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Abstract
The Influenza A virus is one of the principle causes of respiratory illness in human. The surface glycoprotein of the influenza
virus, neuraminidase (NA), has a vital role in the release of new viral particle and spreads infection in the respiratory tract. It
has been long recognized as a valid drug target for influenza A virus infection. Oseltamivir is used as a standard drug of
choice for the treatment of influenza. However, the emergence of mutants with novel mutations has increased the resistance
to potent NA inhibitor. In the present investigation, we have employed computer-assisted combinatorial techniques in the
screening of 8621 molecules from Drug Bank to find potent NA inhibitors. A three-dimensional pharmacophore model was
generated from the previously reported 28 carbocylic influenza NA inhibitors along with oseltamivir using PHASE module
of Schrödinger Suite. The model generated consists of one hydrogen bond acceptor (A), one hydrogen bond donors (D), one
hydrophobic group (H), and one positively charged group (P), ADHP. The hypothesis was further validated for its integrity
and significance using enrichment analysis. Subsequently, an atom-based 3D-QSAR model was built using the common
pharmacophore hypothesis (CPH). The developed 3D-QSAR model was found to be statistically significant with R2 value of
0.9866 and Q2 value of 0.7629. Further screening was accomplished using three-stage docking process using the Glide
algorithm. The resultant lead molecules were examined for its drug-like properties using the Qikprop algorithm. Finally, the
calculated pIC50 values of the lead compounds were validated by the AutoQSAR algorithm. Overall, the results from our
analysis highlights that lisinopril (DB00722) is predicted to bind better with NA than currently approved drug. In addition, it
has the best match in binding geometry conformations with the existing NA inhibitor. Note that the antiviral activity of
lisinopril is reported in the literature. However, our paper is the first report on lisinopril activity against influenza A virus
infection. These results are envisioned to help design the novel NA inhibitors with an increased antiviral efficacy.
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Introduction

In the recent years, the Influenza A virus infection has
become a serious threat for human health worldwide. This
virus is a negative sense, single stranded, and segmented
RNA viruses, which belongs to the orthomyxoviridae family
[1]. The two major surface glycoproteins of influenza viru-
ses, hemaglutinin (HA) and neuraminidase (NA), have cru-
cial roles in the life cycle of the viruses. There are different

subtypes of each protein, HA having 16 subtypes (H1, H2,
H3, …, H16) and NA having 9 subtypes (N1, N2, …, N9)
[2]. The glycoproteins HA and NA together are believed to
interact with the surface receptors of the host cell, assisting
the viral infection [3]. The infection cycle of influenza virus
involves several steps. Initially, the influenza virus binds to
sialic acid-α 2, 6-galactose, which is present on the cell
surface [4]. Subsequently, the uncoating of nucleocapsid and
propagation of genetic material takes place and finally ends
up with the expression and release of viral protein [5]. The
virus entry is mediated by HA antigen upon binding to the
sialic acid receptor. A specific linkage of sialic acid receptor
is broken by NA, which leads to the release of newly pro-
duced virions from the infected cells. Therefore, NA has
been considered as the most significant target for preventing
the propagation of influenza virus in the host [1]. To prevent
mortality and morbidity rate related to it, FDA-approved NA
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inhibitors, oseltamivir (Tamiflu) and zanamivir (Relenza),
has been widely used for influenza treatment [6]. In addition
both these drugs have prolonged duration of antiviral activ-
ity. However, they entirely differ in the mode of deliverance,
pharmacological action, and side effects. Oseltamivir when
compared with zanamivir has good oral availability [7].
Hence, it is the most preferred antiviral drug for treating and
preventing influenza virus infection. As a consequence of its
highly polar nature, zanamivir has poor oral availability and
is thus administered through inhalation. This eventually
limits its usage in treating the elderly patients as it may
induce bronchospasm [6]. In the year 2010, two new NA
inhibitors, laninamivir and peramivir, were approved for
treating influenza virus infection [8].

Despite the number of available drugs for NA inhibition,
drug resistance is the major setback in the influenza ther-
apeutics. The drug resistance offered by the virus a reper-
cussion of mutations, which occur due to substitutions in the
amino acid residues. These substitutions are caused by the
continuous antigenic drift and erratic antigenic shift in the
surface glycoproteins. However, this might have also
emerged due to extensive use of NA inhibitors [9]. In 2007
to 2008, the histidine residue present at position 274 of
influenza A virus was found to be substituted by tyrosine
which offered resistance to oseltamivir [10]. In recent times,
the prominence of R292K mutation in the novel H7N9 avian
influenza virus was accounted to be related with reduced
clinical result [11]. In another study, N294S mutation has
been found to confer decreased sensitivity especially to
oseltamivir and has been noticed in both N1 and N2 subtype
of influenza A virus [12]. One more instance of mutation
wherein, substitution of glutamate residue at 119th position
by glycine is developed under zanamivir selective pressure
[7]. Additionally, the I221L variant of NA provides lower
affinity for oseltamivir and zanamivir [13]. Advent of other
cases of affiliated mutation such as, I223R and H275Y under
oseltamivir treatment highlights the importance of close
examination of patients under treatment [14].

An amalgamation of both conventional drug discovery
process and computational strategies would lead to
remarkable development in drug discovery [15]. Virtual
screening is known as the most dynamic and advantageous
technology in revelation of novel drug-like compounds [16–
19]. Most importantly, pharmacophore-based virtual
screening and 3D-QSAR modeling has shown great promise
in sorting large libraries of bioactive molecules and ana-
lyzing the biological activity of ligands. For instance, a
combination of pharmacophore modeling and 3D-QSAR
studies has been carried out to identify novel c-KIT inhibi-
tors in treating small cell lung cancer [20]. Another instance,
wherein consolidation of these two strategies were employed
to identify anti-ataxia compounds for treating a rare neuro-
logical disorder termed as Spinocerebellar ataxia (SCA-2)

type-2 [21]. Hence, we have employed hyphenated 3D-
QSAR [22] statistical model-drug repurposing analysis to
screen potentially potent and selective NA inhibitor. Indeed,
the results of our analysis are of immense importance for
virologist to design better and safer drugs in the near future.

Materials and Methods

Dataset Preparation

Twenty-eight carbocylic influenza NA inhibitors with the
corresponding IC50 data were retrieved from the available
literature [23] along with oseltamivir for the 3D-QSAR
studies. It includes 11 carbocylic analogs with linear alkyl
chains, 10 branched alkyl chains and 7 aryl and aryl alkyl
side chains. The inhibition concentrations (IC50) were
converted into negative logarithmic values to obtain pIC50

values that aids in linearization of the QSAR equation [24].
The dataset was classified into actives, inactives, and
intermediates based on the pIC50 value to find common
pharmacophore hypothesis (CPH). For instance, the com-
pounds with pIC50 value > 8.00 were considered to be
active, those with pIC50 value < 5.00 were considered to be
inactive. Compounds having pIC50 value between 5.00 and
8.00 were considered as intermediates. The details are
shown in Table 1. The X-ray crystal structure of native NA
and mutants (H274Y, R292K, E119G, N294S, D179E,
I223R, and I221L) used in our study was retrieved from the
Protein Data Bank (PDB) [25]. The corresponding PDB
code for native NA is 3TI6 with a resolution of 1.69 Å [26]
and for mutants is 4HZZ, 1L7H, 1L7G, 3CL2, 3K39,
4B7N, and 4CPM, respectively. For the virtual screening
study, a total of 8621 molecules were considered from Drug
bank. The set consist of 2037 FDA-approved drugs. The
number of experimental and investigational drugs includes
4953 and 1991, respectively.

Protein Preparation

The protein preparation wizard of Schrödinger Suite was
employed to prepare the 3D structure of NA protein
retrieved from PDB. It helps in the structural correction of
defects, which may be pre-existing in the molecules. Sub-
sequently, the protein was pre-processed and water mole-
cules were eliminated up to a distance of 5.0 Å.
Heteroatoms that do not affect the protein structure, con-
formation or function were omitted; right bond orders were
allocated and hydrogen atoms were added to the carbon
atoms. The structure was then optimized and minimized
using Optimized Potentials for Liquid Simulations (OPLS)-
2005 force field. Finally, geometry refinement was per-
formed with restrained minimization such that the junction
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Table 1 Structures and biological activities of carbocylic NA inhibitors used for 3D-QSAR analysis

Compound Structure of the compound NA inhibition IC50 (nM) Observed pIC50 QSAR set Pharm set

Linear alkyl chains

1 6300 5.201 Training Inactive

2 3700 5.432 Training Inactive

3 2000 5.699 Training Inactive

4 180 6.745 Test Intermediate

5 300 6.523 Training Intermediate

6 200 6.699 Training Intermediate
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Table 1 (continued)

Compound Structure of the compound NA inhibition IC50 (nM) Observed pIC50 QSAR set Pharm set

7 150 6.824 Test Intermediate

8 270 6.569 Training Intermediate

9 180 6.745 Training Intermediate

10 210 6.678 Test Intermediate

11 600 6.222 Test Intermediate

Branched akyl chains

12 200 6.699 Training Intermediate
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Table 1 (continued)

Compound Structure of the compound NA inhibition IC50 (nM) Observed pIC50 QSAR set Pharm set

13 10 8.000 Training Active

14 9 8.046 Training Active

15 1 9.000 Test Active

16 1 9.000 Training Active

17 3 8.523 Training Active
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Table 1 (continued)

Compound Structure of the compound NA inhibition IC50 (nM) Observed pIC50 QSAR set Pharm set

18 1 9.000 Training Active

19 60 7.222 Training Intermediate

20 16 7.796 Test Intermediate

21 1 9.000 Training Active

Aryl and aryl alkyl side chain

22 530 6.276 Test Intermediate
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Table 1 (continued)

Compound Structure of the compound NA inhibition IC50 (nM) Observed pIC50 QSAR set Pharm set

23 620 6.208 Test Intermediate

24 0.3 9.523 Training Active

25 12 7.921 Test Intermediate

26 >1000 6.000 Training Inactive
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of atoms had a default value of root mean square deviation
(RMSD) of 0.3 Å [27].

Ligand Preparation

The 29 molecules were processed using “Pharmacophore
Alignment and Scoring Engine (PHASE)” module that pos-
sesses in-built LigPrep software. The ligands were prepared
to refine them before the development of pharmacophore and
3D-QSAR model. The refining step includes hydrogen
attachment, 2D to 3D structure conversion, stereoisomer
generation, and identifying the most probable ionization
states [28, 29]. Subsequently, the ConfGen tool was utilized
to generate conformers for the ligands. Of note, Macromodel
torsion angle search approach followed by minimization
using OPLS-2005 force field was utilized to generate the

ligand conformers [30]. This process was then followed by
the pharmacophore and 3D-QSAR model generation.

Pharmacophore Model Generation

The PHASE module of Schrödinger Suite was used to gen-
erate pharmacophore and an atom-based 3D-QSAR model.
PHASE module could either generate pharmacophore-based
or atom-based QSAR model. As the dataset comprises con-
generic set of molecules, an effort was made to generate
atom-based QSAR model. Prior to the model generation, the
ligands present in the dataset were divided into training set
and test set in such a way that 70% of the molecules were in
training set and the rest 30% in test set. The training set is
used to generate the QSAR model and the test set on the
other hand is used for the validation of generated model [31].

Table 1 (continued)

Compound Structure of the compound NA inhibition IC50 (nM) Observed pIC50 QSAR set Pharm set

27 >1000 6.000 Training Inactive

28 90 7.046 Test Intermediate

Oseltamivir carboxylate

29 1 9.000 Test Active
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Subsequently, using these 29 ligands a pharmacophore
model was generated. The six dominating pharmacophoric
features defined by a set of SMARTS patterns (Smiles
ARbitary Target Specification patterns), namely hydrogen
bond acceptor (A), hydrogen bond donor (D), hydrophobic
group (H), aromatic ring (R), negatively ionizable (N), and
positively ionizable (P) were considered [32–34]. All the
CPH were then scrutinized using scoring function to select a
proper hypothesis for 3D-QSAR model generation. Apart
from the survival active and survival inactive scores, a
rescoring was also executed to refine the hypothesis.

Enrichment Analysis and 3D-QSAR Modeling

Prior to 3D-QSAR model generation, the generated phar-
macophore model performance to select active ligands from
a large decoy set was examined using “Enrichment calcu-
lator” tool of Schrödinger Suite [24]. The decoy set of
molecules for NA protein was downloaded from Directory
of useful decoys (DUD) database [35]. A total of 1883
compounds, comprising 1874 decoys and 9 known inhibi-
tors was used to evaluate the goodness of the model.
Consequently, the ability of the pharmacophore model to
recover known actives was examined using the parameters
such as enrichment factor (EF) and receiver operating
characteristic curve value (ROC) [36]. Finally, QSAR
model built with a grid spacing size of 1 Å and partial least
square (PLS) factor of 3. The PLS factor was calculated
using the rule of N/5, where N stands for total number of
training set molecules [32].

High-Throughput Virtual Screening and Molecular
Docking

Molecular docking is a widely used technique to generate
and score putative protein–ligand complexes based on their
calculated binding affinities. This process has been suc-
cessfully used for discovering potent ligands by filtering out
compounds that do not bind efficiently to the binding site
residues [37, 38]. In the present study, Glide module of
Schrödinger Suite was used to perform molecular docking
process for the identification of “hit” molecules obtained
from the pharmacophore-based screening. The prepared NA
protein (PDB ID: 3TI6) structure was used as receptor. The
receptor grid was generated for the refined protein using
information about the active-site residues obtained from the
sitemap analysis [1, 39]. Finally, the ligands were docked
against the generated grid in a step-wise process, using the
Glide high-throughput virtual screening (HTVS), standard
precision (SP), and extra precision (XP) mode. This step-
wise process of docking searches for favorable interactions
between ligand molecules and protein. Consequently, the
best molecules were selected based on the glide score

obtained in the docking analysis [40]. The effectiveness of
the hit molecule was further examined against the NA-
mutant structures (PDB ID: 4HZZ, 1L7H, 1L7G, 3CL2,
3K39, 4B7N, and 4CPM). In addition, the resultant hits and
their corresponding predicted pIC50 data were utilized to
examine the 3D-QSAR model by employing AutoQSAR
algorithm.

Results and Discussion

Development of Pharmacophore Hypothesis

The PHASE module of the Schrödinger Suite that works on
tree-based partitioning algorithm was used for generating
pharmacophore and 3D-QSAR model. It thoroughly ana-
lyses the spatial arrangement of chemical features that are
necessary for the biological activity of the ligands. The
ligands were initially prepared and then utilized for identi-
fying CPH. Moreover, the ligands were divided into actives
and inactives based on the pIC50 value. The molecule with
pIC50 value 8 or greater than 8 were considered as actives,
and the molecules with pIC50 value 5 or below were con-
sidered as inactives. Compounds with pIC50 value lying in
between the threshold value range were considered as
intermediate compounds. Additionally, scoring procedure
was performed that provided an insight into the quality of
alignment of active and inactive molecules by measuring a
survival score (S), given as:

S ¼ WsiteSsite þWvecSvec þWvolSvol þWselSsel þWm
rew;

where, S and W, stands for the scores and weights
respectively; Ssite is the alignment score, which is the
RMSD in the site position; Svec represents vector score,
which is the average value of cosine of angle between the
vector features in the aligned structure; Svol is the volume
score obtained from the overlapping of Van der Waals
models of non-hydrogen atoms of each structure; Ssel is the
selectivity score, which represents the part of molecule
matching the hypothesis irrespective of its activity against
receptor; weights Wsite, Wvec, Wvol, and Wrew are user
modifiable with a default value of 1.0 while the default
value for Wsel is 0.0. W

m
rew stands for reward weight given

by m− 1, where m represents the number of active
molecule which matches the hypothesis [41, 42].

Subsequently, the top four pharmacophore models were
generated, which gratified internal parameters such as vec-
tor, volume, and survival activity. Finally, a four feature
pharmacophore model was selected for NA inhibitors with
highest survival inactive score of 3.241. The best pharma-
cophore model, ADHP, consisted of one hydrogen bond
acceptor (A), one hydrogen bond donor (D), one
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hydrophobic group (H), and one positively charged group
(P) (Fig. 1). Consequently, this hypothesis was used for
further analysis.

Enrichment Analysis

The discriminating power of the generated pharmacophore
model was performed using enrichment calculator tool of
Schrödinger Suite. The EF (1%) value of 99 was obtained
for the generated model. This result clearly signifies the
highest recovery rate of true positive from the decoy set.
Further, ROC parameter was also calculated. ROC high-
lights the relationship between the sensitivity (true positive)
and specificity (false positive) of a test. The ROC plot for
our set is shown in Fig. 2. The ROC value of 1 indicates that
pharmacophore has a probability of screening the com-
pounds 100% effectively from Decoy set. It is also clear
from the figure that ROC curve is initially a vertical line
implying that the model is able to efficiently find and rank
the actives at the beginning of the screening process [36].
Overall, the enrichment analysis suggests that the generated
pharmacophore model is ideal for both 3D-QSAR model
generation and virtual screening analysis.

Building 3D-QSAR Model

The ADHP hypothesis was further validated by predicting
QSAR model and was analyzed with the help of PLS
analysis by aligning the training set molecules on this
pharmacophore. The hypothesis was then employed to
generate the 3D-QSAR model. As higher values of PLS
factor may cause over-fitting of statistical model, a value of
3 was chosen for the PLS analysis with grid spacing of 1 Å
[43]. The CPH was evaluated by different statistical

parameters such as correlation coefficient (R2), squared
value for the predicted activities (Q2), standard deviation
(SD), root-mean square error (RMSE), correlation between
the predicted and observed activities for the test set (Pear-
son-R), and variance ratio (F) (Table 2). For instance, the
analysis yielded a very high F value of 342.4 along with a
small Pearson-R value of 0.9016, which signifies the model
as statistically superior. Moreover, R2 and Q2 value of
0.9866 and 0.7629, respectively, substantiate with the
condition for a QSAR model to be highly predictive.
Interestingly, a smaller SD value and RMSE value of
0.1754 and 0.4818, respectively, imply that the model used
for generating the 3D-QSAR model is the best. Further-
more, the predicted and experimental pIC50 values of
training set and test set molecules were also compared. It is
clear from the Table 3 that predicted pIC50 values and the
experimental pIC50 values were quite similar with high fit-
ness score, which indicates the scrupulousness of predicted
model. In addition, a graph was plotted that depicted the
experimental versus predicted pIC50 values of both training
and test set molecules of the model. The graph along with
equation and R2 value is shown in Fig. 3. It illustrates that
all the values are plotted around the best fit line, which
indicates the significance of the model.

Analysis of Contour Map

The PHASE module has the ability to generate contour
maps consisting of favorable (blue cubes) and unfavorable
(red cubes) regions. Moreover, these maps have a sig-
nificant role in determining the positions of substitutions for
the enhancement of biological activity of a ligand. How-
ever, an insight into the inhibitory activity can be achieved
by analyzing the map against most inactive (compound 1)
and most active (compound 24) compounds. Hence, the

Fig. 2 ROC curve of a generated pharmacophore model (ADHP)

Fig. 1 Pharmacophore model (ADHP) generated from PHASE module
illustrating one hydrogen bond acceptor (A2; red), one hydrogen bond
donor (D3; light blue), one hydrophobic group (H5; green), and one
positively charged group (P7; dark blue) (color figure online)
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contour maps were created for most active and inactive
compounds. In our study, the effect of hydrogen bond donor
on both ligands (Fig. 4), its hydrophobic effect (Fig. 5) and
its electron-withdrawing nature (Fig. 6) were visualized.

The hydrogen bond donor mapping explains the presence
of favorable regions near amine group (–NH2), which is the
positively charged feature and the hydrogen bond donor
group at C6 and C7 position of both the ligands. In addition,
the presence of favorable region near hydrogen atom of
carboxyl group in active compound specifies its significance
for activity when compared to that of inactive compound
(Fig. 4a). Moreover, the presence of unfavorable region
near hydroxide group of inactive compound might cause
decrease in its activity (Fig. 4b).

The hydrophobic effect of active and inactive ligands
reveals that presence of more favorable regions in active
ligand (Fig. 5a) could increase its activity when compared
with inactive compound. It is clear from the figure that the
inactive compound lacks a hydrophobic feature (Fig. 5b),

Table 2 Statistics of atom-based 3D-QSAR results for the CPH

Parameters Values

PLS factor 3

SD 0.1754

R2 0.9866

F 342.4

Stabilitya 0.5554

RMSE 0.4818

Q2 0.7629

Pearson-R 0.9016

PLS factor partial least square factor, SD standard deviation of
regression, R2 correlation coefficient, F variance ratio, RMSE root-
mean-square error, Q2 squared value for the predicted activities,
Pearson-R correlation between the predicted and observed activities
for the test set
aStability of the model

Table 3 Experimental pIC50 value, predicted pIC50 value, and fitness
score of compounds

Compound Experimental activity
(pIC50)

Predicted activity
(pIC50)

Fitness
score

1 5.201 5.16 2.27

2 5.432 5.47 1.27

3 5.699 5.49 2.15

4 6.745 6.42 2.14

5 6.523 6.70 2.31

6 6.699 6.70 2.31

7 6.824 7.20 2.40

8 6.569 6.85 2.55

9 6.745 6.65 2.22

10 6.678 6.65 2.19

11 6.222 6.75 2.06

12 6.699 6.64 2.30

13 8.000 7.92 2.35

14 8.046 7.92 2.35

15 9.000 8.56 3.00

16 9.000 8.89 2.72

17 8.523 8.46 2.96

18 9.000 8.90 2.63

19 7.222 6.98 2.00

20 7.796 7.90 1.97

21 9.000 9.03 2.52

22 6.276 6.71 2.02

23 6.208 6.77 2.02

24 9.523 9.73 3.00

25 7.91 8.32 2.72

26 6.000 6.33 2.10

27 6.000 6.04 2.29

28 7.046 7.94 2.19

29 9.000 8.52 3.00

(a) 

(b) 
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Fig. 3 Relation between predicted pIC50 and experimental pIC50
values of a test set and b training set of molecules
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which is present in case of active compound. Hence, this
could be a reason for comparatively less hydrophobic nature
of inactive compound than active compound.

The electron-withdrawing effect of both the ligands are
shown in Fig. 6. This figure illustrates that the favorable
regions lay near the positively charged, hydrogen bond
acceptor and hydrogen bond donor features both active and
inactive ligand. Additionally, the presence of more favor-
able blue regions near the carboxylic group of active
compound (Fig. 6a) could enhance its biological activity
against NA.

Pharmacophore-Based Virtual Screening

The virtual screening strategy based on pharmacophore
model has been widely used in recent years and has shown
many successive archives for lead identification [44]. In the
present investigation, screening was conducted against Drug
Bank database with the help of ADHP hypothesis as a search
query. Initially, the PHASE database was created by applying
Lipinski’s filter. This yielded a total of 3000 molecules from
the database of 8621 molecules. Subsequently, the screening
was performed with the generated ADHP hypothesis that
retreived 858 molecules as a match. Final screening was
accomplished using the molecular docking algorithm.

Molecular Docking

The GLIDE module from Schrödinger Suite was utilized to
perform molecular docking in the increasing order of
complexity. The PHASE search query resulted in 858
molecules as matches for the common hypothesis (ADHP).
To rank the screened ligands three stages of docking pro-
cess such as, HTVS, SP, and XP were carried out. Prior to
the docking process, the binding site residues in the NA
structure were identified using Sitemap module imple-
mented in the Maestro package. The results from the ana-
lysis highlight that 23 amino acid residues such as Arg 118,
Glu 119, Leu 134, Asp 151, Arg 152, Arg 156, Trp 178, Ser
179, Asp 198, Asn 221, Ile 222, Arg 224, Glu 227, Ser 246,
His 274, Glu 276, Glu 277, Arg 292, Asn 294, Asn 347,
Arg 371, Tyr 406, and Glu 425 constituted the binding
pocket of the NA structure (Fig. 7). It is noteworthy that,
four amino acid residues namely, Arg 118, Glu 119, Arg

Fig. 4 Contour maps showing hydrogen bond donor effect on a active
molecule and b inactive molecule

Fig. 5 Contour maps showing hydrophobic effect on a active molecule
and b inactive molecule

Fig. 6 Contour maps showing electron-withdrawing effect on a active
molecule and b inactive molecule

Fig. 7 Analysis of binding site residues using sitemap module
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292, and Arg 371 have been experimentally validated in the
literature [45]. Further, we docked 858 ligands to the
binding site of NA using the generated grid. Subsequently,
96.4% (827) of ligands were passed onto the next stage of
SP glide docking. Finally, we filtered 42.07% (348) of
ligands on the basis of docking and subjected to Glide XP
docking simulation. This process was resulted 213 hit
molecules having binding score more than oseltamivir. In
particular, five FDA-approved drug molecules also showed
significant NA inhibitory activity (Table 4). Moreover, the
resultant hit molecules possessing a docking score more
than oseltamivir were utilized for the AutoQSAR analysis to
validate the 3D-QSAR model.

Automated QSAR Workbench for 3D-QSAR Model
Validation

The set of hit molecules from XP docking were employed to
investigate both 3D-QSAR model eminence as well as its
accuracy in pIC50value prediction. This analysis was per-
formed by AutoQSAR algorithm [46]. It is an automated
machine learning method that can build and validate a large
number of QSAR models with different random training
and test sets. The quality of the generated models is
assessed with a score, computed by its training and test set
molecules [47]. The top model with highest score of 0.952
was considered for the further analysis, pIC50 calculation. It
is worth mentioning that the activity predicted by the best
model was found to be similar to that of pIC50 value pre-
dicted by 3D-QSAR model. The result is depicted in Fig. 8.
This clearly signifies the quality and accuracy of the gen-
erated 3D-QSAR model. Therefore, five FDA-approved hits
resulted in the XP docking were further examined for its
interaction pattern and absorption, distribution, metabolism
and excretion (ADME) properties.

Interaction Studies of Oseltamivir and Screened Hit
Molecules

The intermolecular interactions present in the complex
structures of NA protein were analyzed using ligand-

interaction diagram (LID) of Schrödinger suite. The inter-
action diagram demonstrates the intermolecular interaction
such as hydrogen bond (purple line), pi–pi stacking (green
line), pi cation interaction (red line), and salt bridges (blue
line). The crucial amino acid residues of NA contributing
for hydrogen bond interaction with oseltamivir include Glu
119, Arg 152, Arg 292, and Arg 371. The binding pattern of
oseltamivir with native NA protein is shown in Fig. 9. It
illustrates that oxygen atom of oseltamivir forms hydrogen
bonds with Arg 371, Arg 292, and Arg 152 and the amine
group (–NH2) of oseltamivir was found to form hydrogen
bond with Glu 119 residue present in the binding pocket.
Further, the interaction profile of five screened hit molecules
from the docking study were also analyzed and compared
with the oseltamivir binding profile (Fig. 10). The results

Table 4 Glide scores and energy involvement of oseltamivir and
screened hit molecules

S. no. Ligands Glide energy
(kcal/mol)

G score
(kcal/mol)

XP G score
(kcal/mol)

1 Oseltamivir −42.387 −4.882 −4.882

2 DB01136 −47.427 −6.639 −6.686

3 DB04861 −44.474 −6.471 −6.471

4 DB00243 −47.551 −5.432 −5.463

5 DB00722 −51.563 −5.369 −5.49

6 DB06288 −41.269 −5.364 −5.365
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Fig. 9 Interaction profiles of neuraminidase with oseltamivir
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are depicted in the Table 5. It reveals that four molecules,
namely, DB01136, DB04861, DB00722, and DB06288,
from the hits were sharing similar kind of interaction pro-
files to that of the oseltamivir’s binding pattern. In addition,
the hydrogen bond distance between hit molecules and key
residues were found to be within the acceptable range (<3
Å). For instance, the hit molecule DB00722 is forming
hydrogen bond with conserved residues such as Arg 118,
Trp 178, Arg 292, and Arg 371. Along with these residues,
hydrogen bonding with framework residue Glu 227 was
also found. In addition, other three hit molecules, DB01136,
DB04861, and DB06288, were also found exhibiting
similar kind of interactions. Therefore, these molecules
were further examined with respect to their drug likeliness
property using Qikprop program of Schrödinger Suite.

ADME Properties of Hit Molecules

ADME properties of the four molecules were calculated
using Qikprop program [48–50]. Qikprop predicts phar-
maceutically relevant 49 descriptors. It also provides the
range to compare with the molecular properties of 95%
known drugs. The values of this descriptor for all the four
screened compounds are depicted in Table 6. The descriptor
#stars indicates the number of properties that fall outside the
recommended range. Therefore, a lower number of #stars
denotes the better drug-like molecule. It is clear from the
table that all the compounds were found to have the #stars
value of zero, which means that all the 49 pharmaceutically
relevant descriptors lies in the recommended range to that of
known drugs. The compounds were then checked for
another descriptor, CNS, which predicts the central nervous
system activity of each compound. For instance, the CNS
value lies between −2 (inactive) and +2 (active). It is noted
that two hit compounds namely, DB00722 (lisinopril) and

DB06288 (amisulpride) possess CNS value of −2 indicat-
ing that it is inactive. Further, the descriptor sets such as
QPlogKp, QPlogBB, QPlogS, QPlogPo/w, QPlogPw, and
QPlogPoct were also analyzed and found to present within
the acceptable range. Particularly, lisinopril (angiotensin-
converting enzyme (ACE) inhibitor) is found to form
similar kind of interaction profile as that of oseltamivir.

Lisinopril belongs to a group of medicines called ACE
inhibitors. One of the most common side effects of lisinopril
is a dry cough. Other uncommon side effects include
hypotension, chest pain shivering, etc [51]. Despite its
notable side effects, anti-TNF treatment might be actually
beneficial because of a critical element of influenza infec-
tion outcome, lung inflammation. Of note, lisinopril was
reported to have anti-inflammatory effects via suppression
of the pro-inflammatory cytokines such as TNF-α produc-
tion [52]. However, this mechanism may be closely related
to symptom relief without significant reduction of viral
load. Thus, we hope that lisinopril treatment with con-
comitant immunomodulatory drugs may contribute to the
clinical benefits.

Docking Studies of Hit Compound with Mutants

To strengthen our study, the inhibitory activity of the lead
molecule was also tested against the mutant NA structures
using XP GLIDE docking. The mutant positions such as
H274Y, R292K, E119G, N294S, D179E, I223R, and I221L
were taken into consideration for our study. The glide
scores of oseltamivir against each mutant were taken as the
threshold for our investigation. It is noteworthy to mention
that the binding efficacy of lisinopril is significantly higher
than reference drug in all the studied structures (Table 7).
For instance, the glide score of oseltamivir against mutants
is between −3.329 and −4.644 kcal/mol, whereas for the hit

Fig. 10 Interaction profile of hit molecules a DB01136, b DB04861, c DB00243, d DB00722, and e DB06288 with neuraminidase protein
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compound the glide score varies between −4.757 and
−7.140 kcal/mol. Further the intermolecular interactions
were analyzed to gain an insight into the binding of hit

compound. The results are shown in Fig. 11 and the details
of intermolecular interactions were listed in Table 8. It is
interesting to note that the hit compound, lisinopril is able to

Table 5 Analysis of intermolecular interaction of screened hit molecules with neuraminidase protein

S. no. Ligands Types of Interaction Interacting atoms of protein–ligand complex Distance (Å)

1. Oseltamivir H-bond Arg 292⋯Lig(O) 2.344

Arg 371⋯Lig(O) 1.826

Arg 152⋯Lig(O) 2.1483

Glu 119⋯Lig(NH2) 2.0835

2. DB01136 H-bond Lig(HO)⋯Tyr 406 1.918

Arg 118⋯Lig(HO) 1.842

Arg 152⋯Lig(O) 2.339

Glu 119⋯Lig(NH2
+) 2.167

Salt bridges Lig(NH2
+)⋯Glu 277 4.508

Asp 151⋯Lig(NH2
+) 4.497

Pi cation Ag 118 5.769

Arg 371 3.425

Pi–Pi Arg 371 3.563

3. DB04861 H-bond Lig(HO)⋯Glu 227 1.782

Glu 119⋯Lig(H2
+N) 2.203

Asp 151⋯Lig(H2
+N) 2.098

Arg 371⋯Lig(HO) 2.725

Lig(HO)⋯Arg 118 1.898

Lig(OH)⋯Tyr 406 1.861

Salt bridges Glu 277⋯Lig(NH2
+) 4.664

Pi cation Arg 224 5.795

Pi–Pi Arg 224 5.345

4. DB00243 H-bond Lig(H+N)⋯Asp 151 1.977

Lig(HO)⋯Arg151 2.021

5. DB00722 H-bond Arg 118⋯Lig(O−) 2.289

Lig(O−)⋯Arg 371 1.697

Lig(O−)⋯Arg 371 1.813

Lig(O)⋯Arg 292 2.343

Trp 178⋯Lig(H3
+N) 1.857

Lig(H3
+N)⋯Glu 227 1.786

Lig(O)⋯Ser 246 1.832

Salt bridges Arg 292⋯Lig(O−) 4.099

Glu 277⋯Lig(H2N
+) 4.635

Asp 151⋯Lig(H2N
+) 4.245

Glu 119⋯Lig(NH3
+) 3.409

Pi cation Arg 118 5.682

Pi–Pi Arg 118 4.9306

6. DB06288 H-bond Arg 292⋯Lig(O) 2.007

Glu 227⋯Lig(NH+) 1.777

Arg 118⋯Lig(O) 2.742

Arg 152⋯Lig(O) 2.184

Ser 246⋯Lig(O) 1.916

Salt bridges Glu 277⋯Lig(NH+) 4.083

Pi–Pi Arg 292 4.914
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form hydrogen bonds with key residues such as Arg 292,
Arg 371, Arg 152, Asp 151, and Arg 118 even in NA
mutants. Interaction with these residues is the predominant
factor for orientation and stabilization of NA-mutant com-
plex with hit molecule.

Conclusions

In the present investigation, the previously reported car-
bocylic influenza NA inhibitors with known inhibitory

potential were explored for drug repurposing strategy. The
best pharmacophore model (ADHP) generated consisted of
one hydrogen bond acceptor (A), one hydrogen bond donor
(D), one hydrophobic group (H), and one positively charged
group (P). The goodness of the pharmacophore model was
evaluated using enrichment analysis. In addition, the phar-
macophore features obtained were then correlated with
highly prognostic atom-based 3D-QSAR model. A highly
predictive and significant atom-based 3D-QSAR model
with R2 value of 0.9866 and Q2 value of 0.7629 was gen-
erated. Further, the hydrogen bond donor effect, hydro-
phobic effect and electron-withdrawing effect on most
active and most inactive compounds were analyzed. The
hits were retrieved by combining both CPH and 3D-QSAR
model. This process captured set of hit molecules, which
were further scrutinized based on three consecutive docking
runs and drug likeliness analysis. Moreover, AutoQSAR
study is also performed to examine the generated 3D-QSAR
model accuracy. The results from our study emphasize that
lisinopril (DB00722) has the capability to exhibit better
inhibitory activity against NA than available drugs. Overall,
it is possible that mortality could be reduced by treating
patients with immunomodulatory drugs. With the enormous
developments of vaccines and anti-virals in the recent years
to manage severe seasonal and pandemic influenza, the need
for a new approach of this type is obvious and inescapable.

Table 7 Glide score of oseltamivir and lisinopril with the mutated
strains of influenza A virus

S. no. Mutation PDB code Glide score (kcal/mol)

Oseltamivir Lisinopril

1. H274Y 4HZZ −4.644 −6.054

2. R292K 1L7H −4.252 −4.757

3. E119G 1L74 −4.069 −5.690

4. N294S 3CL2 −4.335 −6.675

5. I223R 4B7N −3.329 −7.140

6. D179E 3K39 −3.761 −6.063

7. I221L 4CPM −4.398 −6.699

Fig. 11 2D interaction diagram of lisinopril with NA mutants a H274Y, b R292K, c E119G, d N294S, e D179E, f I223R, and e I221L

Cell Biochemistry and Biophysics (2018) 76:357–376 373



Acknowledgements We gratefully acknowledge Vellore Institute of
Technology University, Vellore for the support through Seed Grant for
Research.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Li, X. B., Wang, S. Q., Xu, W. R., Wang, R. L., & Chou, K. C.
(2011). Novel inhibitor design for hemagglutinin against H1N1
influenza virus by core hopping method. PLoS ONE, 6, e28111.

2. Mukhtar, M. M., Rasool, S. T., Song, D., Zhu, C., Hao, Q., &
Zhu, Y. (2007). Origin of highly pathogenic H5N1 avian influenza
virus in China and genetic characterization of donor and recipient
viruses. Journal of General Virology, 88, 3094–3099.

3. Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A.,
& Klenk, H. (2004). Neuraminidase is important for the initiation
of influenza virus infection in human airway epithelium. Journal
of Virology, 78, 12665–12667.

4. Su, Y., Yang, H. Y., Zhang, B. J., Jia, H. L., & Tien, P. (2008).
Analysis of a point mutation in H5N1 avian influenza virus
hemagglutinin in relation to virus entry into live mammalian cells.
Archives of Virology, 153, 2253–2261.

5. Karthick, V., & Ramanathan, K. (2014). Insight into the oselta-
mivir resistance R292K mutation in H5N1 influenza virus: a
molecular docking and molecular dynamics approach. Cell Bio-
chemistry and Biophysics, 68, 291–299.

6. Bauer, K., Richter, M., Wutzler, P., & Schmidtke, M. (2009).
Different neuraminidase inhibitor susceptibilities of human H1N1,
H1N2, and H3N2 influenza A viruses isolated in Germany from
2001 to 2005/06. Antiviral Research, 82, 34–41.

7. Hurt, A. C., Holien, J. K., Parker, M., & Barr, I. G. (2009).
Oseltamivir resistance and the H274Y neuraminidase mutation in
seasonal, pandemic and highly pathogenic influenza viruses.
Drugs, 69, 2523–2531.

8. Shobugawa, Y., Saito, R., Sato, I., Kawashima, T., Dapat, C.,
Dapat, I. C., Kondo, H., Suzuki, Y., Saito, K., & Suzuki, H.
(2012). Clinical effectiveness of neuraminidase inhibitor oselta-
mivir, zanamivir, laninamivir, and peramivir for treatment of
influenza A(H3N2) and A(H1N1) pdm09 infection: an observa-
tional study in the 2010-2011 influenza season in Japan. Journal
of Infection and Chemotherapy, 18, 858–864.

Table 8 Intermolecular interaction of compound lisinopril with NA
mutants

S. no. Mutation Type of
interaction

Interacting atoms of
protein–ligand
complex

Distance (Å)

1. H274Y H-bond Asn 294⋯Lig(O) 2.107

Arg 292⋯Lig(O) 1.927

Gln 227⋯Lig(H2N) 2.211

Arg 371⋯Lig(O) 2.115

Asp 151⋯Lig(HO) 1.749

Arg 118⋯Lig(O) 2.1223

2. R292K H-bond Arg 371⋯Lig(O) 2.069

Asp 151⋯Lig(HO) 1.6043

Glu 276⋯Lig(HO) 1.969

3. E119G H-bond Arg 292⋯Lig(O) 2.198

Arg 371⋯Lig(O) 1.929

Trp 178⋯Lig(H2N) 1.987

Asp 151⋯Lig(H2N) 2.319

Trp 178⋯Lig(H2N) 2.036

Arg 152⋯Lig(O) 1.939

4. N294S H-bond Lig(HO)⋯Glu 277 1.711

Trp 178⋯Lig(H2N) 1.975

Lig(HO)⋯Arg 118 1.792

Lig(OH)⋯Tyr 406 1.790

Arg 371⋯Lig(O) 2.358

Arg 292⋯Lig(O) 2.748

Arg 292⋯Lig(O) 2.313

Asp 151⋯Lig(HN) 1.7333

Salt bridge Arg 371 3.369

5. D179E H-bond Arg 150⋯Lig(OH) 1.988

Arg 374⋯Lig(O) 2.593

Arg 374⋯Lig(O) 1.743

Arg 292⋯Lig(O) 1.704

Arg 116⋯Lig(HO) 1.905

Asp 149⋯Lig(HO) 1.676

Asp 149⋯Lig(HO) 1.538

Asn 294⋯Lig(H2N) 2.218

Pi–Pi Arg 150 5.248

Pi cation Arg 150 5.342

6. I223R H-bond Arg 293⋯Lig(O) 2.788

Arg 368⋯Lig(O) 2.257

Arg 118⋯Lig(HO) 2.7008

Asn 344⋯Lig(H2N) 1.738

Asn 295⋯Lig(H2N) 2.105

Asp 151⋯Lig(HO) 2.019

Asp 151⋯Lig(HN) 1.764

Asp 151⋯Lig(HO) 1.865

Arg 152⋯Lig(O) 2.1086

Arg 152⋯Lig(O) 2.052

Table 8 (continued)

S. no. Mutation Type of
interaction

Interacting atoms of
protein–ligand
complex

Distance (Å)

7. I221L H-bond Glu 275⋯Lig(H2N) 1.839

Glu 274⋯Lig(H2N) 1.704

Trp 176⋯Lig(HO) 1.811

Arg 291⋯Lig(O) 2.388

Arg 373⋯Lig(O) 2.659

Pi–Pi Trp 407 5.412

Arg 115 5.499

374 Cell Biochemistry and Biophysics (2018) 76:357–376



9. Pizzorno, A., Abed, Y., Plante, P. L., Carbonneau, J., Baz, M.,
Hamelin, M. E., Corbeil, J., & Boivin, G. (2014). Evolution of
oseltamivir resistance mutations in influenza A(H1N1) and A
(H3N2) viruses during selection in experimentally infected mice.
Antimicrobial Agents and Chemotherapy, 58, 6398–6405.

10. Wu, N. C., Young, A. P., Dandekar, S., Wijersuriya, H., Al-
Mawsawi, L. Q., Wu, T. T., & Sun, R. (2013). Systematic iden-
tification of H274Y compensatory mutations in influenza A virus
neuraminidase by high-throughput screening. Journal of Virology,
87, 1193–1199.

11. Yen, H. L., McKimm-Breschkin, J. L., Choy, K. T., Wong, D. D.
Y., Cheung, P. P. H., Zhou, J., Ng, I. H., Zhu, H., Webby, R. J.,
Guan, Y., Webster, R. G., & Peirisa, J. S. M. (2013). Resistance to
neuraminidase inhibitors conferred by an R292K mutation in a
human influenza virus H7N9 isolate can be masked by a mixed R/
K viral population. MBio, 4, e00396–13.

12. McKimm-Breschkin, J. L. (2012). Influenza neuraminidase inhi-
bitors: antiviral action and mechanisms of resistance. Influenza
and Other Respiratory Viruses, 7, 25–36.

13. Escuret, V., Collins, P. J., Casalegno, J. S., Vachieri, S. G., Cattle,
N., Ferraris, O., Sabatier, M., Frobert, E., Caro, V., Skehel, J. J.,
Gamblin, S., Valla, F., Valette, M., Ottmann, M., McCauley, J.
W., Daniels, R. S., & Lina, B. (2014). A novel I221L substitution
in neuraminidase confers high-level resistance to oseltamivir in
influenza B viruses. The Journal of Infectious Diseases, 210,
1260–1269.

14. LeGoff, J., Rousset, D., Abou-Jaoudé, G., Scemla, A., Ribaud, P.,
Mercier-Delarue, S., Caro, V., Enouf, V., Simon, F., Molina, J., &
van der Werf, S. (2012). I223R mutation in influenza A(H1N1)
pdm09 neuraminidase confers reduced susceptibility to oseltami-
vir and zanamivir and enhanced resistance with H275Y. PLoS
ONE, 7, e37095.

15. Cai, Z., Zhang, G., Tang, B., Liu, Y., Fu, X., & Zhang, X. (2015).
Promising anti-influenza properties of active constituent of
Withaniasomnifera ayurvedic herb in targeting neuraminidase of
H1N1 influenza: computational study. Cell Biochemistry and
Biophysics, 72, 727–739.

16. Moonsamy, S., Bhakat, S., Ramesh, M., & Soliman, M. E. (2017).
Identification of binding mode and prospective structural features
of novel Nef protein inhibitors as potential anti-HIV drugs. Cell
Biochemistry and Biophysics, 75, 49–64.

17. Shoichet, B. K. (2004). Virtual screening of chemical libraries.
Nature, 432, 862–865.

18. Karthick, V., Ramanathan, K., Shanthi, V., & Rajasekaran, R.
(2013). Identification of potential inhibitors of H5N1 influenza A
virus neuraminidase by ligand-based virtual screening approach.
Cell Biochemistry and Biophysics, 66, 657–669.

19. James, N., & Ramanathan, K. (2017). Discovery of potent ALK
inhibitors using pharmacophore-informatics strategy. Cell Bio-
chemistry and Biophysics, 6, 1–4.

20. Chaudhari, P., & Bari, S. (2016). In silico exploration of c-KIT
inhibitors by pharmaco-informatics methodology: pharmacophore
modeling, 3D QSAR, docking studies, and virtual screening.
Molecular Diversity, 20, 41–53.

21. Sinha, S., Goyal, S., Somvanshi, P., & Grover, A. (2017).
Mechanistic insights into the binding of class IIa HDAC inhibitors
toward spinocerebellar ataxia type-2: a 3D-QSAR and pharma-
cophore modeling approach. Frontiers in Neuroscience, 10, 606.

22. Bhadauriya, A., Dhoke, G. V., Gangwal, R. P., Damre, M. V., &
Sangamwar, A. T. (2013). Identification of dual acetyl-CoA car-
boxylases 1 and 2 inhibitors by pharmacophore based virtual
screening and molecular docking approach. Molecular Diversity,
17, 139–149.

23. Kim, C. U., Lew, W., Williams, M. A., Wu, H., Zhang, L., Chen,
X., Escarpe, P. A., Mendel, D. B., Laver, W. G., & Stevens, R. C.
(1998). Structure–activity relationship studies of novel

carbocyclic influenza neuraminidase inhibitors. Journal of Med-
icinal Chemistry, 41, 2451–2460.

24. Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye,
L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: a new
approach for rapid, accurate docking and scoring. 2. Enrichment
factors in database screening. Journal of Medicinal Chemistry, 47,
1750–1759.

25. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N.,
& Weissig, H. (2000). The protein data bank. Nucleic Acid
Research, 28, 235–242.

26. Vavricka, C. J., Li, Q., Wu, Y., Qi, J., Wang, M., Liu, Y., Gao, F.,
Liu, J., Feng, E., He, J., Wang, J., Liu, H., Jiang, H., & Gao, G. F.
(2011). Structural and functional analysis of laninamivir and its
octanoate prodrug reveals group specific mechanisms for influ-
enza NA inhibition. PLoS Pathog, 7, e1002249.

27. Vass, M., Schmidt, É., Horti, F., & Keserű, G. M. (2014). Virtual
fragment screening on GPCRs: a case study on dopamine D3 and
histamine H4 receptors. European Journal of Medicinal Chem-
istry, 77, 38–46.

28. Yewale, S. B., Ganorkar, S. B., Baheti, K. G., & Shelke, R. U.
(2012). Novel 3-substituted-1-aryl-5-phenyl-6-anilinopyrazolo
[3,4-d]pyrimidin-4-ones: docking, synthesis and pharmacological
evaluation as a potential anti-inflammatory agents. Bioorganic &
Medicinal Chemistry Letters, 22, 6616–6620.

29. Aparna, V., Dineshkumar, K., Mohanalakshmi, N., Velmurugan,
D., & Hopper, W. (2014). Identification of natural compound
inhibitors for multidrug efflux pumps of Escherichia coli and
Pseudomonas aeruginosa using in silico high-throughput virtual
screening and in vitro validation. PLoS ONE, 9, e101840.

30. Ramar, V., & Pappu, S. (2016). Exploring the inhibitory potential
of bioactive compound from Luffa acutangula against NF-κB-A
molecular docking and dynamics approach. Computational Biol-
ogy and Chemistry, 62, 29–35.

31. Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y. D., Lee, K. H., &
Tropsha, A. (2003). Rational selection of training and test sets for
the development of validated QSAR models. Journal of
Computer-Aided Molecular Design, 17, 241–253.

32. Dixon, S. L., Smondyrev, A. M., & Rao, S. N. (2006). PHASE: a
novel approach to pharmacophore modeling and 3D database
searching. Chemical Biology & Drug Design, 67, 370–372.

33. Bharatham, K., Bharatham, N., & Lee, K. W. (2007). Pharma-
cophore modeling for protein tyrosine phosphatase 1B inhibitors.
Archives of Pharmacal Research, s30, 533–542.

34. Rajamanikandan, S., & Srinivasan, P. (2016). Pharmacophore
modeling and structure-based virtual screening to identify potent
inhibitors targeting LuxP of Vibrio harveyi. Journal of Receptor
and Signal Transduction Research, 6, 1–16.

35. Mysinger, M. M., Carchia, M., Irwin, J. J., & Shoichet, B. K.
(2012). Directory of useful decoys, enhanced (DUD-E): better
ligands and decoys for better benchmarking. Journal of Medicinal
Chemistry, 55, 6582–6594.

36. Truchon, J. F., & Bayly, C. I. (2007). Evaluating virtual screening
methods: good and bad metrics for the “early recognition” pro-
blem. Journal of Chemical Information and Modeling, 47,
488–508.

37. Tikhonova, I. G., Sum, C. S., Neumann, S., Engel, S., Raaka, B.
M., Costanzi, S., & Gershengorn, M. C. (2008). Discovery of
novel agonists and antagonists of the free fatty acid receptor 1
(FFAR1) using virtual screening. Journal of Medicinal Chemistry,
51, 625–633.

38. Muralidharan, A. R., Selvaraj, C., Singh, S., Nelson Jesudasan, C.
A., Geraldine, P., & Thomas, P. (2014). Virtual screening based
on pharmacophoric features of known calpain inhibitors to iden-
tify potent inhibitors of calpain. Medicinal Chemistry Research,
23, 2445–2455.

Cell Biochemistry and Biophysics (2018) 76:357–376 375



39. Nair, S. B., Fayaz, S. M., & Krishnamurthy, R. G. (2012). In silico
prediction of novel inhibitors of the DNA binding activity of
FoxG1. Medicinal Chemistry, 8, 1155–1162.

40. Kumar, N., & Pruthi, V. (2015). Structural elucidation and
molecular docking of ferulic acid from Parthenium hysterophorus
possessing COX-2 inhibition activity. 3 Biotech, 5, 541.

41. Bhadoriya, K. S., Sharma, M. C., & Jain, S. V. (2015). Pharma-
cophore modeling and atom-based 3D-QSAR studies on amino
derivatives of indole as potent isoprenylcysteine carboxyl
methyltransferase (Icmt) inhibitors. Journal of Molecular Struc-
ture, 1081, 466–476.

42. Therese, P. J., Manvar, D., Kondepudi, S., Battu, M. B., Sriram,
D., Basu, A., Yogeeswari, P., & Kaushik-Basu, N. (2014). Mul-
tiple e-pharmacophore modeling, 3D-QSAR, and high-throughput
virtual screening of hepatitis C virus NS5B polymerase inhibitors.
Journal of Chemical Information and Modeling, 54, 539–552.

43. Lauria, A., Ippolito, M., Fazzari, M., Tutone, M., Di Blasi, F.,
Mingoia, F., & Almerico, A. M. (2010). IKK-beta inhibitors: an
analysis of drug-receptor interaction by using molecular docking
and pharmacophore 3D-QSAR approaches. Journal of Molecular
Graphics & Modelling, 29, 72–81.

44. Yang, S. Y. (2010). Pharmacophore modeling and applications in
drug discovery: challenges and recent advances. Drug Discovery
Today, 15, 444–450.

45. Gubareva, L. V., Robinson, M. J., Bethell, R. C., & Webster, R.
G. (1997). Catalytic and framework mutations in the

neuraminidase active site of influenza viruses that are resistant to
4-guanidino-Neu5Ac2en. Journal of Virology, 71, 3385–3390.

46. Dixon, S. L., Duan, J., Smith, E., Von, Bargen, C. D., Sherman,
W., & Repasky, M. P. (2016). AutoQSAR: an automated machine
learning tool for best-practice quantitative structure–activity rela-
tionship modeling. Future Medicinal Chemistry, 8, 1825–1839.

47. de Souza, A. S., de Oliveira, M. T., & Andricopulo, A. D. (2017).
Development of a pharmacophore for cruzain using oxadiazoles as
virtual molecular probes: quantitative structure–activity relation-
ship studies. Journal of Computer-Aided Molecular Design, 31,
801–816.

48. Lipinski, C. A. (2004). Lead- and drug-like compounds: the rule-
of-five revolution. Drug Discovery Today: Technologies, 1,
337–341.

49. Kalani, K., Yadav, D. K., Khan, F., Srivastava, S. K., & Suri, N.
(2012). Pharmacophore, QSAR, and ADME based semi-synthesis
and in vitro evaluation of ursolic acid analogs for anticancer
activity. Journal of Molecular Modeling, 18, 3389–3413.

50. Gaddaguti, V., Venkateswara Rao, T., & Prasada Rao, A. (2016).
Potential mosquito repellent compounds of Ocimum species
against 3N7H and 3Q8I of Anopheles gambiae. 3 Biotech, 6, 26.

51. Fein, A. (2009). ACE inhibitors worsen inflammatory pain.
Medical Hypotheses, 72, 757.

52. Morsy, M. A. (2011). Protective effect of lisinopril on hepatic
ischemia/reperfusion injury in rats. Indian Journal of Pharma-
cology, 43, 652–655.

376 Cell Biochemistry and Biophysics (2018) 76:357–376


	Hyphenated 3D-QSAR statistical model-drug repurposing analysis for the identification of potent neuraminidase inhibitor
	Abstract
	Introduction
	Materials and Methods
	Dataset Preparation
	Protein Preparation
	Ligand Preparation
	Pharmacophore Model Generation
	Enrichment Analysis and 3D-QSAR Modeling
	High-Throughput Virtual Screening and Molecular Docking

	Results and Discussion
	Development of Pharmacophore Hypothesis
	Enrichment Analysis
	Building 3D-QSAR Model
	Analysis of Contour Map
	Pharmacophore-Based Virtual Screening
	Molecular Docking
	Automated QSAR Workbench for 3D-QSAR Model Validation
	Interaction Studies of Oseltamivir and Screened Hit Molecules
	ADME Properties of Hit Molecules
	Docking Studies of Hit Compound with Mutants

	Conclusions
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




