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Abstract
The cross talk between calcium (Ca2+), IP3 and buffer dynamics regulate various mechanisms in hepatocyte cells. The study
of independent systems of calcium, IP3, and buffer signaling provides limited information about cell dynamics. In the current
study, coupled reaction-diffusion equations are used to design a cross-talk model for IP3, buffer, and calcium dynamics in a
hepatocyte cell. The one-way feedback of calcium, buffer, and IP3 in ATP production, ATP degradation, and NADH
production rate is incorporated into the model. Numerical simulation has been done using the Finite Element Method (FEM)
along the spatial direction and the Crank-Nicolson (C-N) method along the temporal direction. The numerical results are
analysed to determine the effects of alterations in processes of cross-talking dynamics of IP3, buffer, and calcium on ATP
and NADH production and degradation rate of ATP in a hepatocyte cell under normal and obesity conditions. The
comparative analysis of these findings unveils notable distinctions induced by obesity in calcium dynamics, ATP and NADH
synthesis, and ATP degradation kinetics.
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Introduction

Metabolism, detoxification, and homeostasis regulation in
the body are mainly controlled by the liver. The par-
enchyma of the liver is arranged into lobules, which are
hexagonal in shape, each consisting of a central vein sur-
rounded by a portal triad. Each portal triad consists of a
hepatic vein, bile duct, and hepatic artery. The hepatocytes
are the predominant cells, comprising 70% of the liver. In
the liver, cholangiocytes, endothelial, stellate, kupffer, and
oval cells are the non-parenchymal cells. These cells per-
form many important functions in the liver [1].

Various activities of the cells have been regulated using
Ca2+ which acts as an intracellular messenger in the cells.
Through two different types of channels, Ca2+ is released
from the intracellular stores (endoplasmic reticulum (ER))
in the cytosol. One of these is the family of inositol 1,4,5-
triphosphate receptors (IP3R). IP3 is produced by receptor
activation of phosphoinositide-specific phospholipase C

(PLC), causing the activation of IP3Rs [2]. Ryanodine
receptors (RyR) which are the second family of intracellular
Ca2+ channels, were named due to their great affinity for the
plant alkaloid ryanodine [2]. Hepatocyte’s canalicular
region contains a majority of the type II IP3R, while other
cytosolic regions include more of the type I IP3R and less of
the type II receptor [3].

Many researchers have investigated calcium signaling in
diverse cell types such as neurons, myocytes, oocytes,
pancreatic acinar cells, fibroblasts, astrocytes, and hepato-
cytes, among others [4–11].

Kotwani et al. [7, 12, 13]; Hemant et al. [14, 15]; Naik
et al. [8, 16–22]; Pathak et al. [10, 23] and Jha et al. [24, 25]
studied calcium distribution involving various parameters
such as excess buffer, RyR, voltage-gated calcium channels,
etc. for fibroblasts, lymphocytes, oocytes, myocytes, and
astrocytes, respectively. Panday et al. [9, 26] devised a
model for Ca2+ dynamics in oocytes that took into account
Ca2+ advection within the cell. Amrita et al. [4, 5, 27]
employed a finite element method to investigate how source
geometry, NCX, SERCA pump, leak, and other factors
influence Ca2+ distributions in neuron cells and dendritic
spines. Manhas et al. [28, 29] reported the impact of
mitochondria on Ca2+ signaling while studying calcium
fluctuation in pancreatic acinar cells. Tewari et al. [11, 30]
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and Jagtap et al. [6, 31, 32] studied calcium dynamics in
neurons and hepatocytes, respectively. Vedika et al. [33, 34]
studied Ca2+ dynamics in obese and normal hepatocyte
cells. The interdependent effect of calcium and buffer
dynamics was also examined. Kothiya et al. [35–38] studied
the system dynamics of calcium in a fibroblast cell. Vaishali
et al. [39, 40] studied calcium dynamics in pancreatic
β cells.

Hajnoczky et al. [41] discussed that the predominant
elevation of calcium concentration ([Ca2+]) in non-
excitable cells is via the second messenger IP3. Politi
et al. [42] formulated a model aimed at explaining the
calcium-triggered stimulation of phospholipase C and IP3
3-kinase. This model captures the mechanisms through
which calcium orchestrates both the enhancing and dimin-
ishing influences on IP3 metabolism. Jean et al. [43] found
that the liver’s IP3R was co-purified with markers of the
plasma membrane. Thurley et al. [44] discovered that a
stochastic calcium spike is produced by the interaction of
IP3R clusters. Wagner et al. [45] modeled fertilization of a
xenopus egg’s Ca2+ wave in one dimension using cartesian
coordinates. Handy et al. [46] did the bifurcation simula-
tions and analysis for the study of IP3 dependent calcium
variation. To investigate nonlinear IP3 dependent calcium
dynamics in cardiac myocytes, Singh et al. [47] devised a
mathematical model for myocytes. Pawar et al. [48–53]
studied the interdependence of Ca2+ on IP3, NO, dopamine,
β-amyloid etc. for neuron cells using mathematical models.
Pawar et al. [54, 55] have also discussed calcium and the
system dynamics of calcium with other ions using a frac-
tional reaction-diffusion equation.

Neher et al. [56] investigated the calcium gradient and
buffer in chromaffin cells derived from cows and con-
cluded that out of total Ca2+ that enters the cell, 98–99%
Ca2+ bind with endogenous Ca2+ buffer. Smith et al.
[57–60] considered the three-parameter regimes given by
the rate of response and dimensionless diffusion coeffi-
cients of Ca2+ and buffer with regard to each other. Martin
Falcke [61] found that the concentration profile of a fast
buffer around an open channel is more localized than that
of a slow buffer. Through, the construction of a mathe-
matical model, M.D. Stern [62] showed that the stabiliza-
tion of rapid fluctuations in Ca2+ fluxes requires a buffer
with rapid kinetics. According to Prins et al. [63], one thing
that all organellar Ca2+ buffers have in common is their
multifunctionality, as evidenced by the variety of Ca2+

binding and reactions they display. In addition to serving as
an inactive Ca2+ breakdown within intracellular organelles,
Ca2+ buffering proteins also modulate the Ca2+ release
pathway, fold proteins, and regulate apoptosis. Gabso et al.
[64, 65] highlighted the significant role of cellular calcium
buffers in modulating the intensity and diffusion of calcium
signals within neurons.

The literature review suggests a notable gap in research
concerning the complex interplay of calcium, IP3, and buffer-
ing dynamics within hepatocyte cells. Previous studies have
predominantly modeled buffering dynamics as static, failing to
account for their dynamic nature. This oversight simplifies the
intricate relationships between calcium dynamics and other
cellular processes, such as the interaction of calcium with IP3,
nitric oxide (NO), and dopamine, where buffers were assumed
to be constant. However, recognizing that buffer concentrations
are indeed variable can lead to more accurate and insightful
models. The effects of changes in the mechanisms governing
independent Ca2+ dynamics on the synthesis and degradation
of ATP as well as the synthesis of NADH in normal and obese
hepatocyte cells have received very little attention in previous
studies. But no attempt is reported in the literature for the study
of the effects of changes in the mechanisms governing coop-
erative Ca2+, IP3, and buffer dynamics on the synthesis and
degradation of ATP as well as the synthesis of NADH in
normal and obese hepatocyte cells. Thus, a new model is
developed in this paper to explore better insights into bio-
physical mechanisms and their effects on calcium, buffer, and
IP3 dynamics, as well as their consequential impacts on the
synthesis and degradation of ATP as well as the synthesis of
NADH in normal and obese hepatocyte cells. The model
integrates the coupled reaction-diffusion equations for Ca2+,
IP3 and buffers through their mutual fluxes, aims to provide a
deeper understanding of these processes. Numerical simula-
tions were conducted using the FEM combined with the C-N
Method to explore these dynamics further.

Problem Formulation

The reaction-diffusion equation proposed by Wagner et al.
[45] is modified by incorporating calcium buffering fluxes
and reaction term for Ca2+ profile in one dimensional
unsteady state case which is expressed as:

∂½Ca2þ�
∂t

¼ DCa
∂2½Ca2þ�

∂x2
þ ½JIP3R þ JLK � JSERCA�

Vc
� Jon þ Joff :

ð1Þ
Here, [Ca2+] represents calcium concentration in the

cytosol, DCa represents diffusion coefficient of calcium in
hepatocyte cell, JIP3R is flux due to IP3 receptor, JLK denotes
leak from ER, JSERCA is efflux from cytosol to ER, Jon and
Joff represent Ca

2+ buffering fluxes.
The different fluxes are modeled as,

JIP3R ¼ VIP3Rm
3h3ð½Ca2þ�ER � ½Ca2þ�Þ; ð2Þ
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Where, VIP3R is IP3 receptor flux rate constant, ½Ca2þ�ER is
calcium concentration in ER [45].

m ¼ V

KIP3R þ V

½Ca2þ�
½Ca2þ� þ KAct

; ð3Þ

Here, V represents IP3 concentration in the cytosol [45].
The proportion of subunits that Ca2+ has not yet inactivated
is represented by the variable h,

dh

dt
¼ h1 � h

τ
; ð4Þ

Here,

h1 ¼ KInh

KInh þ ½Ca2þ� ; ð5Þ

JLK ¼ VLeakð½Ca2þ�ER � ½Ca2þ�Þ; ð6Þ

Here, VLeak is rate of ER leakage.

JSERCA ¼ VSERCA
½Ca2þ�2

K2
SERCA þ ½Ca2þ�2 ;

ð7Þ

Here, SERCA’s half-maximal activating cytosolic Ca2+

concentration is KSERCA and its maximum outflow from
the bulk cytosol is VSERCA.

Jon ¼ kþj ½Ca2þ�b; ð8Þ

Joff ¼ k�j
btot½Ca2þ�
K þ ½Ca2þ� ; ð9Þ

Here, association and dissociation rate of buffer are
represented by kþj and k�j respectively [57, 66].

The following provides cytosolic IP3 concentration(V)’s
reaction-diffusion equation [45],

∂V

∂t
¼ DI

∂2V

∂x2
þ JProduction � λðJKinase þ JPhosphataseÞ

Vc
:

ð10Þ
Here, the diffusion coefficient of IP3 is DI, production of

IP3 due to Ca2+ is JProduction, JKinase and JPhosphatase are IP3
degradation due to 3-kinase and 5-phosphatase given as
[45],

JProduction ¼ VProduction
½Ca2þ�2

½Ca2þ�2 þ K2
Production

; ð11Þ

JKinase ¼ ð1� θÞV1
V

V þ 2:5
þ θV2

V

V þ 0:5
; ð12Þ

JPhosphatase ¼ V3
V

V þ 30
; ð13Þ

Here, θ is given by,

θ ¼ ½Ca2þ�
½Ca2þ� þ 0:39

; ð14Þ

The nullcline-a surface along which the variable does not
change is obtained by solving for the variable while setting
each reaction-diffusion equation’s right side to zero. The
result of h nullcline is h=h∞. Therefore, it gives,

h ¼ KInh

KInh þ ½Ca2þ� ; ð15Þ

The buffer(b) dynamics has been modeled using the
following diffusion equation [66],

∂b

∂t
¼ Db

∂2b

∂x2
� Jon þ Joff : ð16Þ

Where, Jon and Joff are given in equations (8) and (9)
Based on the presumption that the Ca2+, buffer and IP3

concentrations in cell are 0.1, 0 and 0.16 μM respectively, at
rest, the following initial conditions are imposed [6].

ð½Ca2þ�t¼0Þ ¼ 0:1 μM; ð17Þ

Vt¼0 ¼ 0:16 μM; ð18Þ

ðbt¼0Þ ¼ 0 μM; ð19Þ

To arrive at the solution, the following boundary conditions
are used [6].

limx!0 �DCa
∂½Ca2þ�

∂x

� �� �
¼ σCa; ð20Þ

Where, σCa represents source influx.

limx!15ð½Ca2þ�Þ ¼ C1 ¼ 0:1 μM; ð21Þ

limx!15ðVÞ ¼ 0:16 μM; ð22Þ

limx!0ðVÞ ¼ V1 ¼ 3 μM; ð23Þ

limx!0Db
∂b

∂x

� �
¼ 0; ð24Þ

limx!15ðbÞ ¼ b1 ¼ Kbtot
K þ C1

; ð25Þ

Here, total buffer concentration is btot and K=k�
kþ is buffer’s

dissociation constant [32, 34].
ATP degradation rate-calcium dependent is calculated

using [67],

JHYD ¼ JSERCA
2

þ KHYD
½ATP�c

½ATP�c þ Kh
: ð26Þ
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JSERCA is calculated using Eq. (7).
For ATP hydrolysis, the Michaelis-Menten constant is

Kh and the maximal rate is KHYD and cytosolic ATP con-
centration is [ATP]c.

Ca2+-dependent ATP production is computed by [68],

ATPðCÞ ¼
Fo

Fo�1 � 2 ½Ca2þ�
Ca2þ½ �max

1
Fo�1 � ½Ca2þ�

Ca2þ½ �max

� �2 : ð27Þ

IP3-dependent ATP production is computed by [68],

ATPðVÞ ¼
Go

Go�1 � 2 V
Vmax

1
Go�1 � V

Vmax

� �2 : ð28Þ

NADH production rate is calculated by [67],

IAGC ¼ VAGC
½Ca2þ�

KAGC þ ½Ca2þ�
q2

q2 þ cm
expðp4VmÞ: ð29Þ

Where, KAGC and VAGC, respectively, represent the rate
constants for the synthesis of NADH and calcium’s
dissociation from the aspartate-glutamate carrier (AGC).

The Taylor’s approximation method is used to linearize
the proposed problem approximately where the IP3 con-
centration is 3 μM, buffer concentration is 5 μM and [Ca2+]
is 0.1 μM. Since the Ca2+, buffer and IP3 concentrations are
constrained to a restricted range, the nonlinear parts of the
Taylor’s series become insignificant.

After linearisation, Eq. (1) can be rewritten as follows:

∂u

∂t
¼ DCa

∂2u

∂x2
þ A1uþ B1V þ C1bþ D1; ð30Þ

The constants A1, B1, C1 and D1 were found using Taylor’s
approximation approach (TAA) and u stands for [Ca2+].

Equation (10) can be redefined as, in a similar way for
IP3 concentration as V.

∂V

∂t
¼ DI

∂2V

∂x2
þ A2uþ B2V þ C2bþ D2; ð31Þ

The constants A2, B2, C2 and D2 were found using TAA.
It is possible to rewrite Eq, (16) as,

∂b

∂t
¼ Db

∂2b

∂x2
þ A3uþ B3V þ C3bþ D3; ð32Þ

Where A3, B3, C3 and D3 were found using TAA.
The numerical results are derived employing the varia-

tional finite element methodology applied to the

cytoplasmic domain of the hepatocyte cell, segmented into
80 linear elements. The discretized variational functional of
Eq. (30) is depicted as follows:

JðeÞ ¼ 1
2

R xn
xm

uðeÞ
02 þ 1

DCa

∂uðeÞ
2

∂t � A1uðeÞ
2 � 2B1V ðeÞuðeÞ � 2C1b

ðeÞuðeÞ � 2D1uðeÞ
h i

dx

�μðeÞ σCa
DCa

uðeÞðx¼0Þ
� �

;

ð33Þ
μ(e) is equal to 1 for the first element and 0 for every further
element.

The shape function for calcium concentration is given as
the following linear fluctuation due to the small size of the
elements.

uðeÞ ¼ c1 þ c2x; ð34Þ

The Eq. (34) can be expressed as

uðeÞ ¼ QTCðeÞ; ð35Þ

Here,

QT ¼ 1 x½ �&CðeÞ ¼ c1

c2

� �

Values of u(e) at nodes xm and xn are given by,

uðeÞðxmÞ ¼ c1 þ c2xm; ð36Þ

uðeÞðxnÞ ¼ c1 þ c2xn; ð37Þ

Using above equations, it is obtained as,

uðeÞ ¼ QðeÞCðeÞ; ð38Þ

Here, QðeÞ ¼ 1 xm
1 xn

� �
& uðeÞ ¼ um

un

� �

From Eqs. (36)–(38) we obtain,

uðeÞ ¼ QTSðeÞuðeÞ; ð39Þ

Here, SðeÞ ¼ QðeÞ�1 ¼ 1
xn�xm

xn �xm
�1 1

� �

JðeÞ ¼ JðeÞk þ JðeÞm � JðeÞl � JðeÞr � JðeÞp � JðeÞq � JðeÞs ; ð40Þ

Where,

JðeÞk ¼ 1
2

Z xn

xm

Qx
TSðeÞuðeÞ

2
� �h i

dx; ð41Þ

JðeÞm ¼ 1
2

Z xn

xm

1
DCa

∂

∂t
QTSðeÞuðeÞ

2
� �h i

dx; ð42Þ
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JðeÞl ¼ 1
2

Z xn

xm

A1 QTSðeÞuðeÞ
2

� �h i
dx; ð43Þ

JðeÞr ¼
Z xn

xm

B1 QTSðeÞuðeÞQTSðeÞV
ðeÞ� �h i

dx; ð44Þ

JðeÞp ¼
Z xn

xm

C1 QTSðeÞuðeÞQTSðeÞb
ðeÞ� �h i

dx; ð45Þ

JðeÞq ¼
Z xn

xm

D1 QTSðeÞuðeÞ
� �h i

dx; ð46Þ

JðeÞs ¼ μðeÞ
σCa
2DCa

QTSðeÞuðeÞðx¼0Þ

� �� �
; ð47Þ

Minimizing J(e) with respect to uðeÞ,

dJðeÞ

duðeÞ
¼ 0; ð48Þ

That is,

dJðeÞ

duðeÞ
¼ dJðeÞk

duðeÞ
þ dJðeÞm

duðeÞ
� dJðeÞl

duðeÞ
� dJðeÞr

duðeÞ
� dJðeÞp

duðeÞ
� dJðeÞq

duðeÞ
� dJðeÞs

duðeÞ
;

ð49Þ
Which can be written as,

dJ

duðeÞ
¼

X80
e¼1

M
ðeÞ dJðeÞ

duðeÞ
M

ðeÞ� �T
¼ 0; ð50Þ

Where,

M
ðeÞ ¼

0 0

: :

0 0

1 0

0 1

0 0

: :

0 0

2
66666666666664

3
77777777777775
81�2

mthrow

nthrow
; uðeÞ ¼

u1
u2

u3
u4

:

:

u80
u81

2
66666666666664

3
77777777777775
81�1

In similar manner Eqs. (31) and (32) are solved using linear
elements leading again a 81 × 81 system respectively.

Consequently, the system of linear algebraic equations
illustrated below is obtained.

½K�ð243�243ÞU þ ½N�ð243�243Þ
∂U

∂t ð243�1Þ
¼ ½F�ð243�1Þ: ð51Þ

Here, U is given by
u
V
b

2
4

3
5, system matrices are shown as

K and N and the characteristic vector F.

Utilizing the MATLAB program, the Crank-Nicolson
method is employed to solve the system.

Table

For the purpose of resolving the proposed problem (51),
these physiological variables are employed.

Findings and Discussion

Calcium, buffer and IP3 fluctuation is depicted in Fig. 1.
Calcium fluctuation relative to space is seen in Fig. 1A. The
calcium concentration is first high near the source and then
starts to decline as one moves along the spatial dimension
until it achieves its equilibrium concentration. The maximum
calcium content is approximately 0.8 μM. Graph shows non-
linear behavior of the calcium concentration pattern between
x = 0 to 10 μm. This may be due to major imbalances among
biophysical processes like diffusion, buffering, efflux and
influxes which is clear from the major difference in calcium
concentration at x = 0 and x = 10 μm. Calcium variation
over time is shown in Fig. 1B. The graph shows that the
calcium concentration initially rises abruptly up to around 80
ms, then rises steadily and smoothly until it reaches steady
state at approximately 80 ms. The spatial variation of IP3
concentration is depicted in Fig. 1C. It has been noted that
the graph initially behaves nonlinearly before eventually
changing to linear behavior. As one moves through space
away from the source, the concentration of IP3 decreases
until it reaches ≈ 0.16 μM. Close to the source, the con-
centration of IP3 is high. The IP3 concentrations can reach a
maximum value of ≈ 3 μM. The fluctuation of IP3 concerning
time is shown in Fig. 1D. According to the graph, the initial
IP3 concentration increases swiftly for the first 100 ms or so
before rising steadily and gradually until it reaches steady
state at around 100 ms. Figure 1E displays the variation in
free buffer concentration over space. Because too much
calcium is toxic for cells, calcium-bound buffer is formed
when free buffer and free calcium bond together. Since cal-
cium concentrations are higher close to the source, more
buffer is required to lower calcium concentrations there. The
free buffer value is therefore lowest close to the source.
Buffer diffuses to the calcium source, whereas calcium dif-
fuses to the other end of the cell. Therefore, it is seen that the
buffering process is dominated by the source influx of free
calcium close to the source, whereas the buffering process is
dominated by the calcium signals at the opposite end of the
boundary. The fluctuation in free buffer concentration over
time is depicted in Fig. 1F. Free buffer concentration first
rises steadily and gradually for 500 ms before reaching
steady state.

Cell Biochemistry and Biophysics (2024) 82:1537–1553 1541



Figure 2 shows [Ca2+] variations for different btot values
along space and time. Figure 2A depicts a map of the
variation in [Ca2+] with regard to space. As the levels of
total buffer concentration rise, a drop in calcium con-
centration is observed. Calcium concentration falls as a

result of an increase in the amount of calcium-bound buffer
caused by an increase in buffer’s overall value. [Ca2+] is
highest close to the source, and it reaches equilibrium as one
moves away from it. The fluctuation in [Ca2+] with respect
to time is depicted in Fig. 2B. The concentration of calcium

Fig. 2 Ca2+ concentration dynamics along space and time for various values of total buffer concentration

Fig. 1 Ca2+, IP3 and buffer concentration dynamics along space and time

1542 Cell Biochemistry and Biophysics (2024) 82:1537–1553



first rises quickly until 350 ms, at which point it stabilizes.
The fluctuation in calcium concentration exhibits the same
behavior as that depicted in Fig. 1.

Figure 3 illustrates [Ca2+] variation over time and space
for various association rates of buffers which are BAPTA,
EGTA and Triponin C. Figure 3A shows [Ca2+] variation
over space. It is demonstrated by comparing the [Ca2+] at
the source that it is maximum in the presence of EGTA
buffer. Presence of BAPTA buffer changes the behavior of
[Ca2+] dynamics and Triponin C reduced [Ca2+] by 90% as
association rate for BAPTA and Triponin C are very high.
Fig. 3B illustrates the variation in calcium content over
time. The results show that the addition of EGTA causes the
calcium concentration to rise sharply and gradually up to
350 ms before stabilizing. Triponin C and BAPTA buffers
allow to achieve a steady state in 30 ms. The presence of
BAPTA and triponin C buffers causes oscillations.

Figure 4 illustrates [Ca2+] variation over space and time
for different buffers’s diffusion coefficient (Db). Figure 4A
illustrates how the [Ca2+] varies along space. It has been
demonstrated that with increase in Db values, [Ca2+]
decreases, leading to an increase in the generation of
calcium-bound buffers. Calcium has its maximum con-
centration near the source and approaches equilibrium far-
ther away. The calcium concentration fluctuation with time
is shown in Fig. 4B. Prior to reaching a steady state at 1800
ms, the concentration of calcium first increases swiftly. The
small oscillation in the curves are due to formation of Ca2+

bound buffer’s binding time and diffusion of free buffer and
Ca2+ towards each other.

Figure 5 illustrates variation in ATP degradation rates
across space and time. Figure 5A demonstrates that the ATP
degradation rate is highest at the source and diminishes
progressively with distance as. This spatial trend in ATP
degradation mirrors the non-linear pattern due to
major imbalances among biophysical processes like diffu-
sion, buffering, efflux and influxes as observed in Fig. 1A.
Figure 5B details the temporal dynamics of ATP degrada-
tion, showing a sharp initial increase up to 200 ms, followed
by a more gradual increase to reach steady state after
200 ms. This temporal pattern of ATP degradation shares
similarities with the temporal fluctuations of calcium
observed in Fig. 1B.

Figure 6 depicts production rate of NADH along space
and time. Figure 6A, the spatial distribution of NADH
production rate shows a trend where higher calcium con-
centrations correspond to elevated NADH production rates,
gradually stabilizing to around 0.38 μM/sec as distance from
the source increases. This non-linear relationship due to
major imbalances among biophysical processes like diffu-
sion, buffering, efflux and influxes mirrors the behavior of
Ca2+ variation as depicted in Fig. 1A. In Fig. 6B, the
temporal dynamics of production rate of NADH reveal an
initial sharp increase up to 200 ms, followed by a more
gradual and smooth rise, eventually reaching a steady state
by 200 ms. This temporal pattern of NADH production rate

510150

Distance(µm)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
 C

al
ci

um
 c

on
ce

nt
ra

tio
n(

µM
)

A. [Ca2+] along space at t=600 ms

k
j
= 1.5

k
j
= 39

k
j
= 600

0 100 200 300 400 500 600 700 800

Time (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
al

ci
um

 c
on

ce
nt

ra
tio

n 
(µ

M
)

B. [Ca2+] along time at x= 0 µm

k
j
= 1.5

k
j
= 39

k
j
= 600

Fig. 3 Ca2+ concentration dynamics along space and time for various buffer association rates

Cell Biochemistry and Biophysics (2024) 82:1537–1553 1543



closely resembles the temporal behavior of Ca2+ variation
illustrated in Fig. 1B.

Figure 7 displays spatial and temporal Ca2+-dependent
ATP production rate. Figure 7A shows variation in calcium-
dependent production rate of ATP along space. Near source

Ca2+-dependent production rate of ATP is high and
decreases upto 0.18 μM/sec moving away from the source.
Maximum calcium-dependent ATP production rate is ≈ 0.7
μM/sec. The non-linear behavior due to major imbalances
among biophysical processes like diffusion, buffering,

Fig. 4 Ca2+ concentration dynamics along space and time for various values of diffusion coefficient of buffer

Fig. 5 ATP degradation dynamics along space and time
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efflux and influxes mirrors the behavior of Ca2+ variation as
depicted in Fig. 1A. Figure 7B shows the rate of Ca2+-
dependent ATP synthesis over time. The graph shows that,
at first, the Ca2+-dependent ATP production rate increases
quickly up to ≈ 200 ms, after which it grows steadily and

smoothly to reach steady state at almost 200 ms. The cal-
cium variation’s nonlinear behavior in Fig. 1 and the ATP
generation rate in Fig. 7 exhibit synergistic effects.

Figure 8 shows spatial and temporal IP3-dependent ATP
production rate. Figure 8A shows variation in IP3-

Fig. 6 NADH production dynamics along space and time

Fig. 7 Ca2+ dependent ATP production dynamics along space and time
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dependent production rate of ATP along space. Near the
source IP3-dependent ATP production rate is high and
decreases upto 0.18 μM/sec moving away from the source.
Maximum IP3-dependent ATP production rate is ≈ 1 μM/
sec. The non-linear behavior is similar to Fig. 1A initially as
time increases such as 500 ms behavior of the curves
changes and becomes concave. This change in behavior of
the curves is due to role of increase in calcium concentration
on IP3 and ATP production. Initially when calcium con-
centration is low, the IP3 concentration is also lower and
ATP production rate is also lower and with the passage of
time, calcium concentration increases and its effect is visi-
ble on IP3 profiles in Fig. 1C and on ATP production in
Fig. 8A. Also after sometime such as 500 ms, the calcium
concentration becomes high enough to play significant role
which is visible by change in behavior of curves in Figs. 1A
and 8A. Figure 8B represents IP3-dependent production rate
of ATP with respect to time. The graph demonstrates how
the initial IP3-dependent ATP production rate grows
abruptly up to ≈ 20 ms, then rises gradually and smoothly
until it takes ≈ 20 ms to reach steady state.

The variations in calcium concentration for both normal
and obese hepatocyte cells across time and space are shown in
Fig. 9. The fluctuations in [Ca2+] with respect to space is
shown in Fig. 9A. It has been noted that increased ER leakage
causes an increase in calcium concentration in obese hepa-
tocyte cells. [Ca2+] is highest close to the source and
decreases to the background level (0.1 μM) as one moves
away. Moreover, the temporal fluctuation in calcium

concentration for normal and obese hepatocyte cells is shown
in Fig. 9B. The fluctuations in the calcium concentration
exhibit behavior that is in line with the observations shown in
Fig. 1A and B. A notable variation in the calcium content is
seen from the curves in Fig. 9 for the two distinct scenarios.

The change in the rate of ATP breakdown for normal and
obese hepatocyte cells over time and space is shown in Fig. 10.
The spatial variation in ATP degradation rate for normal and
obese hepatocyte cells is shown in Fig. 10A. It is demonstrated
from the figure that how the rate of ATP breakdown increases
in tandem with the amounts of calcium in the obese hepatocyte
cell as the ER becomes leaky. The rate of ATP degradation
peaks at the source and falls away from it to a constant value of
4 μM/sec. The variation in the rate of ATP breakdown for both
normal and obese hepatocyte cells over time is shown in
Fig. 10B. Figure 10 illustrates a large variation in the rate of
ATP breakdown for two distinct scenarios. The ATP degra-
dation rate variation behaves similarly to Fig. 9.

The variation in the rate of NADH synthesis in a obese and
normal hepatocyte cell over time and space is depicted in
Fig. 11. The spatial variation in the rate of NADH synthesis
for normal and obese hepatocyte cells is shown in Fig. 11A.
The figure shows that as compared to a normal hepatocyte
cell, the rate of NADH synthesis rises in the obese state as the
ER becomes leaky. The decrease in the rate of NADH gen-
eration for both normal and obese hepatocyte cells over time
is shown in Fig. 11B. Two different scenarios with different
rates of NADH generation are depicted in Fig. 11. According
to Fig. 9, the NADH production rate fluctuation acts similarly.

Fig. 8 IP3 dependent ATP production dynamics along space and time
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The calcium-dependent ATP generation rate variation
for normal and obese hepatocyte cells over time and space
is shown in Fig. 12. Figure 12A illustrates the variation in
the rate of Ca2+-dependent ATP synthesis in relation to

space in a obese and normal hepatocyte cells. Figure
shows how the rate of calcium-dependent ATP produc-
tion increases in an obese hepatocyte cell in tandem with
an increase in calcium concentration when the ER

Fig. 9 Ca2+ dynamics for normal and obese cell along space and time

Fig. 10 ATP degradation rate dynamics for normal and obese cell with respect to space and time
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becomes leaky. The rate at which calcium-dependent
ATP is produced reaches its maximum near the source
and falls away from it to a stable value of 0.2 μM/sec. The
calcium-dependent ATP generation rate changes with

time for both normal and obese hepatocyte cells are
shown in Fig. 12B. The ATP generation rates for two
distinct circumstances are displayed in Fig. 12, each of
which exhibits a notable variance. The behavior of the

Fig. 11 Production rate of NADH dynamics for normal and obese cell along space and time

Fig. 12 Ca2+- dependent production rate of ATP dynamics for obese and normal cell over space and time
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Ca2+-dependent ATP production rate fluctuation is simi-
lar to that of Ca2+, as seen in Fig. 9.

Error Analysis

For time =0.1, 0.2, 0.3, 0.4, and t = 0.5 sec at x=0, error
analysis is carried out Tables 1 and 2. According to
Tables 3, 4 and 5, the greatest percentage error between
nodes 80 and 90 for calcium, IP3 and buffer dynamics is
0.048172601%, 0.22712485% and 0.001948211%, respec-
tively. The accuracy of the finite element approach with 80
linear elements is found to be 99.95% for the calcium
profile, 99.77% for the IP3 profile and 99.99% for buffer
profile in this problem.

Stability Analysis

The finite element approach has a spectral radius of 0.9994
which is below one, indicating that it is stable.

Validation

The results are similar with earlier study by Wagner and
Pawar et al. [45, 48] at time t = 50 sec, as shown in
Tables 6 and 7. The concentration profiles of [Ca2+] and IP3
that were obtained for the parameter at x = 0, 3, 6, 9, 12 and
15 μm are compared to these results.

Table 1 Ca2+, IP3 and buffer variation parameters [32, 57]

Symbol Parameter Value

DCa Diffusion coefficient of calcium 16 μm2/sec

Db Buffer’s diffusion coefficient 75 μm2/sec

DI IP3’s diffusion coefficient 283 μm2/sec

C∞ Calcium concentration at equilibrium 0.1 μM

Vc Volume ratio of the cytosol to the overall
volume of the cell

0.83

KIP3R Activating IP3 binding site’s dissociation
constant

0.3 μM

CT Total calcium concentration 2 μM

Ve The ER’s volume in relation to the overall cell
volume

0.17

KSERCA Half maximal rate of SERCA 0.1 μM

kþj Buffer(EGTA) association rate 1.5 (μM/s)−1

k�j Buffer(EGTA) dissociation rate 0.3 sec−1

btot Total buffer concentration 10 μM

VIP3R Flux rate of IP3 receptor 1.5 sec−1

VLeak Flux rate of ER leakage 0.01 sec−1

VSERCA Flux rate of SERCA pump 0.65 sec−1

KAct Ca2+ activation binding site dissociation
constant

0.8 μM

KInh Dissociation constant of Ca2+ inhibiting binding
site

1.9 μM

VProd Maximum production rate of IP3 0.075 μM/sec

KProd Ca2+ activation Michaelis constant 0.4 μM

λ Scaling factor for the production rate in IP3 30

V1 Maximum rate constant at low Ca2+ (3-kinase) 0.001 μM/sec

V2 Maximum rate constant (at high Ca2+ (3-
kinase))

0.005 μM/sec

V3 Highest rate constant (phosphatase) 0.02 μM/sec

VAGC NADH production rate constant 25 μM/sec

KAGC Ca2+’s dissociation constant from AGC 0.14 μM

cm Mitochondrial calcium concentration 1.3 μM

F0 Constant (ATP feedback) 0.5

G0 Constant (ATP feedback) 0.5

½Ca2þ�max Constant (ATP feedback) 1.5 mM

Vmax Constant (ATP feedback) 1.5 mM

VM Mitochondrial membrane potential 160mV

p4 Voltage dependence coefficient of AGC activity 0.01 m V−1

q2 Value for activation the Krebs cycle by Ca2+ 0.1 μM

Table 2 Comparative study [70]

Symbol Normal cell Obese cell

KIP3R 0.3 sec−1 0.35 sec−1

Table 3 Calcium profile error analysis with 80 & 90 elements

Time Elements = 80 Elements = 90 Relative % error

0.1 sec 0.37017202 0.369890149 0.048172601

0.2 sec 0.458896003 0.458672369 0.038219612

0.3 sec 0.515066144 0.514913538 0.026080804

0.4 sec 0.555023353 0.554925782 0.01667521

0.5 sec 0.58512786 0.58506805 0.010221765

Table 4 IP3 profile error analysis with 80 & 90 elements

Time Elements = 80 Elements = 90 Relative % error

0.1 sec 2.959012353 2.965745843 0.22712485

0.2 sec 2.964470144 2.969782735 0.179197046

0.3 sec 2.96544568 2.970238503 0.161664945

0.4 sec 2.96514116 2.969716402 0.154325821

0.5 sec 2.964664378 2.96912403 0.150426894

Table 5 Buffer concentration profile’s error analysis with 80 & 90
elements

Time Elements = 80 Elements = 90 Relative % error

0.1 sec 1.021262566 1.02126464 0.000126852

0.2 sec 1.071696957 1.071725058 0.001718173

0.3 sec 1.211217292 1.211257353 0.002449443

0.4 sec 1.413639489 1.413677127 0.002301281

0.5 sec 1.635500543 1.635532407 0.001948211
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Conclusion

A mathematical model of cross talking dynamics of cal-
cium, buffers and IP3 is proposed and successfully imple-
mented to study impacts of spatio temporal variations in one
of them on the other two signaling molecules. The out-
comes of the simulations lead to the following fundamental
conclusions:

(i) [Ca2+] increases with increase in source influx and
consequently IP3 increases.

(ii) Calcium concentration decreases with increasing
buffer value and consequently IP3 decreases.

(iii) Calcium has the maximum concentration near the
source and approaches equilibrium when one travels
farther away from it in space. For IP3, comparable
outcomes are attained.

(iv) According to temporal study, the calcium concentra-
tion initially rises abruptly for about 450 ms before
rising gradually and smoothly until it reaches a steady
state. Similar results are obtained for IP3.

The above basic conclusions are the same as obtained by
earlier researchers [9, 45] which indicate that the proposed
model is effective in prediction of experimental results.

The following novel findings are reached by analyzing
numerical results:

(i) The free buffer concentration falls till x= 10 μm as a
result of strong buffering activity which lowers the
free [Ca2+] at those places (x= 0 to 10 μm) and thus
the spatial regions with high calcium concentrations
also have low free buffer concentrations.

(ii) The concentration of free buffer rises slowly in the
spatial places (x=1 to 10 μm) where the concentration
of calcium rises the fastest because the majority of
free buffer binds to free calcium. The calcium
concentration rises slowly in the same way that it
does wherever the buffer concentration is rising
quickly.

(iii) Depending on where each of the calcium, IP3 and
buffers dominates at different times, it leads to the
variations in concentration levels of the other two
signaling molecules. Thus these three signaling
systems work in a synergistic manner to balance each
others fluctuations to achieve the homeostasis.

(iv) The dynamic relationship between the fluctuations of
free buffer and free calcium is determined by the rate
of a modest increase in buffer activity.

(v) Source, buffer, SERCA pump and other parameters
that affect calcium profiles are synergistically con-
veyed to IP3, ATP degradation, ATP synthesis and
NADH production rate. Therefore, changes in these
parameters can result in considerable variations in the
rates of ATP generation, ATP degradation and NADH
production which can result in a variety of liver
illnesses like obesity, diabetes etc.

(vi) The significant discrepancy in calcium concentration,
ATP production, degradation and NADH production
rate in a obese and normal hepatocyte cell has
provided us with new insight into the severity of the
disorder in the form of obesity, among other things.

(vii) As ER calcium content drops by 50% in case of
obesity, ER calcium release rises by 50%. According
to Arruda et al. [69], mitochondria receive 80% of the
inflow from the ER. This led to the prediction that a
hepatocyte cell’s cytoplasmic calcium concentration
would only rise by 10%, as seen in Fig. 9.

The finite element method (FEM) showcases remarkable
versatility, yet grapples with mesh dependency, complexity
in 3D scenarios, and challenges in handling discontinuities.
Meanwhile, the Crank-Nicolson method, lauded for its
stability, contends with constraints in stability, computa-
tional overhead, and accuracy, particularly in nonlinear
domains. Both methods demand finesse in implementation,
with FEM demanding meticulous meshing and Crank-
Nicolson necessitating careful consideration of system
dynamics. Despite these limitations, their combined pro-
wess remains a cornerstone in numerical simulations,
driving innovation across diverse fields of science and

Table 6 [Ca2+] profiles compared with Wagner and Pawar et al.
[45, 48]

Distance [Ca2+] (Wagner
et al.)

[Ca2+] (Pawar et al.) [Ca2+] (Current
work)

x=0 μm 1.332308069 1.34981836731882 1.336291832

x=3 μm 1.194347794 1.19298936853484 1.190632459

x=6 μm 1.022311435 1.01607655910625 1.015763902

x=9 μm 0.809486385 0.795809556080343 0.804011992

x=12 μm 0.529051723 0.503248604412665 0.526519714

x=15 μm 0.1 0.1 0.1

Table 7 IP3 concentration profiles compared with Wagner and Pawar
et al. [45, 48]

Distance IP3 (Wagner et
al.)

IP3 (Pawar et al.) IP3 (Current
work)

x=0 μm 0.5 0.5000 0.5

x=3 μm 0.436618677 0.431787350767981 0.438932358

x=6 μm 0.36738949 0.363691496147387 0.372099536

x=9 μm 0.299355639 0.295702458806600 0.306262011

x=12 μm 0.232442228 0.227809393499215 0.241362587

x=15 μm 0.16 0.16 0.16
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engineering. Consequently, the proposed model demon-
strates a commendable ability to accurately estimate cal-
cium concentration levels in both normal and obese cellular
conditions. Additionally, the model demonstrates the ability
to forecast the impacts of diverse variable alterations on
calcium, buffer and IP3 concentrations, alongside NADH
generation, ATP biosynthesis and ATP degradation rate
within hepatocyte cells, across both normal and obese
states. This predictive capability enhances our under-
standing of the intricate cellular dynamics and provides
valuable insights into the physiological implications of
these changes in calcium and energy-related processes.
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