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Abstract Cholesterol is like other unsaturated lipids in
being susceptible to peroxidative degradation upon expo-
sure to strong oxidants like hydroxyl radical or peroxynitrite
generated under conditions of oxidative stress. In the
eukaryotic cell plasma membrane, where most of the cel-
lular cholesterol resides, peroxidation leads to membrane
structural and functional damage from which pathological
states may arise. In low density lipoprotein, cholesterol and
phospholipid peroxidation have long been associated with
atherogenesis. Among the many intermediates/products of
cholesterol oxidation, hydroperoxide species (ChOOHs)
have a number of different fates and deserve special atten-
tion. These fates include (a) damage-enhancement via iron-
catalyzed one-electron reduction, (b) damage containment
via two-electron reduction, and (c) inter-membrane, inter-
lipoprotein, and membrane-lipoprotein translocation, which
allows dissemination of one-electron damage or off-site
suppression thereof depending on antioxidant location and
capacity. In addition, ChOOHs can serve as reliable and
conveniently detected mechanistic reporters of free radical-
mediated reactions vs. non-radical (e.g., singlet oxygen)-
mediated reactions. Iron-stimulated peroxidation of cho-
lesterol and other lipids underlies a newly discovered form
of regulated cell death called ferroptosis. These and other
deleterious consequences of radical-mediated lipid perox-
idation will be discussed in this review.
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Abbreviations
Ch cholesterol
ChOOH cholesterol hydroperoxide
ChOH cholesterol hydroxide
ChOX oxidized cholesterol species
cAMP cyclic-AMP
LOOH lipid hydroperoxide
PLOOH phospholipid hydroperoxide
GPx4 glutathione peroxidase type-4
GSH reduced glutathione
LDL low density lipoprotein
oxLDL oxidatively modified LDL
RBC red blood cell
SePx selenoperoxidase

Introduction

Unsaturated lipids, including phospholipids, glycolipids,
and cholesterol (Ch) in cell membranes, lipoproteins, and
other organized systems are susceptible to non-enzymatic
peroxidation under oxidative stress conditions [1–3]. This
can occur in conjunction with a (i) natural metabolic pro-
cess, such as mitochondrial electron transport or NADPH
oxidase activation, or (ii) exposure to an external oxidative
insult, such as ultraviolet or ionizing radiation. Free radical-
propagated or chain lipid peroxidation (LPO) is a degen-
erative process that negatively affects membrane and
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lipoprotein structure/function, and can give rise to a variety
of pathological conditions, including atherosclerosis, neu-
rodegeneration, and carcinogenesis [1–3]. LPO can be
initiated by a variety of oxidants, including free radicals
such as hydroxyl radical (HO·), hydroperoxyl radical
(HO2·), and nitrogen dioxide (·NO2), and non-radicals such
as singlet molecular oxygen (1O2), ozone (O3), and perox-
ynitrous acid (ONOOH) (Fig. 1). Peroxidation is triggered
by abstraction of an allylic hydrogen atom from an unsa-
turated lipid (LH), e.g., a phospholipid sn-2 fatty acyl group
or Ch at the C7 position. The resulting lipid radical (L·) with
a delocalized free electron reacts rapidly with ground state
O2 to give a peroxyl radical (LOO·). The latter can abstract
a hydrogen atom from a neighboring unsaturated lipid and
this initiates a round of chain peroxidation. Concurrently,
the (LOO·) is converted to a hydroperoxide intermediate/
product (LOOH) (Eq. 1–3). Chain length and LOOH yield
depends on factors, such as lipid composition, local O2

concentration, and availability/concentration of chain
breaking antioxidants, such as ascorbate (AH−) (Eq. 4). In
contrast to free radical initiation, the non-radical 1O2 can
add directly

LHþ HO� ! L� þH2O ð1Þ

L� þO2 ! LOO� ð2Þ

LOO� þL′H ! LOOHþ L′� ð3Þ

LOO� þAH� ! LOOHþ AH�� ð4Þ

LHþ1O2 ! LOOH ð5Þ
to an unsaturated lipid (‘ene’ reaction) to give an allylic
LOOH in which all atoms of the –OOH group derive from
1O2 and LH (Eq. 5) [4]. Although this type of peroxidation
does not involve free radicals at the outset, such species can
appear secondarily due to one-electron turnover of 1O2-
derived LOOHs (see below). What follows is a discussion
of various LOOH fates in biological systems with an
emphasis on Ch hydroperoxide (ChOOH) fates and their
implications on disorders, such as atherogenesis and
impaired steroid hormone synthesis.

One-Electron Reduction of Lipid Hydroperoxides

Non-esterified Ch is found in all mammalian cells, most of
it in the plasma membrane (~45 mol % of total lipid). Free
Ch is also found in lipoproteins, such as LDL, where it
comprises ~10% of total lipid and ~25% of the cholesteryl
ester (CE) content. As a monounsaturated lipid, Ch is sus-
ceptible to spontaneous oxidation, but at a lower rate than
phospholipids or CEs bearing polyunsaturated fatty acyl
chains [5, 6]. This oxidation can give rise to a variety of

potentially mutagenic and cytotoxic products, including
peroxides, diols, ketones, and epoxides [5, 7]. One of the
best known examples is oxidatively modified LDL
(oxLDL), which contains numerous Ch, CE, and other lipid
products, and is directly linked with atherogenesis due to
uncontrolled uptake by cells in the vascular wall [8, 9].

Hydroperoxides (ChOOHs) are the earliest non-radical
species to be generated during Ch oxidation [5]. In free
radical-mediated reactions, two ChOOHs are generated: 7α-
OOH and 7β-OOH (Fig. 2), the latter being more thermo-
dynamically stable [5, 10, 11]. These hydroperoxides are
usually accompanied by downstream species, such as the
7α-OH and 7β-OH diols, 5,6-epoxide, and 7-ketone
(Fig. 2). Collectively, these oxidized Ch species are refer-
red to as “ChOX”. In 1O2-mediated reactions, different
positional hydroperoxides are formed: 5α-OOH, 6α-OOH,
and 6β-OOH, the 5α-OOH yield always being far greater
than that of the others [3, 4, 12]. Like all LOOHs, ChOOHs
are subjected to one-electron reduction if redox-active iron
and suitable reductants are available. In the process,
ChOOH is converted to an oxyl radical intermediate
(ChO·), which could induce chain peroxidation by
abstracting an allylic hydrogen from a proximal membrane
or lipoprotein LH. One more likely alternative [2, 13] is a
rapid rearrangement with O2 addition to give an initiating
epoxyallylic peroxyl radical (OChOO·), as illustrated for
general LOOH reduction in Fig. 1. Chain peroxidation

Fig. 1 Primary and secondary reactions of LPO. Possible free radical
and non-radical initiators are shown. Three different fates for LOOH
intermediates are described: (i) iron-mediated one-electron reduction,
resulting in chain amplification; (ii) selenoperoxidase (SePx)-catalyzed
two-electron reduction, resulting in chain suppression; (iii) transloca-
tion to a membrane/lipoprotein acceptor where processes (i) or (ii) can
take place
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induced by one-electron reduction of primary (or “priming”)
LOOHs gives rise to new LOOHs, which feed into the
overall process (Fig. 1), thus amplifying the overall damage
and dysfunction.

Chain LPO can be monitored by the relatively simple
thiobarbituric acid assay, which detects aldehyde by-pro-
ducts, but this assay is insensitive to Ch oxidation and has
numerous deficiencies [2, 3]. A great improvement came
with the authors’ introduction of two highly sensitive and
specific new approaches: (i) high performance liquid chro-
matography with mercury cathode electrochemical detec-
tion (HPLC-EC(Hg)) for analyzing individual ChOOHs
[14–16] and (ii) high performance thin layer chromato-
graphy with phosphorimaging detection (HPTLC-PI) for
analyzing [14C]ChOX [17, 18]. Using HPLC-EC(Hg), we
found that tracking growth of the 7α/7β-OOH signal and
decline of the initial 5α-OOH signal provided an excellent
means of assessing LOOH-initiated chain peroxidation in
cells photodynamically stressed with 1O2 [19]. The
HPTLC-PI approach provided additional information. In
this case, [14C]Ch is used as a “sensor” for free radical
activity in its membrane surroundings. Chain reactions set
off by iron-mediated reduction of an unlabeled primary
peroxide, e.g., 5α-OOH, result in accumulation of “reporter”
[14C]ChOX species, which are HPTLC-separated and
detected/quantified by phosphorimaging [17–20]. In addi-
tion to convenience, this approach has the advantage of

employing natural Ch as a probe, thus avoiding possible
artifacts associated with spin traps, fluorophores, and other
artificial probes.

Two-Electron Reduction of Lipid Hydroperoxides

Newly formed LOOHs, including ChOOHs, may also
undergo enzyme-catalyzed two-electron reduction to redox-
inactive alcohol (LOH) products (Fig. 1). This is a detox-
ification process that can compete with cytotoxicity-
enhancing one-electron reduction. LOOH detoxification is
classified as secondary (reparative) to distinguish it from
primary (preventative) detoxification of initiating species,
e.g. O2

−· by superoxide dismutases or H2O2 by catalase [3,
4]. The enzyme most closely associated with cytoprotective
LOOH detoxification is selenium-containing glutathione
peroxidase-type 4 (GPx4), which uses reduced glutathione
(GSH) as a co-substrate. Monomeric GPx4
(~ 20 kDa) is functionally quite distinct from tetrameric
gutathione peroxidase-type 1 (GPx1, ~ 82 kDa), which is
the most abundant SePx in mammalian cells. Whereas
GPx4 plus GSH can act directly on LOOHs in membranes
and lipoproteins, GPx1 cannot [3, 21]. For PLOOHs,
hydrolytic release of the peroxidized fatty acyl moiety is
required before GPx1 can act [3]. The current consensus is
that GPx1 is restricted to relatively polar peroxides such as
H2O2 and fatty acid hydroperoxides, whereas GPx4 works

Fig. 2 Structures of Ch (cholest-
5-en-3β-ol), relevant Ch
hydroperoxide positional
isomers, and other Ch oxidation
products. Identification of 5α-
OOH, 6α-OOH, 6β-OOH, and
the corresponding alcohols
signifies singlet oxygen
involvement in a reaction.
Identification of 7α-OOH, 7β-
OOH and their alcohols, along
with 7-ketone and 5,6-epoxide,
signifies free radical
involvement
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best on PLOOHs, ChOOHs and other lower polarity
LOOHs [3]. GPx4 is currently the only enzyme known to be
capable of catalyzing direct reductive detoxification of
ChOOHs [22]. Studies with purified GPx4 revealed a broad
range of GPx4 reactivity with different ChOOH isomers,
the rate constants increasing in the following order: 5α-
OOH≪6α-OOH≈7α/7β-OOH<6β-OOH [23]. The order of
toxicity of these ChOOHs for L1210 leukemia cells was
found to be the inverse of that for GPx4 detoxification, i.e.
6β-OOH<7α/7β-OOH≪5α-OOH. Thus, 6β-OOH with the
shortest lifetime with GPx4 was the least cytotoxic of the
ChOOHs examined, whereas 5α-OOH with the longest
lifetime was the most cytotoxic. It was subsequently found
that 5α-OOH, 6β-OOH, and 7α-OOH in liposomes under-
went one-electron decay at the same rate as one another.
However, whereas 5α-OOH and 7α-OOH initiated chain
peroxidation robustly in the presence of iron and ascorbate,
6β-OOH was unexpectedly very weak in this regard, pos-
sibly due to sluggish initiation by 6β-O· [24]. It appears,
therefore, that relatively rapid reduction of 6β-OOH by
GPx4/GSH (see above) only partially explains this per-
oxide’s weak cytotoxicity [24]. More advanced studies
showed that a breast tumor cell line overexpressing GPx4 in
mitochondria were much more resistant to 7α/7β-OOH-
induced peroxidative injury and apoptotic death than wild
type controls, thus demonstrating GPx4’s key role in cyto-
protection against these free radical-generated peroxides
[20]. Other studies have shown that mitochondrial
GPx4 strongly protected cells against a mitochondrion-
targeted photooxidative insult, but considerably less so
when the insult was directed elsewhere in the cell [25]. This
demonstrated the site-specificity of GPx4 cytoprotection.
GPx4’s antiox-peroxidant role has been reported for many
other in vitro and in vivo systems, e.g. [26–28], thus high-
lighting its general importance in this regard. There is also
evidence that GPx4 plays a special role in protecting cells
against a recently discovered unique form of cell death
called ferroptosis, which is distinct from classical apoptosis
or necrosis [29, 30]. Although many mechanistic details are
still lacking, ferroptosis depends on iron-catalyzed LPO and
is stimulated by inhibitors of GSH synthesis or GPx4
activity. There is accumulating evidence that ferroptosis
plays a unique role in a variety of normo- and patho-
physiological processes [29, 30].

Although most current thinking about GPx4 centers on
its cytoprotective antioxidant effects, there is also evidence
that it plays a key regulatory role in the activities of
lipoxygenase (LOX) and cyclooxygenase (COX) enzymes.
This is based on knowledge that these enzymes require a
low level of pre-existing PLOOH or ChOOH (a peroxide
tone) for optimal activity and that GPx4 can negatively
affect this. In support of this, it was found, for example, that
(i) 5-LOX expression/activity was strongly upregulated in

GPx4-deficient (Se-starved) cells, and (ii) 15-LOX-induced
LPO in membranes and LDL was significantly suppressed
by GSH/GPx4 [31, 32].

Cholesterol Hydroperoxide Translocation and
Trafficking

Studies in our laboratories have revealed that induction of
chain peroxidation is not necessarily restricted to a nascent
LOOH’s immediate membrane or lipoprotein surroundings,
but can be disseminated via LOOH translocation [33–36].
Since all LOOHs, including ChOOHs, are more polar than
parent lipids, they should desorb more readily into the aqu-
eous compartment, allowing intracellular as well as extra-
cellular transfer to acceptor sites. Using a model system
consisting of photoperoxidized erythrocyte (RBC) ghosts as
ChOOH donors, unilamellar liposomes as acceptors, and
HPLC-EC(Hg) for analysis, we found that the first-order rate
constants for spontaneous transfer decreased in the following
order: 7α/7β-OOH≫5α-OOH>6β-OOH, which corresponded
to the decreasing hydrophilicities of these ChOOHs [34].
Transfer was completely independent of any physical contact
between donors and acceptors. The same general trend was
observed with a variety of transfer models, including
liposome-to-cell and RBC ghost-to-LDL systems [34–36].
Interestingly, experiments with wild-type COH-BR1 cells,
which are GPX4-deficient, revealed that the cytolethality of
three different ChOOHs in liposome donors decreased in
parallel with their rates of transfer uptake, i.e., 7α/7β-OOH>
5α-OOH> 6β-OOH [35]. This demonstrated for the first time
that transfer rate-limited cytotoxicity is possible for exogen-
ous LOOHs. Although the focus here is on ChOOHs,
PLOOHs have also been shown to translocate spontaneously.
Like ChOOHs, phosphatidylcholine-derived, phosphatidy-
lethanolamine-derived, and sphingomyelin-derived PLOOHs
all migrated much more rapidly than their parent lipids [35,
36]. Collectively, however, PLOOHs were found to be much
less mobile than ChOOHs. Since circulating RBCs are under
relative high oxidative pressure and are limited in antioxidant
capacity [1], transfer to an acceptor like LDL might result in
cellular protection against peroxidative damage. If antioxidant
capacity of LDL is exceeded, this could promote formation of
atherogenic oxLDL.

Transfer proteins play crucial roles in lipid metabolism,
and membrane biogenesis and metabolism. A well-known
intracellular example is sterol carrier protein-2 (SCP-2),
which can transport sterols as well as phospholipids
between membranes [37]. Our studies were the first to
demonstrate that a lipid transfer protein, SCP-2 in this case,
could accelerate ChOOH transfer between membranes [38].
Using unilamellar liposomes as [14C]7α-OOH donors and
isolated liver mitochondria as acceptors, we found that
SCP-2 accelerated the peroxide uptake and that this
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stimulated both chain peroxidation and loss of mitochon-
drial membrane potential [38]. Subsequent work showed
that a transfect clone of hepatoma cells expressing ~10-fold
more SCP-2 than a vector control was much more sensitive
to 7α-OOH-induced mitochondrial damage and lethality
than the control [39, 40]. 7α-OH (an SCP-2 ligand, but
redox-inactive) and tert-butyl hydroperoxide (redox-active,
but not a ligand) showed no such effects. This was the first
reported evidence that a cellular lipid trafficking protein
could exacerbate LOOH redox damage and cytotoxicity.

Unlike SCP-2, which recognizes many different lipid
ligands, steroidogenic acute regulatory (StAR) transfer
proteins are highly specific for Ch and other sterols [41],
and also ChOOHs [42]. StAR family proteins play a crucial
role in steroid hormone synthesis by trafficking Ch to/into
mitochondria of steroidogenic cells, where it is converted to
pregnenolone by the CYP11A1 system [43]. Cytosolic
StarD4 and mitochondrial StarD1 have been strongly
implicated in this Ch trafficking. Our studies with testicular
MA-10 cells revealed that StarD1 and StarD4 were strongly
upregulated after cAMP stimulation [44]. Compared with
non-stimulated controls, this resulted in (i) greater delivery
of Ch as well as 7α-OOH to mitochondria; (ii) grater loss of
membrane potential and progesterone output during 7α-
OOH exposure, and (iii) more extensive apoptotic cell
death. This was the first known evidence for ChOOH
impairment of hormone synthesis through engagement in a
natural trafficking pathway. StAR proteins are also known
to play a key role in early stage reverse cholesterol transport
(RCT) in vascular macrophages, which limits accumulation
of potentially atherogenic Ch [45, 46]. We hypothesized
that under pathological conditions associated with oxidative
stress, oxLDL-supplied 7α/7β-OOH would be caught up in
StAR-mediated Ch trafficking to/into macrophage mito-
chondria, thereby inducing peroxidative damage that
impairs RCT and ultimately proves cytotoxic. Testing this
first on stimulated mouse RAW264.7 macrophages, we
found that 7α-OOH uptake in mitochondria was StarD1-
dependent and induced LPO, membrane depolarization, and
intrinsic apoptosis [47]. In recent work of greater relevance
to cardiovascular disease, we used human THP-1 mono-
cyte-derived macrophages, showing that cAMP-stimulation
resulted in upregulation of mitochondrial StarD1 and
plasma membrane ABCA1/G1, which mediate Ch efflux
[48]. Major functional consequences of exposing stimulated
cells to 7α-OOH were: (i) greater mitochondrial uptake of
7α-OOH compared with unstimulated cells; (ii) greater
mitochondrial chain LPO; (iii) activity loss of mitochondrial
27-hydroxylase (CYP27A1), which generates 27-
hydroxycholesterol (27-OH), a key agonist for ABCA1/
G1 expression and RCT function; (iv) reduced 27-OH
output, and (v) diminished ABCA1/G1 expression. Corre-
spondingly, 7α-OOH-challenged THP-1 macrophages

exported less Ch to acceptors (e.g., apoA-I, HDL) than 7α-
OH– of 7-ketone-treated controls and succumbed to apop-
tosis more readily [48]. These findings further supported our
novel hypothesis that a redox active ChOOH like 7α-OOH
can integrate into a natural Ch trafficking pathway, and in
so doing induce mitochondrial damage that disrupts Ch
homeostasis. New insights into mechanisms of vascular
macrophage oxidative damage/dysfunction and its patho-
logic implications are apparent for this work [47, 48].

Lipid Hydroperoxides and Signal Transduction

The most widely studied redox signaling mediator, H2O2,
can traverse cell membranes via aquaporin channels, but has
no other known protein transporters. Thus, it is not clear
how H2O2, if it diffuses freely on its own, might distinguish
between various sensor target proteins in different cellular
compartments. Our discovery that ChOOHs and PLOOHs
do not necessarily migrate randomly from sites of origin,
but can be delivered to acceptors by transfer proteins
[38–40, 44, 47, 48], suggests a new paradigm for peroxide
signaling. One can postulate that sensor proteins on or near
membranes would be the preferred targets of mobilized
amphiphilic LOOHs, whereas highly polar H2O2 would
preferably target cytosolic sensors. Thioredoxins, peroxir-
edoxins, and protein tyrosine phosphatases are all good
examples of the latter. Although transfer protein-mediated
ChOOH or PLOOH signaling would be slow relative to
signaling by free H2O2 [49], it would have the following
clear advantages: (i) longer peroxide lifetime in transit due
to sequestration and protection against one- or two-electron
turnover; (ii) precise delivery due to specific transfer
protein-sensor protein interactions. Except for two examples
[50, 51], little is known about LOOH-mediated signaling,
and a greater understanding of this from a mechanistic
perspective is eagerly awaited.

Conclusions and Perspectives

Like all LOOHs generated by non-enzymatic LPO,
ChOOHs have a variety of fates, including (i) iron-
stimulated one-electron reduction, which exacerbates per-
oxidative damage/dysfunction; (ii) SePx-catalyzed two-
electron reduction, which attenuates this damage/dysfunc-
tion; and (iii) spontaneous or protein-mediated translocation
to membrane/lipoprotein acceptors, where processes (i) or
(ii) may take place. In addition, ChOOHs, like PLOOHs,
may function as redox signaling mediators, particularly
when delivered to specific sensor targets by transfer pro-
teins. Compared to H2O2 signaling, little is currently known
about ChOOH/PLOOH signaling (underlying mechanisms,
sub-cellular locations, specific biological effects, etc.) and a
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better understanding of this should be an important goal of
future investigations.
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