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Abstract
Molecular dynamics (MD) simulations of wild-type and V91W mutant Mycobacterium tuberculosis-LprG (Mtb-LprG) were
performed with the goal to provide a comprehensive understanding of the Mtb-LprG as a potential antimycobacterial target.
A long-range MD simulations and post-MD analyzes led us to various results that plainly explained the impact of V91W
mutation on Mtb-LprG. Herein, the results revealed that the wild-type is less stable compared to V91W mutant. This was
further supported by root mean square fluctuation, where the V91W mutant showed a higher degree of flexibility compared
to the wild-type. Dynamic cross-correlation analysis revealed that induced mutation leads to higher residual flexibility in the
mutant structure as compared to the wild-type structure thus resulting in the existence of negatively correlated motions. The
difference in principal component analysis scatter plot across the first two normal modes suggests a greater mobility of the
V91W mutant conformation compared to the wild-type. Thermodynamic calculations revealed that the van der Waals (Evdw)
forces contribute the most towards binding free energy in a case of the V91W mutant as compared to the wild-type LprG
complex. In addition, the residue interaction networks revealed more of Evdw interaction existence among residues in case of
the V91W mutant. This study supports the Mtb-LprG as a potential antimycobacterial target and also serves as a cornerstone
to identifying new potential targets that have no inhibitors.
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Introduction

Tuberculosis (TB) is one of the major causes of death in the
world with 8.7 million new cases and 1.4 million deaths
reported annually [1, 2]. Mycobacterium tuberculosis (Mtb),
the etiological agent of this disease, has been estimated to
infect one-third of world’s population and 1.5 million
people die from its infection worldwide [2–4]. However,
TB can be treated with an uninterrupted, multi-drug regi-
men of rifampicin (RIF), isoniazid (INH), pyrazinamide
(PZA), and ethambutol (EMB) taken for 2 months followed
by RIF and INH for 4 months [5–7]. The currently-used
drugs mainly inhibit protein synthesis, mycolic acid bio-
synthesis, arabinogalactan biosynthesis, translation and
trans-translation, mycolic acid synthesis, transcription,
folate biosynthesis, DNA supercoiling and peptidoglycan
synthesis [8–10]. Failure to complete the full course of
treatment have led to drug-resistant Mtb with an estimation
of 480,000 people worldwide developing multidrug-
resistant TB (MDR-TB) in 2013 [11]. Drug resistance of
Mtb against almost all currently-approved anti-TB drugs has
motivated the urgent need for new effective drugs and drug
targets for the advancement of drug discovery against Mtb.

Mtb has the capacity to synthesize and store large
quantities of triacylglycerols (TAG) and during starvation, it
catabolizes TAG as an energy source [4, 12, 13]. In addi-
tion, low immune function results in enhanced capacity to
Mtb growth, especially in individuals infected with HIV,
hence TB is considered number one of the causes of death

in HIV/AIDS patients [14, 15]. The mycobacterial glyco-
lipids, which are structural components of the cell wall,
contribute to mycobacterial resistance to bactericidal free-
radicals [16, 17]. Hence, Mtb is capable of long-term sur-
vival in the host during the periods of reduced growth and
has the capacity to regrow rapidly [4].

LprG (Fig. 1) is a lipoprotein that plays a major role in
transporting TAG from the cytoplasm to the outer mem-
brane [4, 18, 19]. In addition, LprG is considered as one of
the several lipoproteins responsible for optimal growth of
Mtb in the host [20]. A large central cavity of LprG revealed
to accommodate triacylated lipid species [4, 17]. Hence,
native LprGs are able to transfer lipids at a high rate and
yields as compared to mutant LprG-V91W, located within
the hydrophobic cavity [4]. It is suggested that the cell wall
components may contribute in several aspects of tubercu-
losis pathogenesis and virulence [2].

Recent work by Drage et al. [21], suggest that the pocket
of LprG lipoprotein binds triacylated glycolipids, and
introduction of a single mutation (valine 91 replaced with a
tryptophan) in the binding pocket disrupt the glycolipid
binding function of LprG, suggesting LprG as a potential
target. Hence, the LprG (wild-type and V91W mutant)
mechanism is not well established. Therefore, the current
study provides molecular understanding of the lipolytic
activity of LprG as a potential target also give a lead to the
development of potent TB drugs, from a computational
perspective.

In recent years, molecular dynamics (MD) simulation of
protein molecules have been adopted to provide compre-
hensive understanding of the dynamic characteristics of
proteins [22–24]. MD simulations have become the close
counterpart to experiment in the understanding of complex
systems at the atomic level [22, 24, 25]. In one of our recent
papers, numerous post-dynamics analysis approaches,
including binding free energy calculations, root mean square
deviation (RMSD), root mean square fluctuation (RMSF),
radius of gyration (Rg), principal component analysis (PCA)
and dynamic cross correlation have proven to be useful
approaches in understanding protein molecules [24].

In this work, we aim to provide a comprehensive
understanding of the impact of the V91W mutation on the
activity of Mtb-LprG in the transportation of TAG and
provide insight into the future development of innovative
chemotherapeutics against Mtb.

Due to computational efficiency regarding the LprG
mechanism prompted us to perform a comprehensive ana-
lysis using MD approach. Post-dynamics analyzes were
employed to understand the impact of LprG V91W

Fig. 1 The front view of LprG (PDB code: 4ZRA) of the Mtb in
complex with TAG: The Mtb-LprG chain contain Helix (red), Sheet
(yellow) and Loop (green). TAG represented as blue dot ball
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mutation on upon TAG binding. To the best of our
knowledge, this is the first account where such compre-
hensive computational tools are applied to reveal the impact
of LprG V91W mutant upon TAG binding.

Findings reported in this study could aid in the under-
standing of the binding mechanism of TAG to LprG and
LprG binding landscape, which in turn could pave way in
the design new potential drugs.

Computational Methods

System Preparation

The X-ray crystal structure of LprG in complex with Tri-
palmitoylglycerol and TGA (PDB code: 4ZRA) [4] was
used as the starting coordinates. Co-crystalized solvent
molecules and ligand (TGA) were deleted during the pre-
paration of the receptor structure. Hydrogen atoms were
added to the isolated ligand. Mutation was carried out
manually (Fig. 2) at position 91 to mutate Valine (V) into
Tryptophan (W) using Chimera software.

Chimera software package [26] was used for structure
preparation as well as residue mutation. The wild-type and
V91W mutant systems were subjected to molecular
dynamic simulations as described in the section 2.2.

Molecular Dynamic Simulations

MD simulations for wild-type and V91W mutant LprG in
complex with TGA were performed using the GPU version
of the PMEMD engine provided with the Amber14 software
package [27]. To optimize the systems, ANTECHAMBER
and LEaP module of Amber14 were used to ensure all
parameters are present for MD simulations. The protein
system parameters were determined with the FF12SB [28]

variant of the Amber force field. The LEaP module of
Amber14 was used for the addition of missing hydrogen
atoms to the protein and counter ions addition to neutralize
the systems. The systems were suspended within an
orthorhombic box of TIP3P [29] water box such that all
protein atoms were within 10 Å of a box edge. Long-range
electrostatic interactions were treated with the Ewald
method [30], a component of Amber14, with set parameters
of direct space and a van der Waals cut-off of 12 Å. Prior to
system preparations, the minimizations, heating and equi-
libration steps were performed as previously described in
our recent report and a production MD run for continuous
400 ns was performed [31–33].

The trajectory in both system simulations were then
saved and analyzed in every 1 ps. Post-MD analysis such as
RMSD, RMSF, Radius of Gyration, dynamic cross corre-
lation and PCA were carried out using the CPPTRAJ and
PTRAJ modules [34, 35] of the Amber14 suite. Chimera
molecular modeling tool and Origin data analysis software
version 6 (http://www.originlab.com/) were carried out for
all visualizations and plots, respectively [36].

Since Amber Tools has a tendency to re-number amino
acids in a protein structure to a format recognized by
Amber, Fig. 3 presents information on the amino acid
sequence of 4ZRA crystal structure before and after MD
simulation for clarity on amino acid numbering of analyzed
structures.

Thermodynamic Calculations

Molecular Mechanics/Poisson–Boltzmann surface area
(MM/PB-SA) is among the most popular approaches to
study macromolecular stability and to estimate
protein–ligand binding affinities [37–39]. MM/PBSA is
more computationally efficient, hence, it can serve as a
powerful tool in drug design. The binding free energy

Fig. 2 Crystal structure of Mtb-
LprG highlighting the position
of the V91W mutation a and a
wild-type b
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profiles of the TGA bound V91W mutant and wild-type
variants of Mtb-LprG lipoprotein were computed using the
Molecular Mechanics/Poisson–Boltzmann surface area
(MM/PB-SA) approach. From each production run, the
binding free energy was averaged over 1000 snapshots
extracted from the 400 ns trajectory. The following set of
equations describes the estimation of the binding free
energy (ΔG):

ΔGbind ¼ Gcomplex � Greceptor � Gligand; ð1Þ

ΔGbind ¼ Egas þ Gsol � TS; ð2Þ

Egas ¼ Eint þ Evdw þ Eele; ð3Þ

Gsol ¼ GGB þ GSA; ð4Þ

GSA ¼ γSASA; ð5Þ

where Egas signifies gas-phase energy; Eint signifies internal
energy; Eele and Evdw represents the electrostatic and van der
Waals contributions, respectively. The Egas was directly
evaluated from the FF12SB force field terms. The solvation
energy (Gsol) is the summation of contributions from the
polar states, GGB, and non-polar states, GSA. The GGB is
derived from solving the GB equation, whereas GSA

contribution is estimated from the solvent accessible surface
area (SASA) determined using a water probe radius of
1.4 Å. T and S represented the temperature and total solute
entropy, respectively.

In order to obtain the contribution of each residue
towards total binding free energy profile between the TGA

and LprG, wild-type and V91W mutant, per-residue free
energy decomposition analysis was computed at the atomic
level using the MM/PBSA method in Amber 14. All
ligand–protein interactions were performed using LigPlot
[40].

Principal Component Analysis (PCA)

In this study, PCA was applied to give insight into the larger
scale motions from individual MD trajectories and isolate
the dominant modes of internal motion. After solvent and
ions were first stripped off, PCA was performed on 400 ns
MD trajectories using the PTRAJ and CPPTRAJ modules
of Amber14. PCA analysis was performed on C-α atoms
with 1000 snapshots extracted from the 400 ns trajectory.
The first two principal components (PC1 and PC2) gener-
ated from trajectories were averaged for both wild-type and
V91W mutant. Origin data analyzes program [36] was used
to create the PCA scatter plot demonstrating the dominant
conformational motion representative of each structure.

Dynamic Cross Correlation Matrices (DCCM)

In this study, dynamic cross correlation was calculated
using the CPPTRAJ module incorporated in Amber14 to
study the correlated motions of residual-based fluctuations
during a 400 ns MD simulation. The equation below
describes cross-correlation coefficient Cij for the pair of
each C-α atoms i and j.

Cij ¼ <Δr�i Δrj>

<Δr2i ><Δr2j >
� �1=2 ð6Þ

where Δrj and Δri is the displacement vectors correspond to
jth and ith atom respectively. The cross-correlation
coefficient Cij varies within a range of −1 to +1 of which
the upper and lower limits correspond to a fully correlated
and anti-correlated motion during the simulation process.

Analysis of Residue Interaction Networks (RINs)

RIN, a modern topology based analysis, assists in recog-
nition of residue–residue contact difference in biological
systems. The average structure derived from trajectory of
each system, wild-type and V91W mutant, were used to
construct the RINs interactively in 2D graphs using RING
[41]. The RINs used in this work were defined using
PROBE [42] software to identify interactions between
residues in the proteins by evaluating their atomic packing.
PROBE uses a small virtual probe (typically 0.25 Å) that is
rolled around the van der Waals surface of each atom, and
an interaction (contact dot) is detected if the probe touches

Fig. 3 RMSD for V91W mutant and Wild-type over 400 ns of
simulation
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another non-covalently bonded atom. Once interaction
amino acids have been determined, RING uses several tools
to define non-covalent interactions between amino acids
(e.g., hydrogen bonds, salt bridges, pi–pi interaction,
interatomic contact etc.).

Interactive visual analysis of residue networks

From MD averaged structures, RINs were generated and
used to visualize the network using RINanalyzer [43] plugin
integrated with Cytoscape [44]. In a RIN, the standard
method described by Piovesan et al. [43] was adopted to
analyze the nodes (which represent the protein amino acid
residues) and the edges between them (which represent the
type of interactions).

Results and Discussion

MD Simulations and Systems Stability

The RMSD was monitored to ensure that the systems were
well equilibrated before further MD analysis. RMSD plot of
simulated systems are provided in Fig. 3. It was noticed that
the wild-type system was well stabilized throughout the
simulation and the V91W mutant was well stabilized after a
100 ns time period.

During a 400 ns simulation, it can be observed that both
systems stabilized, although, fluctuations in rigidity did
increase during the 50–100 and 325–375 ns time period in
the V91W mutant and wild-type, respectively. One possible
explanation of this phenomenon is that the mutation induced

changes in the flexibility of the lipoproteins, suggesting that
the mutation affect the function of the lipoprotein. To gain
more specific insight into the structural changes, we per-
formed RMSF change between the two complexes.

Root Mean Square Fluctuation (RMSF)

The root mean square fluctuation (RMSF) provides insight
into the flexibility of the protein structure regions [45]. In
order to determine the amino acid flexibility for both Mtb-
LprG V91W mutant and wild-type, RMSF of the protein
backbone was calculated using Amber14 suite and pre-
sented in Fig. 4.

In the present study, a conformational flexibility with a
similar trend in fluctuations was observed in V91W mutant
and wild-type. In Fig. 4, the wild-type has higher degree of
flexibility compared to the V91W mutant.

The most significant changes can be seen on the amino
acid residues for the following regions Ile145 and Pro148
located at the active site, showing higher fluctuation in case
of the wild-type. However, the V91W mutant displayed
lower fluctuation, for similar amino acid residues.

The results suggest that during the process of transport-
ing TAG to the outer membrane, wild-type is more flexible
compared to V91W mutant. Hence, as a result wild-type
will be able to transfer lipids at a high rate and yield as
compared to the V91W mutant. We can conclude from the
results that induced mutation located at the active site leads
to a conformational rigidity. In addition, this work support
the experimental finding which suggested that the Mtb-
LprG is able to transfer lipids at a high rate and yield as
compared to V91W mutant [4].

Radius of Gyration

In this study, we computed the radius of gyration to give
insight into the compactness of protein structures, providing
insight into complex changes in the molecular shape during
the 400 ns MD simulation [46–48]. Radius of gyration (Rg)
plot of simulated systems are provided in Fig. 5, for V91W
mutant and wild-type.

Throughout the simulation (Fig. 5), the wild-type Mtb-
LprG showed a similar Rg as compared to V91W mutant
complex. Hence, both systems V91W mutant and wild-type
share a similar Rg profile, which suggests that both have a
similar degree of structural compactness.

Although both systems share a close resemblance, the
wild-type system showed a slight increase in its Rg over
time. The calculated Rg highly correlates with the estimated
RMSF, which justified an increased biomolecular flexibility
of wild-type structure as compared to V91W mutant
structure. This results suggests that the Mtb-LprG appeared
to be affected by the mutation at position 91.

Fig. 4 RMS fluctuations for the Mtb-LprG, V91W mutant and wild-
type complex over 400 ns of simulation
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Dynamic Cross-Correlation Analysis

The different correlation motions of both V91W mutant and
wild-type system are plotted in Fig. 6. The plots are pre-
sented in different colors; strong correlated movements of
specific residues were associated with highly positive
regions range from yellow to red, while strong anti-
correlated movements of specific residues associated with
highly negative regions range from blue to black.

The correlation map in Fig. 6 shows highly positive
regions in case of wild-type as compared to V91W mutant.
Hence, highly positive correlated residual motions in wild-
type as compared to the V91W mutant occur between

residue 20–20, 25–100, and 120–185 relative to each other.
From the plot, the wild-type shows strong correlated resi-
dual motions, while the V91W mutant shows an existence
of negatively correlated motions during 400 ns simulation
time period.

From the plots, we can deduce that induced mutation at
position 91 leads to an existence of negatively correlated
motions. This observation correlates with that of RMSF and
Rg, which justified that, the V91W mutant exhibits rela-
tively higher biomolecular flexibility compared to wild-type
lipoprotein. Hence, induced mutation located at the active
site at position 91 leads to high RMSF and Rg consequently
leading to an existence of negatively correlated motions.

Thermodynamic Calculations

Here we perform thermodynamic calculations to gain
insight into the binding free energy profiles of Mtb-LprG
binding to TAG. The relative binding free energy and the
various energy components contribution of the
protein–ligand complexes were calculated using the MM/
PBSA approach. Table 1 shows the binding profiles of TAG
bound with the V91W mutant and wild-type.

During MD simulation, the calculated binding free
energy (ΔGbind) between TAG and V91W mutant is
−104.675 and −99.961 kcal mol−1 in the case of wild-type.
Hence, the results suggest that the ΔEvdw (−104.776 and
−100.931 kcal mol−1) and ΔGgas (−125.390 and
−107.159 kcal mol−1) contributions towards the total
binding free energy in the TAG bound V91W mutant are
higher than that for the TGA bound wild-type LprG com-
plex, respectively.Fig. 5 Radius of gyration comparison across the 400 ns MD simulation

of V91W mutant and wild-type systems

Fig. 6 Dynamic cross-correlation matrix analyzes during 400 ns simulation for the a V91W mutant and b wild-type
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Per-Residue Interaction Energy Decomposition
Analysis

To estimate protein–ligand binding affinities and gain
information on the important residues for ligand–protein
interactions, molecular mechanics with generalized born
and surface-area solvation (MM/GBSA) [49] approach was
applied in this study. The total binding free energies for
TAG was further decomposed into each Mtb-LprG amino
acid residues contribution using the MM-GBSA method to
understand ligand binding at an atomic level. Figure 7
shows the interacting amino acid residues with the ligand
and per-residue energy decomposition analysis are shown in
Fig. 8.

As evident in Fig. 8, it can be observed from the energy
decomposition analysis that the larger residual energy
contributions were from LEU 36, LEU 41, ILE 94, and
TYR 95 towards TAG binding to Mtb-LprG (V91W mutant
and wild-type). The larger residual energy contributions (|
ΔGbinding| >−3 kcal mol−1) in case of the V91W mutant
were from LEU 36, ILE 94, and TYR 95, respectively,
while LEU 41 (|ΔGbinding| <−2 kcal mol−1) shows less
contribution as compared to other residues. On the other
hand, residues TYR 95, LEU 36, and ILE 94, respectively,
also show some major contributions towards the interaction
with ΔEvdw of >−3 kcal mol−1.

In case of the wild-type, four residues (ILE 94, TYR 95,
LEU 36, and LEU 41) had a major contribution (|ΔGbinding|
>−2 kcal mol−1) to the total binding energy. LEU 36, ILE

Table 1 MM/PBSA based binding free energy profile of TAG bound with the V91W mutant and wild-type variant of Mtb-LprG

Complex ΔEvdw ΔEele ΔEEGB ΔGgas ΔGsolv ΔGTotal

TAG-V91W −104.776 ± 0.432 −20.614 ± 0.439 35.562 ± 0.296 −125.390 ± 0.587 20.715 ± 0.29 −104.675 ± 0.458

TAG-Wild −100.931 ± 0.448 −6.227 ± 0.710 21.306 ± 0.528 −107.159 ± 0.859 7.197 ± 0.515 −99.961 ± 0.528

ΔEele electrostatic energy, ΔEvdw, van der Waals energy, ΔEEGB, generalized born solvent, ΔGsolv solvation energy, ΔGTotal total binding free energy

Fig. 7 Representative structures for the LprG-TAG complexes: V91W mutant a and wild-type b, with graphical representation of the different
binding forces
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94, and TYR 95 had a contribution of ΔEvdw >−2 kcal mol
−1 in case of the wild-type.

We believe that this report provides invaluable infor-
mation about the structural, dynamic and mechanistic fea-
tures of Mtb-LprG as a potential drug target. Considering
computational efficiency, energy-based pharmacophore [50]
map approach can serve as a powerful tool in rational drug
design of novel against Mtb, targeting LprG as a new target.

Principal Component Analysis (PCA)

The conformational motions of two systems were projected
along the first two principal components (PC1 vs PC2) in
order to gain further understanding of V91W mutant and
wild-type conformation of Mtb-LprG. PCA was conducted

taking into account the C-alpha atoms of residues of both
systems. Figure 9 highlights the dominant changes in
motion across principal components in the case of V91W
mutant and wild-type configurations of Mtb-LprG. Amino
acid fluctuation for both Mtb-LprG V91W mutant and wild-
type, was calculated across principal components (PC1 and
PC2) and presented in Fig. 10.

To understand the mutational effect on the macro-
molecular conformation we utilized ProDy plugin inte-
grated with VMD to generate porcupine plots
corresponding to first two normal modes in each case [51–
53]. The color scale from red to blue depicts high to low
atomic displacements.

From the scatter plot it was observed that the wild-type
complex occupies a larger phase space as compared to the
V91W mutant complex. As evident in Fig. 9, wild-type
complex residues exhibits a higher fluctuation as compared
to the V91W mutant complex. The results plotted in Fig. 10
for V91W mutant and wild-type in the present study shows
to follow similar trends to those reported for RMSF. From
the plots, fluctuations >0.5 Å in case of the wild-type as
compared to the V91W mutant with <0.3 Å were observed.

The results from the porcupine plots are in agreement
with the PCA scatter plot and residue based fluctuation plots
across different modes. These results provide solid infor-
mation in an attempt to understand the dynamic behavior of
Mtb-LprG Fig. 11.

Residue Interaction Network (RIN)

The network analysis of the protein backbone is a one of the
strategy used to identify key residue interactions and can be
used to explore the difference in RINs between different
proteins including V91W mutant and wild-type [24, 32, 33].
In this work, we investigated the topology based interaction

Fig. 8 The V91W mutant a and wild-type b per residue graphs showing FBE contribution for TAG
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Fig. 9 Projections of Eigen values during simulation period for a
V91W mutant and b wild-type conformations of Mtb-LprG along the
first two principal components (PC1 and PC2)

352 Cell Biochemistry and Biophysics (2018) 76:345–356



difference among key residues by generating RINs using
the representative average structures from the MD simula-
tion. Figure 12 highlights the RIN plots.

From the RIN profile of the average MD structures, 289
edges were created in case of the mutation as compared to
the wild type with 290 edges. As evident from the RIN
plots (Fig. 12), it is clear that the presence of V91W
mutation distorted the overall RIN when compared to wild
type. In an interesting manner, there is a hydrogen bond
and van der Waals force interaction between VAL56
(VAL91) and ALA67 (ALA102) whereas in the case of the
mutant where VAL51 has been mutated to TRP56
(TRP91), only hydrogen bond interaction between TRP56

(TRP91) and ALA67 (ALA102) was observed. In addition,
van der Waals force interaction between VAL56 (VAL91)
and LEU38 (73) was observed in case of the wild type
whereas in the case of the mutant TRP56 form a van der
Waals force interaction with LEU38 (LEU73) and LEU41
(LEU76). Hence, these results are correlated to those of
thermodynamic calculation which justified that the calcu-
lated van der Waals (−104.776 and −100.931 kcal mol−1)
contributions more in case of the V91W mutant as com-
pared to the wild-type LprG complex, respectively. The
V91W mutation affects the interaction network, which
ultimately affects the protein backbone and consequently
the ligand binding landscape.

Fig. 10 Residue-wise loading for PC1 (black) and PC2 (blue) for the Mtb-LprG V91W mutant a and wild-type b complex over 400 ns of
simulation

Fig. 11 Porcupine plots for the first two normal modes showing motion difference among variants of Mtb-LprG complexes. a, b Corresponds to
V91W mutant and wild-type, respectively

Cell Biochemistry and Biophysics (2018) 76:345–356 353



Conclusion

Drug-resistant Mtb against almost all currently approved
anti-TB drugs has motivated the urgent need for new
effective drugs and new drug targets for the advancement of
drug discovery against Mtb. In this report, we embarked on
various computational approaches in order to provide
information on Mtb-LprG as a new drug target. MD simu-
lations and post-MD analyzes led us to several findings that
clearly explained the impact of V91W mutation on Mtb-
LprG. RMSF, Rg and PCA analyzes for the wild-type
system suggested a more flexible conformational nature of
Mtb-LprG compared to the V91W mutant. On the other
hand, DCC results shows to correlate with those of RMSF
and Rg, which justified that the wild-type exhibit greater
biomolecular flexibility. The induced mutation results in
reduced residual flexibility, revealed by lower RMSF and
Rg, leading to an existence of negative correlation motions.
The study identified the V91W mutant with higher binding
affinities as wild-type with the majority of the favorable
binding energy contributions arise from ΔEvdw. Hence,
thermodynamics calculations are in agreement with RIN

analysis of the protein backbone which suggested more of
van der Waals force interactions in case of the V91W
mutant as compared to the wild-type. LprG represent novel
candidate not targeted by existing TB drugs, and the
availability of comprehensive understanding of the Mtb-
LprG activity in the transportation of TAG greatly opens
new opportunities for the development of new antibiotics to
fight Mtb. This study not only suggest Mtb-LprG as a
potential target, but also provide more insight into the
structural, and dynamic mechanistic features of Mtb-LprG.
Hence, the approach can also serve as a cornerstone to
identifying new potential targets that have no inhibitors.
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