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Abstract Protein aggregation is a hallmark of various
neurodegenerative disorders, such as amyotrophic lateral
sclerosis (ALS) in humans. Mutations in Cu/Zn superoxide
dismutase (SOD1) protein were found to be a prominent
cause behind the majority of the familial ALS cases with
abnormal protein aggregates. Herein, we report the bio-
physical characterization of the beneficial mutation C111S
that stabilizes the SOD1 harboring A4V mutation, one of
the most lethal diseases causing mutant that leads to protein
destabilization and aggregation. In this study, we utilized
discrete molecular dynamics (DMD) simulations, which
stipulated an outlook over the systematic action of C111S
mutation in the A4V mutant that stabilizes the protein and
impedes the formation of protein aggregation. Herewith, the
findings from our study manifested that the mutation of
C111S in SOD1 could aid in regaining the protein structural
conformations that protect against the formation of toxic
aggregates, thereby hindering the disease pathogenicity
subtly. Hence, our study provides a feasible pharmaceutical
strategy in developing the treatment for incurable ALS
affecting the mankind.
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Introduction

Neurodegenerative disorders are progressively widespread
among the mankind and exemplify a very noteworthy
challenge towards the medical treatments. Various clar-
ifications have been proposed for the origin of the disease,
which includes protein aggregation, misfolding, dysfunc-
tion, and paralysis. The most important key feature among
the neurodegeneration is the protein aggregation, that in
turn aids in various pathological events leading to increased
cytotoxicity in humans [1–4].

Amyotrophic lateral sclerosis (ALS) is one such neuro-
degenerative disorder characterized by the degeneration of
upper and lower motor neurons that eventually progress
towards muscle paralysis and death within 3–5 years of
early diagnosis [5–8]. Currently, there is no effective
treatment against ALS other than rizoule, which could
prolong the survival for 2–3 months [9, 10]. As in ALS,
only 10% of the disease onsets remain familial, while the
other 90% are sporadic that is widely spread among the
human community. Numerous reports indicated that muta-
tions in gene coding Cu/Zn superoxide dismutase (SOD1)
are frequent cause for familial and sporadic ALS [11–13].
SOD1 protein functions as a free radical scavenger in the
human body that catalyzes the dismutation of the super-
oxide radicals into hydrogen peroxide and dioxygen. Thus,
the mutations in SOD1 hinder the dismutase activity that
results towards the toxic gain function of the unfolded
protein [14]. Recent studies reported that abnormal non-
native SOD1 trimer also exhibit toxicity in cultured cells
[15]. So far, the mechanistic action behind the toxic gain of
mutant SOD1 remains unclear [16, 17].

Structurally, SOD1 is a homodimeric metalloproteinase
enzyme that consists of 153 polypeptides forming eight
antiparallel Greek key beta-strands with unique Cu (H46,
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48, 63, and 120) and Zn (H63, 71, 80, and D83) ions
bounded in each monomer [18–20]. The coordination of Cu
and Zn ions is vital for the dismutase activity and the
structural stability of SOD1, respectively [21]. The presence
of disulfide bond (C57–C146) in SOD1 also aids in
retaining the protein stability [22]. In spite of the two-
cysteine residues forming the disulfide bond, SOD1 also has
two other free cysteine residues C6 and C111 located in the
buried and the surface regions, respectively. The sulfur
atoms present in cysteine residues are generally attacked by
the oxidants and reductants making them relatively vul-
nerable to oxidative modification. Further, the sulfhydryl
moiety present in C111 reacts with the redox substrates, like
glutathione or peroxides, thereby forming S–S or S–O
covalent modifications, respectively [23–26]. Furthermore,
reports from various studies have shown that peroxidase
form of C111 moieties is seen in the aggregated form of
mutant SOD1. Thus suggesting that C111 act as a principal
target for the oxidative modifications in SOD1 [27].
Numerous experimental studies have also suggested that the
formation of the protein aggregates were found reduced
upon substituting Ser at C111 of different SOD1 mutant
forms. Moreover, the disease pathogenicity of the motor
paralysis was also seen hindered upon the substitution of
C111S in mutant SOD1 [28, 29]. Recently, the phospho-
mimetic mutation, T2D of SOD1 was identified to ther-
modynamically stabilize the SOD1 mutant A4V, which is
one of the most aggressive ALS-associated mutations in
North America. Moreover, the phosphomimetic mutation
not only stabilizes but also protects against the formation of
toxic SOD1 oligomers [30].

In this study, we utilized computational approaches to
shed lights onto the mechanism behind the effect of C111S
mutation in reducing the protein aggregation formed by the
mutant SOD1. Initially, we studied the most lethal missense
disease-causing mutant A4V, which is characterized by the
destabilization and formation of toxic aggregates in SOD1.
Various reports from the clinical studies have suggested that
A4V mutant is highly detected in patients suffering from
ALS, which increases the disease progression, and even-
tually leads towards death within 1.5 years of disease onset
[31–33]. To overcome the mutational effect, we reviewed
the inhibition of aggregation formation in A4V mutant
through a beneficiary mutation at C111S, which was
experimentally determined in distinct mutant SOD1 studies
[28]. Thus, we employed atomistic simulation to study the
effect of these mutations on SOD1, since atomistic simu-
lations have been extensively used as a direct method for
investigating the protein aggregation [34–44]. The atomistic
simulations were carried out using discrete molecular
dynamics (DMD) comparatively for the WT and two other
mutant forms, namely, A4V and A4V_C111S. The con-
formational preferences of the WT and the two other mutant

forms were studied in distinct perspective using various
geometric tools. In specific, the influence of C111S muta-
tion on protein aggregation was studied profoundly, thus
elucidating the mechanistic feature of the mutation on
SOD1 in comparison with WT SOD1.

Materials and Methods

Structure Retrieval and Optimization

X-ray crystal structure of monomeric WT and A4V mutant
SOD1 was obtained from PDB ID: 2V0A (A) and 1UXM
(A) with the resolutions of 1.15 and 1.9 angstroms (Å),
respectively [45]. The A4V_C111S mutant was modeled,
using Swiss PDB viewer by opting 1UXM structure as a
template. The WT and two mutant structures were energy
minimized using GROMACS v5.0.4 with GROMOS 43a5
force field [46]. Simple point charge extended water
molecules were added. The entire system was solvated
within the cubic box with a dimension of 1.0 nm. Addition
of a Na+ ion neutralized the charge of the system. Particle
mesh Ewald [47] and Van der Waal’s interaction were
included. Further, the steepest descent algorithm was
employed for performing the energy minimization of WT
and MT SOD1 structures with convergence criteria of
5000 steps.

Discrete Molecular Dynamics

Structural dynamics were performed via DMD simulation
[48], a distinct molecular dynamics that use a discrete
energetic potential for pairwise interaction modeled with the
discontinuous functions. Atomistic DMD force field [49]
was used in this study. The united atom model was used for
the representation of protein model, in which polar hydro-
gen atoms and heavy atoms were modeled. Bonded inter-
actions comprise of covalent bonds, bond angles, and
dihedrals. Non-bonded interactions include van der Waals,
solvation, and environment-dependent hydrogen bond
interactions [50]. Lazaridis–Karplus implicit solvation
model was used for modeling the solvated energy with fully
solvated conformations as a reference state [51]. Hydrogen
bond interactions were modeled using reaction-like algo-
rithms. Screened charge–charge interactions were modeled,
using Debye–Hu ̈ckel approximation, by setting Debye
length approximately to 10 Å. DMD simulations were per-
formed with constant volume and periodic boundary con-
ditions. Anderson thermostat [52] was used to maintain the
constant temperature of 300 K throughout the DMD simu-
lation for WT and two mutant SOD1 forms. Furthermore,
the snapshot of WT and mutant SOD1 forms was saved at
every 100 time units (tu) throughout the period of
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simulation. The tu in DMD simulations refer to the unit of
time [T] that is determined by units of mass [M] with Dalton
(1.66× 10−24 g), length [L] with angstrom (10−10 m) and
energy [E] with kcal/mol (6.9× 10−22 J). Therefore, each
time unit corresponds to ~50 fs as of relationship with
classical MD [53]. The obtained trajectories were analyzed,
using GROMACS programs.

Essential Dynamics

Essential dynamics [54] was performed, using GROMACS
to examine the collective motion of WT and mutant SOD1,
during the course of simulation. The atomic coordinates
obtained from the trajectory were utilized to build the
covariance matrix. Hence, the collective motion of WT and
two mutants was saved as eigenvectors and eigenvalues that
provide the amplitude of their motion. The motion of atoms
for each eigenvector displayed the direction of protein
motion. Accordingly, the highest amplitude of motions
represented in the first two eigenvectors was plotted, to
quantify the motion of WT and mutants, throughout the
trajectory.

Statistical Calculations

A statistical approach to dynamic analysis provides an
influential evaluation with the experimental studies [55].
Thus, the statistical validation of results obtained from the
trajectory of WT and mutant SOD1 forms was performed,
in this study. In order to statistically verify the variance for
the backbone deviation and residual flexibility, non-
parametric Wilcoxon rank sum test was performed, using
MS Excel. The P-value obtained from Wilcoxon method,
which provides probability prediction between the WT and
two mutant SOD1 forms, signified the outcomes from tra-
jectory analysis.

Result and Discussion

Conformational Stability and Residual Flexibility of WT
and Mutant SOD1 Complexes

To endorse the conformational stability of DMD simula-
tions, the root mean square deviation (RMSD) of the
backbone Cα atoms from the starting structure of WT and
two mutant SOD1 complexes (A4V, A4V_C111S) were
computed and plotted as shown in Fig. 1. After the initial tu
of simulation, it was observed that WT and A4V_C111S
systems were up to equilibration, except for A4V mutant,
which lost its conformational stability after 5× 104 tu. To
relate the structural differences, we analyzed the time evo-
lution of the RMSD of backbone Cα atoms averaged for the
WT and SOD1 mutants. The average RMSD values of
backbone atoms for the WT, A4V, and A4V_C111S were
0.44, 0.50, and 0.47 nm, respectively. Consequently, the
substitution mutation of Ala from Val at 4th position of
SOD1 had drastically altered the backbone structure as
compared to that of WT SOD1 [56–58]. On the other hand,
the substitution of S at C111 position in A4V mutant does
not impair much change in the backbone structure of SOD1
considerably. Overall, the results from the conformational
stability suggested that the A4V_C111S mutation aids in
upholding the SOD1 stability near to that of WT when
compared with A4V mutant.

In order to study in depth on the aforementioned report,
we calculated the residual flexibility of WT and two mutant
forms of SOD1 via g_rmsf tool. The residual flexibility
characterizes the mobility of a certain residue around its
mean position, thereby providing the classified information
over dynamical stability of the protein. Figure 2 represents
the influence of the two distinct mutations on the flexibility
of residues relative to that of WT. In detail, the mutation
A4V has radically distorted the overall flexibility of SOD1,
most notably, in regions varying from 70–75, 105–110, and

Fig. 1 The conformational
stability acquired by the WT and
the mutant conformers over the
period of simulation time. The
SOD1 protein losses the
conformational stability upon
the A4V mutation as compared
to that of WT. The visual
representation signifies that the
protein conformational stability
that was lost due to mutation
A4V was found to be regained
when S substitutes C111 in the
A4V mutant relative to that of
the WT

Cell Biochem Biophys (2018) 76:231–241 233



125–130. However, the vice versa was seen upon the inser-
tion of point mutation S at C111 in A4V mutant SOD1.
Particularly, the aggregation triggering segments in SOD1
(141–145) that showed lower residual flexibility in A4V
mutant was found to retain its flexibility in case of
A4V_C111S mutant comparative to that of the WT. More-
over, the computed average residual flexibilities of WT, A4V,
and A4V_C111S were also found to be 0.15, 0.17, and 0.16
nm, respectively. Therefore, the results from the residual
flexibility correlate with the outcomes of conformational
stability indicating that the increased flexibility in A4V
mutant had directed towards the loss of protein conforma-
tional stability as compared to that of WT and the other
mutant form. On the whole, the results from the conforma-
tional stability and the residual flexibility altogether endorsed
that the point mutation (C111S) on A4V mutant had invari-
ably reduced the protein destabilization and increased flex-
ibility relative to that of WT SOD1. The results from the
conformational stability and the flexibility were also statisti-
cally analyzed, which showed a significant P-value <0.05.
Moreover, the results were further substantiated by preform-
ing multiple replicates that showed similar trend of outcomes
for RMSD and root mean square fluctuation values of WT
and mutant SOD1 proteins (Supplementary Table 1).

Compactness of WT and the Two Mutant SOD1
Proteins

To understand the overall globularity and folding behavior,
the compactness of SOD1 was analyzed via g_gyrate tool.
Generally, the overall compactness of a protein corresponds
to the protein stability and the intramolecular interactions
within a protein structure. In this study, the average values
of protein compactness for WT, A4V, and A4V_C111S
SOD1 (Fig. 3) were 1.46, 1.49, and 1.47 nm respectively.
The value computed for WT SOD1 corresponds with the
previously reported value of 1.47 nm [59]. Thus, the results

indicated that the A4V mutation had averted the protein
folding and the overall compactness of SOD1 as compared
to that of WT, whereas the A4V_C111S mutant retained the
protein compactness proportional to that of WT. Further, the
results indicated that the influence of A4V mutation on
SOD1 was neutralized upon substitution of S at C111 in
A4V mutant. In addition to above results, the probability
distribution of protein compactness in WT and two mutant
forms (A4V, A4V_C111S) was plotted (Fig. 4). It was
observed that the WT and the A4V_C111S mutant struc-
tures have the narrowest distribution of the protein com-
pactness with values varying from 1.45 to 1.50 nm,
respectively. The vice-versa trend was observed in A4V
mutant structures with the broader distribution of protein
compactness values ranging between 1.45 to 1.55 nm.
Overall these observations exist in agreement with the
above findings, were the A4V mutant protein has less
compact structure than that of WT and A4V_C111S pro-
teins. It was suggested that the single point mutation in
SOD1 (A4V) has reduced the overall intermolecular inter-
action and primed SOD1 less stable than WT. Moreover,
the substitution of C111 by S in A4V mutant protein pos-
sessed greater the intermolecular interaction and more stable
structures relative to that of WT. Therefore, the results
suggested that the contributing effect of point mutation
(C111S) in A4V mutant protein in folded conformation lead
to increased structural stability, thus signifying the steady
nature of SOD1.

Residual Cross Correlation Map

To provide a better understanding of the residual correlated
motions, we computed dynamic cross correlation map for
WT and the two mutant forms of SOD1. The cross-
correlation matrix element revealed the fluctuations of Cα
atoms relative to their average position. The positive and the
negative values were represented in blue and yellow colors,

Fig. 2 The conformational
flexibility of SOD1 in WT, A4V
and A4V_C111S mutant forms
over the period of simulation
time, indicating the early loss in
the residual flexibility upon A4V
mutation that were regained
when C111 is substituted by S in
the A4V mutant
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respectively. Positive regions in blue color signified the
highly correlated motion in protein, while the negative
regions in yellow color defined the strong anti-correlated
motion within the protein. From Fig. 5, it was visually
observed that the WT have maximum correlated motions
between the residues, whereas the vice versa was seen in
A4V mutant SOD1. To be noted that the correlated and the
anti-correlated motions established within the residues in
WT were found less pronounced in SOD1 if V substitutes
A4. Moreover, in case of A4V mutant, the substitution of
A4 over V had noticeably reduced both the correlated and
the anti-correlated motion between the residues that in turn
hampered the atomic motion of SOD1 [60]. More interest-
ingly, we found that upon substitution of C111 over S in
A4V mutant, the SOD1 regained the correlated motions as
compared to that of WT. However, the anti-correlated
motions were found reduced in A4V_C111S mutant relative
to that of WT. From the above results, It was inferred that
the substitution of free C111 by S in A4V mutant could help
in retrieving the interatomic protein contacts as that of WT.

Overall, the analyses from the interatomic cross-correlation
suggested that the perturbation in the intermolecular inter-
action of SOD1 upon A4V mutation had critically altered
the internal motion and flexibility of protein, which was
found to be recovered in A4V_C111S mutant. Hence, the
outcomes from dynamic cross-correlation corroborated with
the aforesaid analyses indicating the retrieval of SOD1
protein stability, flexibility, interatomic contacts, and com-
pactness in A4V_C111S mutant compared to that of WT.

Essential Dynamics

Subsequently, the significant motion of WT and the two
mutant forms (A4V and A4V_C111S) of SOD1 was
investigated, using essential dynamics. The first mode of
two eigenvectors, which corresponded to principal collec-
tive motion, was used to plot the graph of WT and the two
mutant forms. The atomic flexibility of WT, A4V, and
A4V_C111S was analyzed by the trace of diagonalized
covariance matrix, which established their trace values of
13.02, 20.78, and 14.88 nm2, respectively. Therefore, the
analyses suggested that the A4V mutant exhibited increased
flexibility in their collective motion as compared to that of
WT. However, the reduced flexibility was seen in A4V
mutant SOD1, when S substitutes C111. On the basis of the
first two largest principal components from ED, the free
energy surface was then constructed. The constructed free
energy landscape of WT and mutants was represented in
Fig. 6 with Gibbs free energy varying from 1 to 10 kcal/mol.
The size and shape of the funnel with the globally minimal
energy area indicated the stability of a protein. From the
projection of two principal components (PCA1 and PCA2)
of WT and the two mutants (Fig. 6), it was clear that
eigenvectors showed clear difference in collective motion
between WT and A4V mutant. On the projections, we
observed a cluster of stable states in WT and the vice versa
in A4V mutant. In the case of A4V_C111S mutant, the

Fig. 3 Protein compactness
computed for the WT and the
two other mutant forms of SOD1
protein over the dynamic period

Fig. 4 Probability distribution function of protein compactness for the
WT, A4V, and A4V_C111S SOD1 over the entire simulation time
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projections of PCA1 and PCA2 on the 3-D surface clearly
elucidated the cluster of stables that were close to that of
WT. Moreover, the global movements of WT SOD1
exhibited a protein folding with a stable global minimum
confined within one particular basin (Fig. 6a). Whereas, the
point mutation, i.e., A4V on SOD1 had noticeably altered
the folding pattern, which led to multiple energy minima
acquired by the mutant conformers (Fig. 6b). Therefore,
upon substitution of V at A4, the conformational space of
SOD1 notably becomes larger and more disperse basins
appear on the free energy surface, which suggested that
SOD1 no longer have preferred conformations and the
initially ordered structure was disturbed by mutation. In
contrast, the conformational space acquired by A4V mutant
got drastically reduced and were confined within one par-
ticular region as that of WT, when S substitutes C111 in
A4V mutant SOD1 (Fig. 6c). Thus, the irretrievable chan-
ges in the conformational structures of A4V mutant,
enriching the pathogenicity of the disease could be reduced
upon substitution of C111 by S in A4V mutant SOD1 [28].

Secondary Structural Propensity

In specific, the propensity of alpha helix and beta-sheet
exhibit the protein physiological function and the aggrega-
tion property [61]. The overall secondary structure pro-
pensity was computed for WT and the two other mutant
forms, using DSSP tool (Fig. 7). It was signified that the
abundance of alpha helix present within the regions of
80–83 and 133–136 in WT (6%) exhibited a major devia-
tion with a reduced propensity of about 1% upon substitu-
tion of A4V mutation in SOD1. However, the vice versa
(3%) was seen, when the A4V mutant was subjected
towards the further substitution S at C111 position. On the
other hand, the A4V mutant accelerated the propensity of

beta-sheet structures in SOD1 (48%) especially in regions
varying from 83–85, 92–97, and 141–145 (aggregation
triggering segments [62]) comparaed to that of WT (41%).
These regions were confined to show greater intensity in the
formation of beta-sheets that was earlier found to have
coiled structures in WT. Moreover, the results exist in
agreement with the earlier reports indicating that the A4V
mutation tends to increase the propensity of beta-sheets in
SOD1 [58]. Contrastingly, the regions that established an
increased propensity of beta-sheets in A4V mutant became
significantly reduced, when S substitutes C111, thus
showing an overall reduction in beta-sheet content (43%).
Therefore, the decrease in the propensity of beta-sheets in
the aggregation triggering segments (141–145), presumably
supported the release of protein aggregation in SOD1 pro-
tein. Further, the propensity of coil structures in WT SOD1
(55%) was found to reduce upon point mutation (A4V) in
SOD1 with a decrease of 4%. Whereas, the enhancement in
the propensity of coil structures in A4V_C111S mutant
(54%) were seen as compared to that of A4V mutant. On
the whole, the increased propensity of beta-sheet in A4V
mutant got altered towards helix and coil structures, when S
substitutes C111 in A4V mutant SOD1. Thus, the sub-
stantial decrease of beta-sheets in A4V_C111S mutant,
particularly in aggregation triggering segments supported
the experimental findings, that C111S mutation renders the
disease pathogenicity and aggregation in SOD1 mutants.

Free Energy Landscape on Protein Aggregation

To evaluate the impact of mutations on the sub-
conformational preferences in SOD1, the free energy
landscape was computed between the coordinates of RMSD
and Rg of WT and the two mutants in their conformational
states. The constructed free energy landscape of WT and the

Fig. 5 Dynamic cross-correlation map computed for the WT, A4V, and A4V_C111S SOD1 proteins
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two mutants were portrayed in Fig. 8 with the Gibbs free
energy varying from 1 to 8 kcal/mol. The free energy
landscape of SOD1 was found altered considerably upon
A4V mutation. Moreover, the free energy landscape of WT
SOD1 conformations presented a single favorable basin.
The favorable basin was found located between the Rg
values of 1.45 and 1.48 nm and RMSD values within 0.2
nm. The A4V mutation influences this trend and resulted in
the formation of multiple favorable free energy basins at Rg
values fluctuating between 1.48 and 1.52 nm and RMSD
values varying between 0.2 and 0.35 nm. Therefore, the
existence of A4 in WT play a prominent role in the presence
of free energy basin along the RMSD and Rg that upon
mutation had assessed the SOD1 to acquire multi-
conformational free energy basin. Moreover, the free
energy basin obtained by WT was smaller than A4V mutant
conformational structures suggesting that more favored
structures were adopted by WT than that of A4V mutant.
Thus, the increased percentage of multiple conformers with
lower energy in MT was directed towards the formation of
mostly unfolded states in contrast with WT SOD1. Besides,
these results hinted the irretrievable changes in the con-
formational structures of MT enriching the formation of
toxic aggregates in SOD1. Furthermore, the results from the
earlier studies have also stipulated that the aggregated
proteins acquire multiple energy minima for the con-
formational structures that substantiate our results indirectly

denoting the formation of toxic aggregates in A4V mutant
SOD1 [58, 63, 64]. However, the vice versa trend was
observed, when S substitutes C111 in A4V mutant SOD1.
In addition, the compactness acquired by A4V mutant was
found reduced upon substitution of S at C111. Interestingly,
the free energy landscape of A4V_C111S exhibited a
favorable basin that was confined within one particular
region. The favorable basin was positioned between the Rg
values of 1.45 and 1.49 nm; and the RMSD values within
0.15–0.25 nm. To be noted that the RMSD and Rg values of
free energy basins in A4V_C111S mutant was relative to
that of WT SOD1, but the position of free energy basin was
altered upon mutation of SOD1. Therefore, the free energy
landscape indicated that the substitution of C111S on A4V
mutant reduced the multiple global energy minima attained
by the conformers. Moreover, these results substantiate the
experimental studies that the C111S mutation renders the
toxic aggregates formed by the missense mutation in SOD1,
which reduces the disease pathogenicity thereby, increasing
the survival rate [28, 29]. Overall, the analyses from the
conformational studies, secondary structure propensity, and
free energy landscape untangled the mechanistic action
behind the C111S mutation on aggregated A4V mutant in
comparison with WT and A4V mutant SOD1. In order to
authenticate, we also performed the similar studies on the
other toxic SOD1 mutants (G37R, H46R, G93A, and
I113T) following the same protocol. Remarkably, the

Fig. 6 3-D graphics
representing the PCA1 and the
PCA2 of the WT (a), A4V (b)
and A4V_C111S (c) SOD1
proteins with the change in the
free energy in terms of kcal/mol
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outcomes correspond with the predictions made in our study
thereby suggesting that substituting S at C111 could be
beneficial not only to the devastating mutant A4V but also
to other toxic SOD1 mutants affecting the mankind (Sup-
plementary Tables and Figures).

Conclusion

The influence of the various missense mutations on SOD1
protein is still being studied and the mechanistic action
behind the cause of the disease remains unknown till date.
The hallmark factor of these mutations in SOD1 is the
formation of insoluble toxic aggregates that increase the
disease pathogenicity. In our study, the most lethal and
dynamic missense mutation (A4V) on SOD1 was exten-
sively studied, using DMD approach in comparison with
WT. Thus, we reported that A4V mutation on SOD1 leads
to protein aggregation and destabilization, which directs
towards the ALS. In the biophysical aspects, we studied the
alteration in protein structure, such as protein

conformational stability, residual flexibility, compactness,
free energy, and the principal motions, using distinct geo-
metric tools for both the WT and A4V mutant conformers.
Our initial analysis confirmed the effect of mutation on
SOD1, which correlates with the experimental reports. To
overcome the influence of A4V mutation in SOD1, we
computationally studied the impact of C111S mutation in
A4V mutant protein, which could render the formation of
toxic aggregates and reduce disease pathogenesis as sug-
gested by the various experimental reports. With this, we
performed the DMD on A4V_C111S mutation and ana-
lyzed these similar parameters with WT and A4V mutant
conformational states. Remarkably, the outcomes denoted
that upon substituting S at C111 in A4V mutant, the SOD1
regained the structural stability, protein compactness, and
the secondary structural propensity that was earlier found to
be lost in A4V mutant. In addition to that, we analyzed the
sub-conformational preferences of WT and the two mutant
forms via free energy landscape. Our findings indicated that
when S substitutes C111 in A4V mutant, the toxic aggre-
gates formed by mutant conformers were reduced.

Fig. 7 The secondary structural propensity of WT (blue), A4V (green), and A4V_C111S (yellow) computed over the entire period of simulation
time (color figure online)
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Therefore, the substituting S at C111 could be a beneficiary
mutation, which could hamper the formation of toxic
aggregates and thereby increase the onset survival of
patients suffering from the incurable pathogenic disease
causing neurodegenerative disorder ALS.
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