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Abstract
This study was conducted to compare the efficacy of the mouse hepatic and renal antioxidant systems against inflammation-
induced oxidative stress. Increased Il-1 and Il-6 expressions, markers of inflammation, were represented by inflammation
models in mouse liver and kidney tissues injected intraperitoneally with LPS. After establishing the model, the GSH level
and the GSH/GSSG ratio, which are oxidative stress markers, were investigated in both tissues treated with LPS and the
control group. The expression of Trx1, TrxR, and Txnip genes increased in the liver tissues of LPS-treated mice. In the
kidney tissue, while Trx1 expression decreased, no change was observed in TrxR1 expression, and Txnip expression
increased. In the kidneys, TRXR1 and GR activities decreased, whereas GPx activity increased. In both tissues, the TRXR1
protein expression decreased significantly, while TXNIP expression increased. In conclusion, different behaviors of
antioxidant system members were observed during acute inflammation in both tissues. Additionally, it can be said that the
kidney tissue is more sensitive and takes earlier measures than the liver tissue against cellular damage caused by
inflammation and inflammation-induced oxidative stress.
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Introduction

Inflammation, divided into acute and chronic, is a protective
response of the organism’s immune system to pathogens,
damaged cells, and chemical or physical agents [1, 2].
Acute inflammation is the first response to restore home-
ostasis by supporting the repair of injured tissues and the
destruction of pathogens and is self-limiting [3]. However,
when this process exceeds the duration and severity
threshold, reactive oxygen species (ROS) appear, inducing

oxidative stress that promotes inflammation [4, 5]. When
the antioxidant system does not eliminate the excessive
ROS, many diseases associated with chronic inflammation
occur, e.g., diabetes, cancer, obesity, cardiovascular and
neurodegenerative disorders, and aging [6–9].

ROS, such as hydroxyl (·OH), hydrogen peroxide
(H2O2), peroxide (·O2

−2), and superoxide (O2
−), produced

in organisms at low or medium levels are signal molecules
activating cellular differentiation, proliferation pathways,
immunological responses, xenobiotic inflammation, and
neurotransmitter catabolism [10–12]. Endogenous and
exogenous agents induced the level of ROS, and the balance
between the formation and neutralization of ROS is pro-
tected by the basic enzymatic systems, including glu-
tathione and thioredoxin systems that protect cells against
oxidative stress. In the glutathione system, glutathione
peroxidase (GPx) converts hydrogen peroxide (H2O2) into
water using glutathione (GSH). Glutathione disulfide
(GSSG), which is formed by GPx reactions, is transformed
back into two GSHs by glutathione reductase (GR) utilizing
nicotinamide adenine dinucleotide phosphate (NADPH)
[13–15]. The thioredoxin system, containing thioredoxin 1
(TRX1), thioredoxin reductase 1 (TRXR1), and thioredoxin
interacting protein (TXNIP), maintains the cellular redox
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homeostasis and cellular physiology. TRXR1 uses NADPH
as an electron source and converts oxidized TRX1 into
reduced TRX1 [16].

The thioredoxin system is related to fundamental biological
pathways, such as cell proliferation, DNA synthesis, growth
triggering, control of transcription factors, protection against
apoptosis, and regulation of cellular signaling pathways. Irre-
gularities in this system cause many diseases that may be
closely associated with inflammation [17–20]. Many studies
have investigated the thioredoxin system’s preventive effect,
especially TRX1, against acute inflammation. It was reported
that Trx1 overexpression in mouse spleen tissue suppressed
methamphetamine-induced inflammation [21]. In another
study, the overexpression of Trx1 in mouse kidney tissue
resisted inflammatory-related diseases, such as hyperglycemia,
osteopenia, and nephropathy, through the effective removal of
oxidative stress [22]. Additionally, the decreased expression of
TrxR1 was observed in the mouse model with Parkinson’s
disease, and it was commented that this condition might
support oxidative stress and the pathology of diseases [23].
Data from many studies suggest that TRXR1 may be a pro-
mising anti-inflammatory target that plays an important role
during inflammation [24].

The liver performs many central functions, particularly
detoxifying toxic, substances, distributing nutrients, synthe-
sizing fatty acids and cholesterol, metabolites, and regulating
blood glucose levels [25]. The liver is also an important part of
the immunological activity and the most dominant organ in the
struggle against infections, especially inflammation, as a cen-
tral immunological organ [26]. Hence, the liver is a significant
organ for examing the relationship between inflammation,
enzymatic antioxidants, and oxidative stress [27]. Many liver
diseases may coexist with kidney diseases since many sys-
temic conditions affect both the liver and the kidneys. This
study clarifies how the antioxidant systems in liver and kidney
tissues, especially the thioredoxin system, respond in case of
inflammation and the difference between liver and kidney
responses in this process.

Materials and methods

Experimental design and animal care

Young adult (3–4-month-old) male BALB/c mice (Mus
musculus; n= 10) were obtained from the Medical Experi-
mental Application and Research Center of Atatürk Uni-
versity. Before starting the experimental procedure, all mice
were acclimated to our facilities for a week at 22 ± 2 °C
temperature, 40–60% humidity, and 12/12 h light-dark cycle
conditions. The mice were randomly divided into two groups
as control and treatment. Treatment group mice (n= 5) were
injected intraperitoneally with lipopolysaccharide (LPS)

(5 mg/kg) dissolved in distilled water to perform inflamma-
tion [28]. In parallel, an equal amount of sterile saline
solution (0.15 mol / L NaCl) was injected into the control
group mice. Six hours after injection, the mice were sacri-
ficed by breaking the neck. Liver and kidney tissues were
removed and immediately stored at −80 °C. Animal
experiments were performed following the National
Research Council’s Guide for the Care and Use of Labora-
tory Animals and approval for them was obtained from the
local Animal Care Committee of Atatürk University (Proto-
col no: 55885869-381).

Measurement of reduced glutathione (GSH) and
oxidized glutathione (GSSG)

Mouse liver and kidney tissues were homogenized using
Benchmark Scientific BeadBlaster, as described by Budak
et al. [14]. The quantity (mM) of GSH and GSSG was
measured using Ellman’s reagent [5,5-dithiobis-2-nitro-
benzoic acid (DTNB) solution] [29].

RNA isolation, cDNA synthesis, and gene expression
analysis

Total RNA was isolated following the method described by
Budak et al. [14]. RNA concentrations and quality were
checked by RNA gel electrophoresis. The purity and con-
centration of RNA samples were confirmed by measuring
their absorbance at 260 and 280 nm with a spectro-
photometer (Thermo Scientific, Multiskan GO, USA) [30].
The ProtoScript® First Strand cDNA Synthesis Kit (Cat No:
E6300S, BioLabs) was used for the synthesis of com-
plementary DNA (cDNA) with a PCR instrument (BIO-
RAD C1000TM Thermal Cycler).

Gene-specific primer sets and TaqMan probes (Table 1)
were designed using the Primer3 software program (v.
0.4.0) (http://frodo.wi.mit.edu/) and commercially pur-
chased from Metabion. Their gene symbols and GenBank
accession numbers were as follows: Il-1 (NM_010554.4),
Il-6 (NM_031168.1), Trx1 (NM_011660.3), TrxR1
(NM_001042513.1), Txnip (NM_001009935.2), and
β-actin (NM_007393.4). β-actin was used as an internal
control gene since it was stable in all treatments. Amplifi-
cation reactions were carried out, as described by Ceylan
et al. [30]. The qPCR data were analyzed, as described by
Livak et al. [31].

Measurement of Enzyme Activities

Specific enzyme activities of TRXR1

The preparation of tissue homogenates and the TRXR1
enzyme activity assay were performed according to Aydın
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et al. [28]. The protein quantification was determined in
accordance with the Bradford protein assay using BSA
(1 mg/mL) as a standard [32].

Specific enzyme activities of GR and GPx

The preparation of tissue homogenates and the GR and GPx
enzyme activities were performed as in the study by Budak
et al. [14]. The protein quantification was determined in
accordance with the Bradford protein assay using BSA
(1 mg/mL) as a standard [33].

Western blot analysis

The preparation of protein homogenates from liver and
kidney tissues and then Western blot analysis was per-
formed following the method described by Aydın et al. [28].
TRXR1 (Sc-28321, 1:1000, Santa Cruz, Dallas, Texas,
USA) and TXNIP (Sc-271237, 1:1000, Santa Cruz, Dallas,
Texas, USA) were used as primary antibodies. β‐actin
(Sc-47778) was used as an internal control (1:5000 dilu-
tion). Horseradish-coupled secondary antibodies (Santa
Cruz Biotechnology, sc-2005) were used as secondary
antibodies [34, 35].

Statistical analysis

The LPS and control groups contained five animals, and all
measurements were made three times for each animal. The
statistical analysis of the results was performed by the

unpaired t-test and by using GraphPad Prism Software
version 7.0 (GraphPad Software, San Diego, CA, USA) for
Windows. Statistical significance was assessed as follows:
*P < 0.05 (significant); **P < 0.01 (very significant);
***P < 0.001 and ****P < 0.0001 (extremely significant).

Results

Lipopolysaccharide (LPS) induces the activation of
proinflammatory cytokines in liver and kidney
tissues

LPS, a pathogenic component in the outer membrane of all
Gram-negative bacteria, potentially stimulates the inflam-
matory response by producing inflammatory mediators,
cytokines, and growth factors [36, 37]. At the initial stage of
acute inflammation, especially due to environmental expo-
sure, some cancers, and bacterial infection, chemokines
produced by infected or damaged cells expel cytokines,
such as Il-1 and Il-6, by attracting macrophages to the
damaged areas [38, 39]. Thus, the gene expression of Il-1
and Il-6, considered markers of acute inflammation, was
examined by qPCR in liver and kidney tissues to demon-
strate our LPS-induced inflammation model. The results
showed that Il-6 and Il-1 expressions significantly increased
in both tissues of LPS-treated mice (Fig. 1). The formation
of an acute inflammation model in mouse tissues was
determined by the increase in gene expression levels of
these cytokines.

Table 1 Gene-specific primers
and TaqMan probes showing the
names, gene symbols, GenBank
accession numbers, and
annealing temperature

Gene Symbols Accession Numbers Primers/Probes Sequences (5′′-3′)

Il-1 NM_010554.4 Forward AGGGCAGAGAGGGAGTCAA

Reverse AGGTCTTCAAACAAGTCAGGAACT

Probe FAMTGGCGCTTGAGTCGGCAAAGTAMRA

Il-6 NM_031168.1 Forward GCCTTCTTGGGACTGATGC

Reverse GGTCTGTTGGGAGTGGTATCC

Probe FAMGGTGACAACCACGGCCTTCCCTTAMRA

Trx1 NM_011660.3 Forward TCCAATGTGGTGTTCCTTGA

Reverse CCTTGTTAGCACCGGAGAAC

Probe FAMTCAAATGCATGCCGACCTTCCATAMRA

Txnip NM_001009935.2 Forward CCAGCCAGCCAACTCAAG

Reverse CGAGCAGAGACTGACACACG

Probe FAMGATACCCCAGAAGCTCCTCCTAMRA

TrxR1 NM_001042513.1 Forward TGCTGGCGGTAGGAAGAG

Reverse AGCCTCCATACAGCCTCTGA

Probe FAMTGGCTTAGAGACCGTGGGCGTGTAMRA

β-Actin NM_007393.4 Forward CGTTGCCAATAGTGATGACCT

Reverse AGCCTCCATACAGCCTCTGA

Probe Cy5-ATGGCCACTGCCGCATCCTC-BQ2
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Activation of proinflammatory cytokines in the liver
and kidney triggers the formation of oxidative
stress

Any changes in the GSH level and the GSH/GSSG ratio
indicate whether inflammation in the liver and kidney indu-
ces oxidative stress [40, 41]. Therefore, the GSH level and
the GSH/GSSG ratio were investigated in the liver and
kidney tissues of LPS-treated mice and the control group. In
the liver and kidney tissues, there was a remarkable decrease
in the GSH level and GSH/GSSG ratio the in LPS-treated
mice, supporting the formation of oxidative stress (Fig. 2).

The formation of inflammation affects the hepatic
and renal gene expression of the thioredoxin
system

The quantitative gene expression of Trx1, TrxR1, and Txnip
was measured by qPCR in the liver and kidney tissues of
LPS-treated mice and the control group and compared with
each other. It was seen that the expressions of Trx1, TrxR1,
and Txnip genes increased in the liver tissues of the LPS
group. In the kidney tissue, Trx1 expression decreased, but

no change was observed in TrxR1 expression, and Txnip
expression increased (Fig. 3).

Inflammation stimulates the enzymatic activity of
the hepatic and renal antioxidant system members

The enzymatic activities of the antioxidant system, con-
taining TRXR1, GPx, and GR were investigated in the liver
and kidney tissues of LPS-treated mice and the control
group and compared with each other. The results showed no
change in TRXR activity in the liver tissue of LPS-treated
mice, while GPx and GR enzyme activities decreased sig-
nificantly. In the kidney tissue, a critical decrease was
observed in TRXR1 and GR activities, whereas GPx
activity increased (Fig. 4).

Impact of inflammation on the protein expression of
hepatic and renal TRXR and TXNIP

The protein expression of TRXR1 and TXNIP was com-
pared quantitatively by Western blot analysis in the liver
and kidney tissues of LPS-treated mice. The expression
level of TRXR1 protein significantly decreased in both

Fig. 1 Expression changes of
inflammation marker genes in
the liver and kidney of LPS-
treated groups

302 Cell Biochemistry and Biophysics (2023) 81:299–311



tissues, while TXNIP expression increased significantly
compared to the control group (Fig. 5).

Discussion

An inflammation model was created according to the pro-
tocol described by Singh et al. [42] in mice to examine how
the thioredoxin and glutathione systems act during inflam-
mation in liver and kidney tissues and compare them with
each other. The expression of Il-1 and Il-6, considered
inflammation markers, was investigated in mouse liver and
kidney tissues. Clinton et al. demonstrated that LPS treat-
ment induced inflammation and increased Il-1 gene
expression in rabbit vascular tissue [43]. Starr et al. showed
that LPS treatment caused the elevated Il-6 gene expression
in mouse heart, liver, kidney, and spleen tissues [44].
Likewise, Li et al. demonstrated the increased Il-6

expression in rat testis tissues after LPS injection [45]. In
the present study, the elevated Il-1 and Il-6 gene expressions
in liver and kidney tissues obtained by qPCR indicated the
formation of inflammation in the LPS-injected group.

The cellular redox potential is critical for the physiolo-
gical balance of the cell, and the GSH/GSSG ratio is an
important indicator of this redox potential. Any change in
the ratio of the GSH metabolite, a substrate for the glu-
tathione system’s critical enzymes, to its oxidized form
(GSSG) demonstrates ROS accumulation [46]. Budak et al.
showed that prolonged exposure to toxic iron levels in rat
liver promoted oxidative stress by causing a decrease in the
GSH level and GSH/GSSG ratio [47]. Additionally, Aydın
demonstrated that oxidative stress in mouse liver tissue was
associated with a decrease in the GSH and GSSG levels and
the GSH/GSSG ratio [28]. However, another study indicated
the increased GSH level as a sign of oxidative stress in rat
gastric tissue [48]. After showing the inflammation pattern,

Fig. 2 The amount of GSH and
GSSG and the GSH/GSSG ratio
in the liver and kidney of LPS-
treated groups
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this study spectroscopically investigated the GSH level and
GSH/GSSG ratio in mouse liver and kidney tissues. It was
observed that the resulting inflammation disrupted the cel-
lular redox balance and caused oxidative stress by decreas-
ing the GSH level and GSH/GSSG ratio in both tissues.

The thioredoxin system is engaged in different cellular
events, such as proliferation, migration, angiogenesis,
immune function, inflammatory modulation, protection
against apoptosis, and cell regulation, apart from antioxidant
functions [49–51]. The TRX system acts as a double-edged

sword in many biological processes [28, 52]. The thior-
edoxin system members have been identified to be critical
for cell viability [53]. The absence of TRX expression has
appeared to be embryonically lethal at the early stages of
mouse development, which indicates the necessity of TRX
expression for early differentiation and morphogenesis [54].
Moreover, Nonn et al. stated that deleting Trx1 and Trx2 was
also embryonically lethal to mice [55]. Deletion of TrxR also
causes severe growth retardation and early embryonic death
[56]. Furthermore, increased Trx expression protects against

Fig. 3 The expression of the
thioredoxin system genes in the
liver and kidney of LPS-
treated groups
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inflammation-induced obesity, aging, diabetes, and diabetic
retinal damage in mice [57, 58]. Many studies have reported
that the overexpression of Trx reduces hepatic fibrosis
caused by thioacetamide, acute hepatitis, and LPS-induced
liver injury [59, 60]. On the other hand, increasing Trx and
TrxR expressions may prevent many diseases related to
oxidative stress, but the overexpression of the TRX system
and decreased Txnip expression may increase uncontrolled
survival and cancer risk [61–63]. However, high TRX levels
reduced by TRXR act as an autocrine growth factor in tumor

diseases and synergize with Il-1 [64]. TrxR and Trx over-
expression are known to be associated with worse prognosis
in many tumor types, including stomach, lung, colon, breast,
pancreas, and liver tumors [65–69]. Reduced or suppressed
Txnip expression has also been reported in numerous human
cancer cell lines [70, 71]. The overexpression of Txnip has
been shown to induce apoptosis of pancreatic β-cells in
animal models [72]. In addition to being a marker of
apoptosis, TXNIP plays many important roles in tissues,
such as regulating glucose metabolism in peripheral tissues

Fig. 4 The specific activities of
the hepatic and renal antioxidant
system enzymes, including
TRXR1, GPx, and GR, in LPS-
treated groups
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and affecting in inflammation as part of inflammatory
complexes [73].

The expression of the thioredoxin system members was
examined in kidney tissue by qPCR. The results showed a
decrease in Trx1 expression and an increase in Txnip
expression but no change in TrxR1 expression. In the lit-
erature, it has been stated that increased TrxR1 expression
protects rat kidney tissues against lead toxicity by a cellular
mechanism [74]. Kasuna et al. demonstrated that the
increased Trx expression in transgenic mice might protect
against kidney damage [75]. TXNIP constitutes a major
connection between oxidative stress and inflammation, and
increased Txnip expression is linked to the pathology of
kidney diseases [76, 77]. A study stated the attenuation of
renal function impairment and fibrosis in TXNIP-
inactivated mice [78]. Another study showed that the

increased mRNA expression of Txnip was correlated with
streptozotocin-induced diabetic nephropathy [79]. Addi-
tionally, TXNIP may induce apoptosis and inhibit cell
proliferation by inhibiting the thioredoxin system [80].
qPCR outcomes suggest that the increased expression of
Txnip, a marker in kidney diseases [81], contributes to the
initiation of the apoptotic process by suppressing the anti-
oxidant capacity from the gene level to prevent pathological
changes. According to the literature, Trx and TrxR gene
expression levels are expected to increase for ensuring
antioxidant defense in case of oxidative stress. Although the
results obtained for Trx1 and TrxR1 in the present study
contradicted the literature, Txnip expression was compatible
with the literature. To explain this situation better, TRXR
and TXNIP protein expressions were also examined by
Western blot analysis in kidney tissues.

Fig. 5 Western blot analysis
results for hepatic and renal
TRXR1 and TXNIP in LPS‐
treated groups
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TRXR provides the continuity of antioxidant activity by
reducing oxidized TRX. On the contrary, TXNIP binds to
oxidized TRX, inhibits the mentioned activity of TRXR,
reduces antioxidant activity, and causes apoptosis [82].
Therefore, when the expression of these two proteins is
examined, information can be obtained at the protein level
about the behavior of the kidney tissue against
inflammation-induced oxidative stress. In this study, while
the protein expression of TRXR decreased considerably, the
TXNIP level increased significantly and was correlated with
gene expression. Enzymatic changes may also provide
information about the coordination between the thioredoxin
and glutathione systems in inflammation. Thus, TRXR1,
GPx, and GR activities were measured spectrometrically.
Here, we observed that the TRXR and GR enzyme activ-
ities, providing reduction, decreased critically in the kidney
tissue, whereas GPx activity, providing oxidation,
increased. Considering our results and the literature toge-
ther, the decreased TRXR protein expression and enzyme
activity under inflammation-induced oxidative stress sug-
gest that oxidized thioredoxin increases, and changes in GR
and GPx activity also support this idea, because GPx and
GR enzymes act as a compensatory system when TRXR
activity is reduced due to TRXR inhibition, knockout, or
knockdown [65, 83]. It is known that the accumulation of
oxidized TRX in the cytoplasm causes apoptosis [28, 84].
The suppression of TRXR at the level of genes, proteins,
and enzyme activity, the lack of GR activity, and the
increase in the amount of TXNIP indicate that the kidney
tissue has given up its antioxidant defense. Since kidney
tissue disorders may affect many tissues, this is considered
an early precaution to prevent pathological changes in other
non-target organs.

The expression of the thioredoxin system members
was also examined in the liver tissue by qPCR. The
results showed an increase in Trx1, TrxR1, and Txnip
expressions. A study showed that the mRNA expression
of Trx1 was induced in the case of oxidative stress
induced by arsenic in rat liver tissue. It was interpreted
that increased Trx1 might protect the liver from oxidative
damage by regulating transcription factors and cell
signaling pathways [85].

In the present study, we observed the inconsistency
between the increase in TrxR1 gene expression and the
decrease in TRXR1 protein expression in the liver tissue. It
is known that the thioredoxin system members are regulated
by post-translational modifications which may explain the
discrepancy. A study demonstrated that acetylation
increased TRXR activity, whereas deacetylation decreased
it [86–88]. Carbonimidothioate compounds exert their
cytotoxic effects against colon cancer cells by suppressing
cell invasion and activity of TRXR by Lys48- and Lys63-
linked polyubiquitination [89]. It was observed that low

concentrations of CysNO effectively inactivated TrxR1
[90]. Qin et al. showed that high glucose/palmitate-medi-
ated palmitoylation induced oxidative stress by causing
Trx1/TrxR1 inhibition in HepG2 cells [91]. Yuan et al.
found that TRX1 was rapidly glycated and irreversibly
inhibited by LPS. The overexpression of exogenous sup-
plementation of TRX1 might suppress LPS-induced TRX1
glycation, thereby protecting organs from LPS damage [92].
It was observed that the increased TXNIP protein level
correlated with gene expression. TXNIP plays a critical role
in the liver. Studies have demonstrated that TXNIP
knockout mice fail to protect blood glucose levels through
glucose production [93–95]. TXNIP may function as part of
a complex called inflammasome, which, when activated,
promotes inflammation and pyroptosis by releasing
inflammatory factors. Lian et al. defined that, in the case of
oxidative stress, TXNIP could separate from TRX and
activate the inflammasome directly in liver disease [96].
Thus, the induction of TRX system members at the gene
expression level may be the response against the increased
gene and protein levels of TXNIP, causing liver damage in
the event of inflammation-induced oxidative stress.

The liver is involved in detoxifying LPS. Thus it is
important to examine its response to enzymatic activity
[97]. In this study, no change was observed TRXR activ-
ity, but the GPx and GR enzyme activities decreased cri-
tically in the liver. The present findings suggest that
inflammation causes promote oxidative stress and cellular
damage by suppressing TRXR1 activity and decreasing
GR and GPx activities. Park et al. showed that the inac-
tivation of TRXR by peroxynitrite caused a signal-
inducing TrxR gene expression in HUVEC [98]. Like-
wise, in this study, it was thought that no change in TRXR
activity and a critical decrease in protein level might cause
the induction of gene expression to maintain antioxidant
defense in the liver tissue. The critical decrease in the GR
and GPx enzymes, which are the backups of the TRX
system, also supports this idea.

When the results were evaluated together, it was
observed that both tissues directed the response to
inflammation-induced oxidative stress differently. The dif-
ferential response of the activity of the key enzyme TRXR1
and the inverse correlation in the activity of GPx in both
tissues indicated that the kidney tissue was more sensitive to
inflammation-induced oxidative stress than the liver tissue.
Especially the lack of change in TRXR1 activity with the
contrast in the gene and protein expressions of TRXR1 and
TXNIP members suggested that the main response occurred
at the protein level in liver tissue. Furthermore, it can be
stated that the kidney tissue is more sensitive and takes
earlier measures than the liver tissue against cellular damage
caused by inflammation and inflammation-induced oxida-
tive stress.
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