additionally, these genes are chosen
without considering the location of the human chromosome.
The outcomes of these analyses, which were conducted with
1111 samples, will then be provided in the discussion part
that follows. Table 1 provides quantitative information from
case studies from the literature [4, 5, 15–20].

Pattern Recognition Via Nucleotide
Sequence Mining

Diagnosing specific data and classifying it into two or
more groups is an important step in pattern recognition.
The process of identifying patterns is based on a criterion
for discriminating that is obtained from the similarity
between the characteristics that have been extracted.
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Applications of pattern recognition are found in many
domains, such as intelligent system modeling and devel-
opment [4, 31]. A pattern recognition model consists of
four fundamental processes: feature extraction, feature
selection, classification design, and evaluation [4, 22]. In

the testing stage of these systems, the model’s parameters
are frequently established during training to classify test
data [4, 22]. Feature extraction and feature selection in the
classification step will be carried out using a first-order
Markov model, which will be covered in the following
section.

First-Order Markov Chain Model

X is a random variable that changes with the independent
parameter ‘t’, sometimes known as a time parameter. For
the stochastic variable X at time t, ‘I’ stands for the col-
lection of all possible states. If a stochastic process satis-
fies the criteria that follow, it is time-homogeneous
[4, 23, 24].

P X tð Þ � ijX tn ¼ inð Þ½ � ¼ P½X t � tnð ÞjX 0ð Þ ¼ in� ð1Þ
Discrete-Time Markov Chain (DTMC): A stochastic

process Xtf gt�0 is said to be a Markov chain (MC) if
satisfied following condition [4, 23, 24]:

P Xnþ1 ¼ inþ1jXn ¼ in;Xn�1 ¼ in�1 ¼X0 ¼ i0ð Þ
¼ PðXnþ1 ¼ inþ1jXn ¼ inÞ

ð2Þ

The conditional probability distribution of the system at
a future stage only depends on its current state, not on its
stage at a previous state. Assuming that the DTMC is
time-homogenous, the transition probabilities result in a
squared matrix known as a transition matrix when all
states are considered. The characteristics of the time-

Table 1 Recent Papers Case Study Details [4, 5, 15–20]

Sr. No Disease No. of
Cancer

No. of
Non-Cancer

Total

1 Breast [4, 5, 15–20]

(i) CDS 80 80 160

(ii) N-CDS 77 80 157

(iii) Whole Raw
Sequence

80 80 160

Total Breast Data 237 240 477

2 Colon [4, 5, 15–20]

(i) CDS 46 62 108

(ii) N-CDS 46 55 101

(iii) Whole Raw
Sequence

46 62 108

Total Colon Data 138 179 317

3 Prostate
[4, 5, 15–20]

(i) CDS 52 55 107

(ii) N-CDS 48 55 103

(iii) Whole Raw
Sequence

52 55 107

Total Prostate Data 152 165 317

All Total All Disease Total 527 584 1111

Fig. 3 Flowchart of Proposed Algorithms
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homogeneous DTMC’s internal structure are represented
by the transition matrix.

A time-homogeneous discrete-time Markov chain
(DTMC) with a state-space I including the nucleotide
symbols {A, C, G, T} and a discrete parameter space T is
assumed to apply to a DNA string. To simulate the DNA
sequence’s characteristics in this case, a first-order Mar-
kov chain is utilized. This modeling technique considers
each nucleotide at its place as a state. This methodology is
used to analyze DNA sequences of any length [4, 31].
Every nucleotide is seen as a distinct state in its place to
capture the first-order Markov chain properties. The
random probability of finding a given nucleotide fol-
lowing the independent estimation of each kind of
nucleotide. 16 values are calculated for each sample,
which represents the differences in nucleotide count. To
comprehend the features of the sequence, the modeling
technique essentially considers DNA as a Markov chain,
where the transition probabilities between nucleotides are
computed [4, 31].

After a detailed study of the coding region, non-coding
region, and the whole raw DNA sequence, the recom-
mended approach successfully differentiates between
cancerous and non-cancerous samples. DNA sequences
are thoroughly analyzed resulting in a first-order Markov
transition matrix for every nucleotide pair in the sample.
Nucleotide pair occurrences in the sequences are com-
puted and used to build the matrix. A complete transition
probability matrix is obtained by computing a probability
distribution for every pair of sixteen nucleotides in a
DNA sequence. The Markovian nature of these transition
probabilities is verified by comparing them to the results
obtained by Amin Khodaei et al. [4]. A transformational
shift that represents the conditional probability of sixteen
nucleotide pairs occurring in a DNA sequence is used.
Equation (3) calculates the matrix’s elements, which need
to be normalized. The resultant matrix is then normalized
group-wise. Four distinct groups, each with a shared
initial nucleotide, are formed from the sixteen matrix
components. Lastly, dividing each group’s values by their
total is performed [4, 31]. For example, the matrix’s
cross-section between the fourth row and the second
column. P(C | T) denotes the probability of event C in this
case, given the possibility of event T. One by one, the
remaining probability values in the matrix are calculated
similarly.

Trans½M� ¼

PAjA PCjA PGjA PT jA
PAjC
PAjG
PAjT

PCjC PGjC PT jC
PCjG
PCjT

PGjG PT jG
PGjT PT jT

2
6664

3
7775 ð3Þ

The following Eq. (4) gives us another way to represent
the previous Eq. (3),

Trans½M� ¼
PAA PAC PAG PAT

PCA

PGA

PTA

PCC PCG PCT

PGC

PTC

PGG PGT

PTG PTT

2
6664

3
7775 ð4Þ

The computational matrix format for dinucleotide pat-
terns of chemical units seen in DNA sequences was found
by using this process. Using the normalization approach, the
transition matrix is converted into the distinct structure of
the transition matrix of a Markovian chain. The transition
matrix’s overall probabilities merged into one by using this
normalization process on each row. Ultimately, a classifi-
cation is made of the Markovian transition matrix data.
Regardless of the classification of a sample as non-
cancerous or cancerous, the same process is used for it.
Stated differently, the Markov model is utilized in the pat-
tern recognition modeling process for feature extraction.
Markov chains play a crucial role in the extraction and
selection of characteristics. Statistical analysis is used to
provide this feature, as will be discussed in more detail in
the next section.

Kernel Logistic Regression (KLR)

A classification strategy is used in all pattern recognition
models, and among these techniques, Logistic Regression
(LR) is one of the most well-known techniques [4, 32].
Logistic regression is especially useful for binary dependent
variables (binary classification) that have two classes: either
elected or not, a policy adopted or not, a disease present or
absent, and so on. It does this by combining a set of inde-
pendent variables to effectively capture the variations in the
dependent variable. Typically, an event is denoted by the
code ‘1’ for one category and ‘0’ for the other [25, 26, 32].

In binary classification, the logistic regression (LR),
where one group is labeled as y=+1, indicating represents
cancerous DNA sample data, and the other as y= 0,
showing non-cancerous DNA sequence. By correctly
splitting data points into two categories, fitting a linear
model to the input characteristics, and producing a prob-
abilistic classification of the data points in datasets, LR
attempts to estimate the probability of an event occurring.
The following is the format of the LRM classification
function [4, 25],

y ¼ f xð Þ ¼ αþ βxþ ϵ ð5Þ
Where y is the dependent variable attempting prediction
(which is a of the class in sample data x), and x is the
independent variable. This relationship is defined by the
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equation y= f(x). The value of y is shown by the intercept
term (α) when x is equal to 0. At the same time, for every
unit increase in x, the regression coefficient (β) measures the
change in y and indicates related movements. Differences or
residual variations in the model are represented by the
stochastic term (ϵ) [25].

KLR is very effective in nonlinear classification because
it estimates class-posterior probability using the log-linear
function combination of the kernel. In the present model, a
discriminant function used to solve classification problems
is studied with specific focus on the role of the kernel
function. The primary goal is to transform the original input
space into a high-dimensional feature space. In this case, the
kernel function plays a crucial role in carrying out a non-
linear transformation on the input vector x, which is
represented by dinucleotide patterns [35–38]. Thus, logistic
regression (LR)’s nonlinear expression can be expressed as
follows.:

f ðxÞ ¼ logit pð Þ ¼ ~w:~x þ b ð6Þ

where w and b stand for the optimal model parameters that
were obtained by minimizing a cost function, and f(x) is
used to determine the class of the sample data x. The
regularized negative-log probability of the data is repre-
sented by this function. Furthermore, p denotes a prob-
ability associated with dinucleotide patterns. Following is
the breakdown of how KRM classifies sample data set
D.SKRM [4]:

D:SKLR ¼ ðxi; yiÞ; xi 2 Rd; yi 2 f0; 1g� � ð7Þ

Support Vector Machine (SVM)

Let’s choose y=+1 in this case to represent data from
cancerous DNA samples, and y=−1 to represent DNA
sequences that are non- cancerous. According to this
approach, Dataset D is considered to be linearly separable in
a d-dimensional space if a hyperplane with coefficients w
can efficiently divide the two sample data categories in the
feature space. The SVM classification function denoted by
f(x) which is given in the following equation [4, 39],

f ðxÞ ¼ ~w:~x þ b ð8Þ

where f(x) sign to identify the class of the sample data x.
Following is the breakdown of how SVM classifies sample
data set D.SSVM [4]:

D:SSVM ¼ ðxi; yiÞ; xi 2 Rd; yi 2 f�1; 1g� � ð9Þ

To discriminate between classes, KRM and SVM
requires a linear decision boundary in the feature space.
However, if the data is not linearly separable in the original
feature space, its performance can be changed. In these
kinds of situations, many strategies are used to overcome
this limitation. Using nonlinear functions to translate the
data into a higher-dimensional space where a linear decision
boundary is more useful is a popular technique. Depending
on the particulars of the given situation, a variety of func-
tions, including the polynomial functions, Radial Basis
Function (RBF) kernel, and the Sigmoid kernel, can be used
to perform this transformation. Table 2 is a comprehensive
list of these transformation functions [4, 5, 39].

Evolution of Model Performance

Evaluation of model performance is critical in pattern
recognition, particularly in classification tasks. The key
metrics in the classification model for the present study are
False Positive (FP), False Negative (FN), True Positive
(TP), and True Negative (TN). These basic parameters may
also be used to create a variety of secondary metrics like
precision, sensitivity(recall), specificity, F1-score, and
accuracy. In this work, we analyse and evaluate various
classification algorithms based on the accuracy criterion.
Precision, sensitivity(recall), specificity, F1-score, and
accuracy are calculated in the following equation from 10 to
14 [4, 5, 7]:

Precision ¼ TP

TPþ FP
ð10Þ

Sensitivity ¼ TP

TPþ FN
ð11Þ

Specificity ¼ TN

TN þ FP
ð12Þ

F1� Score ¼ 2
Recall� Precision

Recallþ Precision

� �
ð13Þ

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð14Þ

Table 2 Kernel Functions [4, 5, 32, 39, 42]

Kernel Name Equation

Linear XT
i :Xj

Polynomial XT :Xi þ 1ð ÞP
RBF e

� 1
2γ2

X�Xij j2

Sigmoid tanh (XT :Xi þ 1)

Cell Biochemistry and Biophysics



Cross Validation of Classification Model

The validation test is a widely used and crucial method for
evaluating model performance in the fields of pattern
recognition and classification. K-Fold Cross-Validation is
one method that is frequently applied in this field. Using
this approach, the dataset is divided into K folds or sub-
sets, and the model is evaluated on the remaining fold after
repeatedly training on K-1 folds. The comprehensive
evaluation is obtained by averaging the performance
measures for a total of K iterations [4]. The challenge of
generalization capacity is addressed by this technique,
specifically about the size of training data. The model’s
capacity to generalize might be limited by a decrease in
the amount of training data. At the same time, the size of
the test data compared to the total dataset tends to improve
error estimates in classification. K-Fold Cross-Validation
overcomes such problems and provides a more accurate
evaluation of the model’s performance in different sce-
narios by systematically testing the model over several
folds [4, 27, 28].

Result and Discussion

To analyze and simulate the results Python is used. Figure 4
represents the 16 pairing of nucleotide (dinucleotide) tran-
sition probabilities for the four states A, G, T, and C of the

first-order Markov chain model of nucleotides. Addition-
ally, Fig. 4 represents the samples from the prostate, colon,
and breast that are linked to certain genes. According to the
proposed first-order Markov model of nucleotides, which
applies to all disease samples. The probability matrix of the
first-order Markov chain of nucleotides for CDS of Breast
disease mentioned is shown in Fig. 5. The transition matrix
entries in this figure are rounded to two decimal places. As
an illustration, the element in row 2 and column 3 has an
average probability of 0.41 in non-cancer and the element in
row 2 and column 3 has an average probability of 0.39 in
cancer which indicates that G nucleotides will typically
come after T nucleotides. In the same way, for the
remaining two N-CDS regions and the whole raw sequence,
transition probabilities of dinucleotides are constructed from
Fig. 5. To analyze nucleotide distributions in prostate and
colon cancer covering CDS, N-CDS, Whole raw sequence,
we currently use a first-order Markov model. As a result,
transition probabilities are computed; however, they are not
explicitly described here. Figure 5 makes it clear that each
row’s overall probability is equal to 1. Using the selected
database, the described technique first builds a transition
matrix for each instance in the case study, including sam-
ples that are cancerous and non-cancerous. The feature,
which consists of 16 features that represent dinucleotides, is
seen as a row-by-row representation of the transition matrix.

The resulting features have a wide range of applications,
such as separation and classification. An in-depth

Fig. 4 1st-Order Markov Model
of Nucleotides with Transition
Probabilities

Fig. 5 Transition Probabilities of
Breast CDS Region for Non-
Cancer and Cancer

Cell Biochemistry and Biophysics



understanding of differentiating features can be obtained by
looking at each element in the matrix. The transition matrix
elements with MAD (Mean Absolute Deviation) are dis-
played in Figs. 6–8 for samples with and without cancer
across three different diseases. In Figs. 6–8, four different
groups can be observed on the horizontal axis, each repre-
senting a single nucleotide that acts as the first element in
dinucleotide pairs. The vertical axis shows the relative
frequency of recorded data by utilizing the group normal-
ization approach. All three diseases show significant dif-
ferences in the statistical metrics for DNA sequences
associated with cancerous and non-cancerous indications, as
shown in Figs. 6–8.

In the case of breast disease, non-cancerous samples had a
higher chance of recognizing a particular dinucleotide pattern
TC, AT, AC, and GG in the CDS region than cancerous
samples in Fig. 6. Additionally, the probability of AT, AA,
AC, TC, and GT in the N-CDS region is higher in non-
cancerous samples than in cancerous ones. Furthermore, all
samples in the raw sequence show that non-cancerous samples
had greater probabilities of TC, TA, and AT than cancerous

ones. The probability of detecting a particular dinucleotide
pattern in non-cancerous samples is higher than in cancerous
ones, as shown in Figs. 7 and 8 for colon and prostate dis-
eases, respectively. To put it another way, a threshold value
can be defined to differentiate between data that is cancerous
and non-cancerous. This idea is a framework for the idea of a
pre-processing technique that uses statistical metrics that have
significant variations to differentiate between DNA sequences
that are cancerous and those that are not.

The study of the MAD to identify significant differences
between cancerous and non-cancerous groups demonstrates
that our data is classifiable. Using a discriminative phase,
whereby an appropriate machine-learning algorithm makes
use of the statistical features for sample classification, can
efficiently accomplish this classification. Both SVM clas-
sifiers and KLR provide appropriate methods for handling
fundamental relationships and non-linear relationships
among features. The application of statistical features in
KLR creates an optimum decision boundary, highlighting
the significance of model selection for accurate classifica-
tion. Similarly, SVM classifiers use feature space’s
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statistical features to create the best classification hyper-
planes; selecting an appropriate kernel function for data
classification based on available features is a crucial factor.

In the present study, SVM and KLR classifiers have been
applied with various kernel functions on a feature space of
338 DNA sequence data. Coding DNA Sequences (CDS)
with 48 cases in breast data, 33 instances in colon data, and
33 cases in prostate data make up these sequences. Fur-
thermore, 48 cases of Non-Coding DNA Sequences (N-
CDS) from breast data, 31 cases from colon data, and 31
cases from prostate data are included. Additionally, whole
raw DNA sequences (W.R Sequences) are included in the
study; there are 48 instances in the data related to the breast,
33 cases in the colon, and 33 cases in the prostate. For both
SVM and KLR classifiers, the performance of the classifiers
was evaluated by comparing their various kernel functions.

Figures 9–11 present a thorough comparison using the
TP, FN, FP, and TN criteria for both SVM and KLR clas-
sifiers. This investigation tested several kernel functions
from Tables 3–5 to provide insight into how well they
performed. It also illustrates the classification accuracy

attained by various kernel functions. The testing and com-
parison studies that follow validate the successful use of
these kernel functions in the classification method.

In Figs. 9–11, the learning approach names for classifi-
cation kernels are shown on the horizontal axis. The number
of classification values for 177 cancerous samples and 161
noncancerous samples is shown on the vertical axis of Figs.
9–11 using the metrics TP, FN, FP, and TN. The non-
cancerous samples include CDS, N-CDS, and the whole
raw sequence for the three diseases (breast, colon, and
prostate), whereas the cancerous samples include CDS, N-
CDS, and the whole raw sequence. The distribution of
cancerous samples for breast disease is as follows: CDS: 25,
N-CDS: 23, and the whole raw sequence: 25. On the other
hand, CDS: 23, N-CDS: 25, and the whole raw sequence:
23 make up noncancerous samples for breast disease. Fig-
ures 10 and 11, which show the distribution of cancerous
and noncancerous samples, show similar trends for the other
two diseases, prostate and colon. The effective performance
of the SVM and KLR kernel functions in handling non-
linear feature spaces can be observed in this figure. To
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highlight the best outcomes and highlight their better per-
formance, kernel functions like polynomial and RBF in
KLR and polynomial, RBF, and Sigmoid in SVM are used
in both analyses.

Additionally, Tables 3–5 demonstrate the performance of
SVM classification and KLR techniques using different
kernel functions. Based on specified criteria for perfor-
mance, evaluation is carried out in three distinct regions
related to prostate, colon, and breast diseases. A 10-fold
cross-validation technique and an identified accuracy-based
criterion are used to assist the comparison. The criteria that
are provided include performance metrics and accuracy, and
they outline the results for each of the three regions. Clas-
sification outcomes are more accurate when accuracy scores
are higher.

Tables 3–5 show that for SVM and KLR for all three
diseases, a linear function produces better classification
accuracy in some regions (CDS, N-CDS, and W.R
Sequence). Additionally, for all three diseases, polynomial,
RBF, and sigmoid kernel functions show improved

classification accuracy for both SVM and KLR in some
regions (CDS, N-CDS, and W.R Sequence). It is insuffi-
cient to evaluate the success of a method based just on a
single evaluation of accuracy-based criteria. In this paper,
we use a widely used method with regular evaluations to
overcome the typical limitations of machine learning chal-
lenges. To verify the effectiveness of our suggested
approach, we use the K-Fold methodology in our experi-
ment. Tables 3–5 present the results of dimension reduction
and classification after 10 rounds (K= 10).

Tables 3–5 show the outcomes of our comparison
between the Support Vector Machine (SVM) and Kernel
Logistic Regression (KLR) with kernels function. In breast
disease, Table 3 shows that the RBF, Polynomial2, and
Linear kernels were quite accurate in SVM, while the KLR
Polynomial and RBF kernels were very accurate in the
CDS region. Table 3 shows that while Linear, Polynomial
2, and RBF demonstrated significant accuracy in the SVM,
Polynomials 2 and 3 attained outstanding accuracy in the
KLR for the N-CDS region. Polynomials 2, 3, and RBF
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showed significant accuracy in the KLR in the W.R raw
sequence, whereas Linear, Polynomial 2, and RBF showed
excellent accuracy in the SVM model (Table 3). In the
context of colon disease (Table 4), polynomials 2 and 3 in
the SVM model show significant accuracy. Likewise,
polynomials 2 and 3 in the KLR show high accuracy in the
CDS region. Additionally, polynomials 2 and 3 show
outstanding accuracy in the KLR for the N-CDS region,

according to Table 4, whereas linear, sigmoid, and RBF
demonstrate notable accuracy in the SVM. In summary,
Table 4 shows that, in the W.R raw sequence, polynomials
2 and 3 provide significant accuracy in the KLR, whereas
linear, polynomial 2, and RBF indicate excellent accuracy
in the SVM model. The linear, polynomial 2, and RBF
models for prostate disease show impressive SVM per-
formance in the CDS region (Table 5). Furthermore,
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polynomials 2 and 3 in the KLR show high accuracy in the
CDS region. Table 5 reveals that in the N-CDS area,
polynomials 2 and 3 show remarkable accuracy in the
KLR, whereas linear, polynomials 2, 3, and RBF
demonstrate significant accuracy in the SVM. Addition-
ally, polynomials 2 and 3 demonstrate good accuracy in
the SVM model and significant accuracy in the KLR in the
W.R raw sequence.

From the above discussion, when the linear kernel func-
tion was used for all three diseases, the experimental results
showed that it performed less accurately in some regions
(CDS, N-CDS, and W.R Sequence) than other kernel func-
tions. The lack of linear separability among the sample points
in the new feature space is shown by the accuracy issues seen
with linear kernel functions. As such, using non-linear clas-
sifiers is crucial to getting better accuracy.
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Discussion

In addition to the evaluation of the chosen dataset, the
suggested methodology is used for a dataset utilized in
previous studies [4, 5, 15–20]. The performance of the
proposed approach when used with these datasets is also
covered in detail in this section. For example, Fig. 12 shows
the transition probabilities obtained from the first-order
Markov chain of nucleotide as features. More specifically,
Fig. 12 shows the average probability of dinucleotide pairs

observed in cancerous and non-cancerous samples in each
of the three regions related to breast disease. In the context
of colon and prostate diseases, respectively, Figs. 13 and 14
show the average probability of dinucleotide pairs observed
in samples that are cancerous and non-cancerous within
each of the three regions. All 16 dinucleotide pairs appear
on the vertical axes of Figs. 12–14, while the horizontal
axes show the grouped normalized values of the percen-
tages of each nucleotide’s occurrence frequencies. The
transition probabilities of non-cancerous cases over 16 pairs
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of nucleotides show a significant connection to those in
cancerous cases in all three regions, as seen in Figs. 12–14.
Furthermore, one may interpret the distribution of average
transition probabilities in different ways. The observed

changes in both increased and reduced variations are related
to the base genetic mutations seen in cancerous cells. Based
on the discussion above, a practical threshold number or
values can be determined for each classification. It is also

Table 3 Analyzing classification
methods for Breast Disease with
a focus on accuracy and the 10-
Fold criterion in evaluating KLR
and SVM

Breast CDS (KLR) Breast CDS (SVM)

Kernels Accuracy Performance Kernels Accuracy Performance

Linear 0.5625 0.63333333 Linear 0.8958333 0.8765152

Polynomial 2 1 0.9734848 Polynomial 2 0.875 0.8931818

Polynomial 3 0.875 0.9560606 Polynomial 3 0.6875 0.8659091

RBF 0.9583333 0.9189394 RBF 0.8958333 0.8939394

Sigmoid 0.4791667 0.5

Breast N-CDS (KLR) Breast N-CDS (SVM)

Kernels Accuracy Performance Kernels Accuracy Performance

Linear 0.625 0.6063636 Linear 0.9375 0.8081818

Polynomial 2 0.875 0.88 Polynomial 2 0.8125 0.7818182

Polynomial 3 0.9791667 0.89 Polynomial 3 0.7708333 0.7172727

RBF 0.7291667 0.7790909 RBF 0.9375 0.8081818

Sigmoid 0.4583333 0.5327273

Breast W.R Sequence (KLR) Breast W.R Sequence (SVM)

Kernels Accuracy Performance Kernels Accuracy Performance

Linear 0.6875 0.6962121 Linear 0.85417 0.8393939

Polynomial 2 0.9583333 0.9204545 Polynomial 2 0.875 0.8590909

Polynomial 3 0.8958333 0.9007576 Polynomial 3 0.79167 0.7325758

RBF 0.8958333 0.8128788 RBF 0.85417 0.8484848

Sigmoid 0.39583 0.4727273

Table 4 Analyzing classification
methods for Colon Disease with
a focus on accuracy and the 10-
Fold criterion in evaluating KLR
and SVM

Colon CDS (KLR) Colon CDS (SVM)

Kernels Accuracy Performance Kernels Accuracy Performance

Linear 0.8484848 0.8910714 Linear 0.7575758 0.9214286

Polynomial 2 0.8787879 0.9196429 Polynomial 2 0.8484848 0.8535714

Polynomial 3 0.9090909 0.9589286 Polynomial 3 0.8181818 0.8285714

RBF 0.8484848 0.8767857 RBF 0.7575758 0.9214286

Sigmoid 0.6363636 0.7982143

Colon N-CDS (KLR) Colon N-CDS (SVM)

Kernels Accuracy Performance Kernels Accuracy Performance

Linear 0.7741935 0.6857143 Linear 0.7419355 0.6857143

Polynomial 2 0.8387097 0.8428571 Polynomial 2 0.6774194 0.6428571

Polynomial 3 0.7741935 0.8428571 Polynomial 3 0.6451613 0.5714286

RBF 0.5483871 0.6714286 RBF 0.7419355 0.6857143

Sigmoid 0.8064516 0.6571429

Colon W.R Sequence (KLR) Colon W.R Sequence (SVM)

Kernels Accuracy Performance Kernels Accuracy Performance

Linear 0.6363636 0.875 Linear 0.72727 0.8125

Polynomial 2 0.8787879 0.9071429 Polynomial 2 0.69697 0.8785714

Polynomial 3 0.8787879 0.9464286 Polynomial 3 0.75758 0.7196429

RBF 0.8181818 0.8107143 RBF 0.72727 0.8125

Sigmoid 0.63636 0.7946429
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Table 5 Analyzing classification
methods for Prostate Disease
with a focus on accuracy and the
10-fold criterion in evaluating
KLR and SVM

Prostate CDS (KLR) Prostate CDS (SVM)

Kernels Accuracy Performance Kernels Accuracy Performance

Linear 0.8181818 0.7928571 Linear 0.8787879 0.9178571

Polynomial 2 0.8484848 0.9053571 Polynomial 2 0.8484848 0.8625

Polynomial 3 0.8787879 0.9482143 Polynomial 3 0.8181818 0.8214286

RBF 0.8181818 0.7696429 RBF 0.8787879 0.9178571

Sigmoid 0.6363636 0.7571429

Prostate N-CDS (KLR) Prostate N-CDS (SVM)

Kernels Accuracy Performance Kernels Accuracy Performance

Linear 0.516129 0.7375 Linear 0.9032258 0.7660714

Polynomial 2 0.9032258 0.8660714 Polynomial 2 0.9032258 0.7910714

Polynomial 3 0.9032258 0.8928571 Polynomial 3 0.9032258 0.8053571

RBF 0.8387097 0.875 RBF 0.9032258 0.7660714

Sigmoid 0.483871 0.6928571

Prostate W.R Sequence (KLR) Prostate W.R Sequence (SVM)

Kernels Accuracy Performance Kernels Accuracy Performance

Linear 0.7272727 0.7571429 Linear 0.78788 0.825

Polynomial 2 0.8484848 0.9196429 Polynomial 2 0.87879 0.8660714

Polynomial 3 0.8484848 0.8910714 Polynomial 3 0.81818 0.825

RBF 0.7878788 0.8678571 RBF 0.78788 0.825

Sigmoid 0.51515 0.6107143
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observed that the outcomes are dependent on the particular
cancer type and the genes associated with it. Taking a
detailed look at each individual component might lead to a
number of studies and discussions.

In particular, when considering situations involving
cancer and non-cancer, precision, recall, and F1-score are
essential secondary metrics for evaluating the effectiveness
of classification algorithms. Among all presented cases
under each classification, precision measures how well the
algorithm identifies true instances whether or not they are
cancerous. Conversely, recall measures the accuracy of the
model in detecting actual cases inside each meaningful
classification whether or not they are cancerous. In situa-
tions of cancer as well as non-cancer, finding a balance
between recall and precision is important. One unique and
useful measurement that offers a comprehensive evaluation
of model performance is the F1-score, which looks at both
recall and precision at the same time. According to our
study, Figs. 15–17 shows the precision, recall, and F1-score
for cases with and without cancer about three different
diseases: the prostate, colon, and breast.

The vertical axis in Figs. 15–17 depicts the classification
score, while the horizontal axis shows the secondary clas-
sification metrics which are precision, recall, and F1-Score
for both cancer and non-cancer cases. In the context of the
previous discussion, we compared the performance of
Kernel Logistic Regression (KLR) and Support Vector
Machine (SVM) using several kernels, including Linear,
Polynomial (degrees 2 and 3), RBF, and Sigmoid. A brief of
the Precision, Recall, and F1-score for the ‘Cancer’ and
‘Non-Cancer’ classes is provided in this comparison
analysis.

Figure 15 represents a breast disease with CDS, N-CDS,
and W.R. Sequence. It shows that the SVM’s linear kernel
outperforms the KLR for the cancer class in the CDS region
in terms of both precision and recall. Furthermore, obtaining
the highest possible precision, recall, and F1-score in KLR
and SVM with Polynomial kernels both show perfect

performance. When compared to SVM and KLR with an
RBF kernel notably shows greater recall for the cancer
class. On the other hand, the SVM using Sigmoid kernels
for the cancer class has poor F1-score, recall, and precision.
In the N-CDS area, Fig. 15 indicates that an SVM with a
Linear kernel achieves higher precision, recall, and F1-score
for the cancer class when compared to KLR. In terms of
precision and recall, KLR is better than SVM, especially
when it comes to Polynomial kernels. With the RBF kernel,
SVM and KLR both function similarly perform. The cancer
class identification precision of SVM appears to be limited,
as seen by its low performance when using the Sigmoid
kernel. The comparison of precision, recall, and F1-score
for the cancer class in Fig. 15, as shown in the W.R
Sequence, shows that SVM with a linear kernel performs
better than KLR. Both SVM and KLR perform extremely
well with Polynomial kernels in terms of F1-score, recall,
and precision. The analysis of RBF kernels shows that KLR
and SVM perform similarly and significantly, with good
precision, recall, and F1-score. But, particularly in SVM,
the Sigmoid kernel shows very little efficacy.

A colon disease implementing the CDS, N-CDS, and
W.R. Sequence is depicted in Fig. 16. Better precision,
recall, and F1-score for the cancer class are obtained using
KLR with a Linear kernel for the CDS region when com-
pared to SVM. With polynomial kernels, both SVM and
KLR result in balanced results for cancer classification; still
logistic regression maintains a slightly higher performance
level. Similar results are obtained using RBF kernels for
KLR and SVM. On the other hand, the recall, F1 score, and
precision are all greater with the sigmoid kernel. In the
N-CDS region, SVM performs well in recall whereas KLR
with a Linear kernel shows greater precision. For both SVM
and KLR, polynomial kernels show a trade-off between
recall and precision. Remarkably, the RBF kernel results
show that SVM outperforms KLR in terms of precision,
recall, and F1-score for the cancer class, indicating a sig-
nificant performance difference between the two models.
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Fig. 15 Precision, Recall, and F1-Score as Secondary Classification Measures for Breast Disease along with the Classification Score
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Furthermore, the Sigmoid kernel consistently achieves great
performance in terms of F1 score, recall, and precision. For
the cancer class in the W.R. Sequence, SVM with a linear
kernel outperforms KLR in terms of F1 score, precision,
and recall. With Polynomial kernels, KLR consistently
provides good results, but SVM has inconsistent perfor-
mance. When using RBF kernels, KLR and SVM perform
similarly, attaining balanced precision, recall, and F1-score,
whereas SVM performs well in terms of precision, recall,
and F1-score.

In the same manner, a comparison of cancer and non-
cancer classifications follows precision, recall, and F1-score
for the kernel functions. Figure 17 depicts this analysis,
which applies SVM and KLR models to prostate disease.

Furthermore, accurately identifying cancer cases detected
by the proposed method depends significantly on this
comparison analysis. Consequently, we have conducted a
comparison analysis utilizing KLR and SVM to evaluate the
efficacy of the suggested first-order Markov Model of
nucleotides in classifying actual cancer cases. Using the
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Fig. 16 Precision, Recall, and
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Fig. 17 Precision, Recall, and F1-Score as Secondary Classification Measures for Prostate Disease along with the Classification Score
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Receiver Operating Characteristic (ROC) curve, the data
was visualised to evaluate test performance and improve
sensitivity and specificity. It was emphasized how important
ROC curves are, especially in medical settings like cancer
detection. Figures 18–20 display the ROC curve for the
suggested comparative machine-learning classification
models (KLR and SVM). A comparative study with dif-
ferent kernel techniques using the KLR-ROC and SVM-
ROC curves across distinct breast disease regions is shown
in Fig. 18. Comparative studies of various kernel techniques
using the KLR-ROC and SVM-ROC curves across different
regions of prostate and colon diseases, respectively, are
shown in Figs. 19 and 20.

When the ROC curves of KLR and SVM were
compared, it was identified that while the Poly and RBF
kernels of KLR were correct in detecting cancerous sam-
ples in CDS, the RBF, Poly2, and Linear kernels of SVM
were accurate in identifying cancerous samples in breast
disease. The Poly2 and Poly3 kernels from SVM showed
notable results for cancerous samples in colon disease,
whereas the Poly2 and Poly3 kernels from KLR showed
excellent results for cancerous samples in colon disease.
The Poly2 and Poly3 kernels from KLR were exception-
ally effective at identifying cancer in both CDS and
N-CDS, while the Linear, Poly2, and RBF kernels from
SVM were highly effective at diagnosing prostate cancer
in CDS. This examination covered the WR Sequence,
N-CDS, and CDS.

The ability to distinguish between non-cancerous and
cancerous samples is an essential aspect of extracted fea-
tures in cancer classification predictions. This study
demonstrates the importance of the dinucleotides feature
and its interpretability for binary classification. For cancer
datasets, a binary classification model used to classify both
cancer and non-cancer classes. The SHAP values of the
features become important based on the chosen classifica-
tion approach. A machine learning global interpretable
technique known as SHAP (SHapley Additive exPlana-
tions) is used in model predictions to explain the sig-
nificance of features [40, 41]. It simplifies the evaluation
and assessment of models by emphasizing the ways in
which each feature is applied to differentiate between
samples that are cancerous and non-cancerous. Figures
21–23 display the dinucleotide SHAP values as features for
the KLR classification model for CDS, N-CDS, and W.R.
sequence regions for breast, colon, and prostate diseases,
respectively. The log odds values for both classes are shown
on the x-axis in Figs. 21–23, while the feature value for
both classes is shown on the y-axis. These features were
extracted in order to classify cancer detection in this work,
and the features’ respective dinucleotide SHAP values show
which features have a significant influence on cancer
detection.

The KLR and SVM comparison study demonstrated how
well the suggested technique worked. As was demonstrated
in earlier discussions, the Markov model was able to
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Fig. 18 Comparative ROC
Curve Analysis of CDS, N-
CDS, and W.R Sequence
Regions in Breast Disease
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accurately represent the nucleotide units that make up DNA
sequences. The use of the Markov chain to represent
nucleotide order in the form of dinucleotide patterns was
further explored in this work. When this method was

applied to regions, such as CDS, N-CDS, and W.R.
sequences, the classification of genomic data showed dif-
ferent successful results. Our study did not focus on any one
form of cancer in particular. To identify the gene regions
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Fig. 19 Comparative ROC
Curve Analysis of CDS, N-
CDS, and W.R Sequence
Regions in Colon Disease
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related to breast, prostate, and colon diseases, this study
compared Kernel Logistic Regression (KLR) with Support
Vector Machines (SVM). This helped identify the classifi-
cation between cases of cancerous and non-cancerous cases.
Cancer cases indicate the genetic nature of genetic muta-
tions, in which a few changes in DNA sequences have a
major impact on the development of cancer cells. Other
genetic diseases are influenced by the development of cer-
tain genes that are associated with breast cancer. Since
mistakes made at these steps might impact investigations to
follow, accurate sequencing and interpretation in the region
of DNA sequences are essential.

By using extracted features, the new classification method
significantly reduces determining costs when compared to
directly classifying high-dimensional DNA sequences. The
novel feature dimension reduction approach improves clas-
sification accuracy without affecting anything, according to
experimental results. The unique advantage of the suggested
technique is the presence of relationships at the unit level of
DNA sequences. The implementation of a First-order Markov
chain-based feature extraction technique allows for this suc-
cessful outcome. The results highlight a significant relation-
ship between the features that were extracted. These features

not only validate the capacity to classify cancerous samples
but also offer insights from chemical and genetic points of
view. Moreover, modeling for the identification and predic-
tion of cancer-causing genomic sequences can be helped by
this technique. The suggested technique also has the advan-
tage of being effective with a smaller set of features, which
improves classification performance.

A comprehensive evaluation of several cancer datasets
has validated the performance of the implemented metho-
dology. This validates the algorithm’s strong application in
general. Significantly, the suggested methodology rival’s
limitations associated with specific cancer types or genes
involved. More importantly, our approach stands out due to
comprehensive comparisons with both the entire raw DNA
sequence and non-coding regions, in contrast to many
previous studies that were mainly focused on coding
regions [4, 5]. Our research stands out from other studies in
this field because of this special feature. Similar to other
research, this study takes advantage of the classification
phase in addition to the sample feature values [4, 5]. This
study is significant because it carefully compares the con-
ditions required to those of previous well-received studies in
a related field.

CDS N-CDS

W.R Sequence 

Fig. 21 ‘SHAP’ value of all
extracted features for CDS, N-
CDS, and W.R Sequence in
Breast Disease
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Conclusion

Analyzing the complex field of serious diseases like cancer
requires in-depth research. Scientists from a wide range of
fields are very interested in exploring this field because of
its importance. The vast amount of information contained in
DNA sequences requires the use of modern feature
extraction and selection of data techniques and computa-
tional statistical techniques that extend over standard tech-
niques. This study uses computational and statistical
approaches to provide its findings in a detailed, point-by-
point breakdown as follows:

● The novelty of this work aims to solve problems found in
DNA sequence’s protein-coding region (CDS), non-
protein-coding region (N-CDS), and whole raw DNA
sequence including both CDS and N-CDS. In particular,
the method of sequential pattern mining as feature
extraction and selection of genomes is applied to identify
differences and similarities between DNA associated with
cancerous and non-cancerous comparable.

● This work presents a unique hybrid method for
classifying nucleotide DNA sequences in genes that

are cancerous and non-cancerous. The study focuses on
the analysis of DNA samples connected to breast, colon,
and prostate disease DNA sequences. This approach
performs a comparative analysis by combining KLR and
SVM techniques through the use of a Markovian feature
mapping strategy.

● Our novel feature selection method’s initial process takes
advantage of this specific observation and performs
successfully group-based normalization on features that
result from DNA sequences that contain CDS, N-CDS,
and Whole Raw DNA Sequences. The results show that a
reduced feature, limited to sixteen dimensions, can
effectively and significantly discriminate between DNA
sequences that are cancerous and non-cancerous.

● According to the simulation results, SVM’s RBF, Poly2,
and Linear kernels were accurate in breast disease;
KLR’s Poly and RBF were accurate in CDS. SVM
Poly2 and Poly3 indicate significant results in colon
disease; KLR’s Poly2 and Poly3 showed high levels in
CDS. Regarding prostate disease, SVM performed
outstandingly in CDS using Linear, Poly2, and RBF;
KLR’s Poly2 and Poly3 were highly accurate in CDS
and N-CDS. Using CDS, N-CDS, and W.R Sequence.
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Fig. 22 ‘SHAP’ value of all
extracted features for CDS, N-
CDS, and W.R Sequence in
Colon Disease
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According to the outcomes of our study, our technique has
a strong potential for cancer diagnosis by utilizing the most
accurate classification models applied to distinct regions of
DNA sequences. When analyzing 177 malignant and 161
non-cancerous samples from various cancer types such as
breast, colon, and prostate cancer, this novel technique con-
sistently achieves significant accuracy across all detected
DNA regions. Notably, our approach is efficient, with a lower
computational overhead than other strategies. The ability to
analyze vast volumes of DNA sequencing data makes it an
appealing alternative for cancer classification.

Future Scope

● Future studies, based on our findings, could examine
features that combine the CDS and N-CDS regions,
improving DNA sequence classification for cancer
identification.

● In the field of cancer detection and classification, distinct
statistical techniques are utilized to provide probabilistic
features, similar to the Markov model.

Limitation

● Markov models lack long-range DNA patterns that are
essential for classifying cancerous from non-
cancerous cases.

● In noisy and limited genomic data, estimating transition
probabilities in Markov models may be more challen-
ging, which lowers the effectiveness of feature extrac-
tion and cancer classification.
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