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Abstract Molecular dynamics simulations, binding free

energy calculations, principle component analysis (PCA),

and residue interaction network analysis were employed in

order to investigate the molecular mechanism of M184I

single mutation which played pivotal role in making the

HIV-1 reverse transcriptase (RT) totally resistant to

lamivudine. Results showed that single mutations at resi-

due 184 of RT caused (1) distortion of the orientation of

lamivudine in the active site due to the steric conflict

between the oxathiolane ring of lamivudine and the side

chain of beta-branched amino acids Ile at position 184

which, in turn, perturbs inhibitor binding, (2) decrease in

the binding affinity by (*8 kcal/mol) when compared to

the wild-type, (3) variation in the overall enzyme motion as

evident from the PCA for both systems, and (4) distortion

of the hydrogen bonding network and atomic interactions

with the inhibitor. The comprehensive analysis presented in

this report can provide useful information for understand-

ing the drug resistance mechanism against lamivudine. The

results can also provide some potential clues for further

design of novel inhibitors that are less susceptible to drug

resistance.
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Introduction

Since acquired immunodeficiency syndrome (AIDS) was

first reported in the early 1980s, this global killer has

claimed the lives of an estimated 22 million individuals.

Among the classified infectious diseases, the human

immunodeficiency virus type 1 (HIV-1) infection, the

causative agent of AIDS, remains a challenging epidemic.

It has been reported that 34 million people live with HIV/

AIDS globally, and in sub-Saharan Africa, approximately

22.9 million individuals contribute to the overall global

estimate.

Despite extensive ongoing HIV/AIDS research, to date,

no cure has been found for this disease. Currently, the most

effective treatment comprises a complex ‘‘cocktail’’ of

Food and Drug Administration (FDA)-approved and clin-

ical trial drugs that involve multiple drug targets [1]. These

drugs target and attack the virus at different stages of its

lifecycle, thereby halting virus replication and reducing

destruction of the immune system. They include protease

inhibitors (PIs), reverse transcriptase (RT) inhibitors,

integrase (IN) inhibitors, and entry inhibitors [2].

HIV-1 is a retrovirus that replicates within a host cell.

The RT enzyme is an essential component for HIV-1

replication [3]. RT is responsible for converting single-

stranded RNA viral genome into double-stranded DNA
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[3, 4]. Because of its integral role in the virus lifecycle,

HIV-1 RT is a major target for drug therapy [5].

Currently, approved HIV-1 RT inhibitors used in

antiretroviral therapy can be divided into two classes:

(a) nucleoside analog RT inhibitors (NRTIs) [6, 7], which

compete with natural nucleoside substrates for binding to

the RT polymerase active site, and after their incorporation

into the primer site, they act as terminators of proviral

DNA synthesis; (b) non-nucleoside RT inhibitors

(NNRTIs), which bind to a hydrophobic pocket close to the

RT active site [4, 6]. More specifically when NRTIs are

phosphorylated intracellularly, these drugs become acti-

vated and hence inhibit reverse transcription by triggering

chain termination once incorporated into viral DNA [4, 7].

The initial introduction of NRTIs for treatment of HIV

and later presented as the favored central core drugs of

highly active antiretroviral therapy (HAART) has sub-

stantially reduced HIV-related morbidity and mortality

rates [8]. Following zidovudine (AZT) as the first NRTI

drug approved by the FDA for HIV therapy [8], numerous

other FDA-approved NRTIs have been discovered includ-

ing lamivudine (3TC), stavudine (D4T), tenofovir (TFV),

and emtricitabine (FTC) among others [8, 9]. However,

even though NRTIs have served as the cornerstones of

successful HIV therapy, the largest problem in HIV drug

therapy is that the virus mutates very quickly, leading not

only to drug resistance [10], but also drug-resistant variants

of the virus that have mutations in the RT target protein

[11, 12]. For this reason, a molecular understanding of the

impact of mutations on drug resistance will assist in the

design of more potent drugs that are active against resistant

strains.

An important constituent of triple-drug anti-AIDS ther-

apy is the NRTI 20,30-dideoxy-30-thiacytidine (3TC, lami-

vudine). It has been proven that single mutations at residue

184 of RT in HIV cause high-level resistance to 3TC and

contribute to the failure of anti-AIDS combination therapy

[13].

Partially due to the lack of an X-ray crystal structure of

the lamivudine–RT complex, the precise mechanism by

which the M184I mutant develops resistance to lamivudine

is not fully understood. Based on a previously built model

from ‘‘unbound’’ X-ray crystal structures of the wild-type

and M184I mutant, it is thought that steric conflict between

the oxathiolane ring of lamivudine and the side chain of

beta-branched amino acids Ile at position 184 perturbs

inhibitor binding, leading to a reduction in incorporation of

the analog [13]. However, this assumption was based on

approximated ‘‘fitted’’ and ‘‘static’’ models.

In this work, we aim to provide more comprehensive

insight into the precise impact of the M184I mutation on

resistance to lamivudine. We believe that, to develop

potent and effective anti-HIV NRTIs against the viral

variants, understanding of molecular basis of the M184I

RT mutation at atomic level will be very critical.

In recent years, molecular modeling tools have become

close counterparts of experiments [14]. In one of our recent

papers, the interface between computation and experiment

within the biological context was comprehensively high-

lighted [15]. Various molecular modeling approaches such

as molecular docking, molecular dynamics (MD) simula-

tion, and binding free energy calculations have proven

useful in understanding the molecular basis of drug resis-

tance to different biological systems [16–20]. This

includes, but is not limited to, the drug resistance mecha-

nisms against HIV protease [21–23], HIV reverse tran-

scriptase (RT) [24], HIV integrase (IN) [25], influenza

neuraminidase (NA) [26, 27], and HCV protease [25, 28,

29].

Standard MD analysis for large biomolecular systems

can only provide limited information about the dynamic

landscape of these systems. During the last few years,

multiple approaches have been devised to deal with the

large number of explicit degrees of freedom [30–33].

Principal component analysis (PCA) or essential

dynamics analysis is one of the widely used approaches

to explore the structural fluctuations of biological sys-

tems. PCA is a statistical procedure based on covariance

analysis that can transform the original space of corre-

lated variables into a reduced space of independent

variables and is often used to highlight large correlated

motions in macromolecules [34, 35]. It takes the trajec-

tory of an MD simulation into account and reduces the

dimensionality of the data to extract dominant nodes in

the motion of a molecule [36–39]. In normal mode

analysis, these pronounced motions resulting from the

protein movement correspond to correlated vibrational

nodes or collective group motion of atoms [40, 41]. The

eigenvector for a given motion has a corresponding

eigenvalue which signifies the energetic contribution of a

particular component to the motion. Projection of a tra-

jectory onto a specific eigenvector highlights the time-

dependent motions that the components perform during a

particular vibrational mode [37].

PCA has been used to identify the overall motion of the

enzyme backbone to check the difference from one state to

another with high utility in the comparison of wild-type

proteins with those of mutant/resistant strains [42]. Via

PCA, it is possible to identify the dominant motions

observed during a simulation through visual inspection. A

large portion of overall fluctuation of macromolecules can

often be accounted for by a few low-frequency eigenvec-

tors with high eigenvalues [43]. If motion between two

different macromolecules is similar, then the eigenvectors

coming from individual trajectories should be similar to

each other. For this reason, PCA has proved an efficient
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tool that can be used to compare motions of different

macromolecules [44].

It has also been observed that the resistant mutation or

substitution in the target protein often impacts the binding

ability of drugs through modification of the residue inter-

action network (RIN) communication of the targets [45–

48]. Recently, some reports have shown that the analysis

and interactive visualization of RIN of proteins can reveal

important information on biological interactions in com-

plex systems [49, 50].

In this work, using validated models of lamivudine–RT

complexes, wild-type and the M184I mutant, MD simula-

tions, post-dynamics analysis, binding free energy calcu-

lations, PCA, and RIN analysis were employed to provide

an insight into the drug resistance mechanism of the RT-

M184I mutant to lamivudine. To our knowledge, this

report is the first account of such comprehensive compu-

tational analysis being used to reveal the precise impact of

the M184I mutation on RT resistance to lamivudine.

The compilation of the computational and molecular

informatics tools presented in this study could serve as

powerful tools to understand protein structures and

dynamics, and drug resistance and could also be incorpo-

rated in the drug discovery and development workflows.

Computational Methods

System Preparation

With the lack of a lamivudine–RT complex crystal struc-

ture, the construction of a reasonable initial set of 3D

coordinates for the complex presented a challenge. Since

molecular docking can, in many instances, produce unre-

alistic ligand orientations in the active site, we opted not to

perform docking calculations but instead to use a ‘‘ligand

fitting’’ strategy based on known X-ray crystal structures of

similar inhibitors in complex with RT. This approach has

proven successful in the past, as reported previously [51,

52]. The X-ray crystal structure of RT in complex with

zidovudine, AZT, (PDB code: 1RTD) was used as the

starting coordinates (Fig. 1). This choice was based on the

fact that since AZT and 3TC are structurally analogous,

similar binding modes would be anticipated (Fig. 1). This

protein is crystalized in a polymeric form, but only one

chain (chain A) was used for simulations to reduce the

computational cost. Despite being distal from the active

site, the X-ray crystal structure mutations, P1K, Q258C,

and E478Q mutations were modified to retain the native

wild-type structure. Co-crystalized solvent molecules were

also deleted. Lamivudine was then superimposed against

zidovudine (Fig. 2); the latter was then removed, leaving

lamivudine sitting in the RT active site. Methionine (Met)

at position 184 was then manually mutated into isoleucine

(Ile). The Chimera software package (https://www.cgl.ucsf.

edu/chimera/) was used for ligand superimposition as well

as amino acid residue mutation.

Molecular Dynamics Simulation

A multiple MD-trajectory approach was adapted to

understand the impact of M184I mutation on lamivudine

binding with HIV-RT. A long MD run might lead to high

statistical errors with denatured protein configuration dur-

ing simulation period. In view of aforesaid, a multiple MD

simulation acts as a high reliable alternative approach

which lowers down force-field-induced artifacts, statistical

bias, and computational time [53]. In this case, a multiple

MD approach was adapted for both the systems from an

initial starting configuration generated from a 2 ns MD run,

followed by four different individual MD runs for a time-

scale of 5 ns with different initial velocities in each case.

The multiple MD procedure adapted in this study is sum-

marized in Fig. 3.

MD Simulations Setup and Parameters

The MD simulations for the Lamivudine–RT complexes

(i.e., wild-type and mutant) were performed using the GPU

version of the PMEMD engine provided with the Amber 12

package [54–57]. Two protonation states, ionized and

unionized, of the triphosphate moiety attached to the ligand

were considered (see ‘‘Results and Discussion’’ section and

Supplementary Material 2). The FF99SB variant of the

AMBER force field [58] was used to describe the protein.

The restrained electrostatic potential (RESP) procedure

[59] was used to calculate the partial atomic charges for the

ligands at the HF/6-31G* level using the Gaussian 03

package [60]. The LEAP module in Amber 12 was used for

addition of hydrogen atoms to the protein and the addition

Fig. 1 2D structures of zidovudine (AZT) and lamivudine (3TC),

a and b, respectively
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of counter ions for neutralization. The systems were

embedded within an orthorhombic box of TIP3P [61] water

molecules such that no protein atom was within 8 Å of any

box edge. Periodic boundary conditions were enforced, and

the long-range electrostatic interactions were treated with

the particle-mesh Ewald method [62] incorporated in

Amber12 with a direct space and vdW cut-off of 12 Å. The

following MD procedure was applied to the initial 2 ns MD

as well as the individual 5 ns MD runs (see Fig. 3). Initial

energy minimization of each system, with a restraint

potential of 500 kcal/mol Å2 applied to the solute, was

performed for 1000 steps of steepest descent followed by

1000 steps of conjugate gradient minimization. A further

1000 steps of unrestrained conjugate gradient minimization

of the entire system were then carried out. Canonical

ensemble (NVT) MD simulations were then carried out for

50 ps, with gradual heating from 0 to 300 K with harmonic

restraints of 5 kcal/mol Å2 applied to all solute atoms and a

Langevin thermostat with a random collision frequency of

1/ps. The systems were subsequently equilibrated at 300 K

in the NPT ensemble for 500 ps, during which no restrains

were imposed and a Berendsen barostat was used to

maintain the pressure at 1 bar. The SHAKE algorithm [63]

was used to constrain the bonds of all hydrogen atoms, a

time step of 2 fs, and the SPFP precision model [64] was

used for all MD runs. A short production run for 2 ns was

performed followed by a multiple MD production run of

4 9 5 ns from the last restart file (configuration generated

from 2 ns MD run) in an isothermal isobaric (NPT)

ensemble using a Berendsen barostat for each case [65]

with a target pressure of 1 bar and a pressure coupling

constant of 2 ps. Coordinates were saved every 1 ps, and

the trajectories were analyzed every 1 ps using the PTRAJ

module implemented in Amber 12.

Thermodynamic Calculations

The binding free energies of lamivudine and RTs, wild-

type and mutant, were computed using the molecular

mechanics/generalized born surface area (MM/GBSA)

approach [66–69]. For each 5 ns trajectory, the binding

free energy was averaged over 1000 snapshots at 5 ps

intervals. Average values over the 4 trajectories were also

computed (Table 1). The following set of equations

describes the calculation of the binding free energy:

Fig. 2 Lamivudine (3CT, cyan-

colored carbon backbone) is

superimposed against the

Zidovudine (AZT, gold-colored

carbon backbone) in the active

site pocket of RT (PDB code:

1RTD) (Color figure online)

Initial 2 ns MD simulation 

4 different starting configurations were 
selected at 500 ps interval  

Conf. 
1 

Conf. 
2 

Conf. 
3 

Conf. 
4

Analysis of the individual trajectories as well as the 
average 

4 X 5 ns MD simulations starting from each configuration 
with different velocities  

Fig. 3 Multiple MD-trajectory approach adopted in this report
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DGbind ¼ Gcomplex�Greceptor�Gligand ð1Þ

DGbind ¼ Egas þ Gsol� TS ð2Þ

Egas ¼ Eint þ Evdw þ Eele ð3Þ

Gsol ¼ GGB þ GSA ð4Þ
GSA ¼ cSASA; ð5Þ

where Egas is the gas-phase energy; Eint is the internal

energy; and Eele and EvdW are the Coulomb and van der

Waals energies, respectively. Egas is evaluated directly

from the ff03 force field terms. The solvation free energy,

denoted by Gsol, can be decomposed into polar and non-

polar contribution states. The polar solvation contribution,

GGB, is determined by solving the GB equation, whereas,

GSA, the nonpolar solvation contribution is estimated from

the solvent-accessible surface area (SASA) determined

using a water probe radius of 1.4 Å. T and S correspond to

temperature and total solute entropy, respectively.

In order to determine the individual amino acid contri-

bution towards total binding free energy between the

lamivudine inhibitor and wild-type/mutant HIV-RT types,

a decomposition analysis of the interaction energy for each

residue was computed by using the MM/GBSA binding

free energy decomposition protocol in Amber 12.

Principle Component Analysis (PCA)

Before processing the MD trajectories for PCA, each 5 ns

MD trajectories of the wild-type and mutant complexes

were stripped of solvent and ions using the PTRAJ module

in AMBER 12.0. The stripped trajectories were then

aligned against the fully minimized structure. PCA was

performed for C-a atoms on 1000 snapshots each at 5 ps

intervals. Using in-house scripts, the first two principal

components were calculated and the covariance matrices

were generated. The first two principal components (PC1

and PC2) generated from each of the four individual 5 ns

trajectories were averaged for both wild-type and M184I

mutant. The first two principal components correspond to

the first two Eigen vectors of the covariance matrix. The

PCA scatter plots were then generated using the Xmgrace

program (http://plasma-gate.weizmann.ac.il/Grace/). All

structural diagrams were created using VMD [70]. The

porcupine plots were generated using the ProDy interface

of normal mode wizard (NMW) of VMD [71].

Residue Interaction Network (RIN) Analysis

The fully minimized structure of each system, wild and

M184I mutant, was used for constructing the RIN inter-

actively in 2D graphs. The PROBE [39] software was used

to identify the contacts (i.e., non-covalent interactions)

between amino acids in the proteins by evaluating their

atomic packing using small-probe contact dot surfaces.

PROBE uses a small virtual probe (typically 0.25 Å) that is

rolled around the van der Waals surface of each atom, and

an interaction (contact dot) is detected if the probe touches

another non-covalently bonded atom [39].

Interactive Visual Analysis of Residue Networks

The RINs generated from the MD averaged structures were

used to visualize the network using Cytoscape [72] and the

plugin RINalyzer [49]. In a RIN, the nodes represent the

protein amino acid residues and the edges between them

represent the non-covalent interactions. The edges are

labeled with an interaction type, usually including inter-

atomic contact, hydrogen bonds, salt bridges, etc.

Table 1 The calculated binding free energies based on MM/GBSA method

Complexes Trajectory DGbind DEele DEvdW DGgas DGsol

Wild T1 -46.5489 ± 0.1251 -25.0332 ± 0.1442 -48.3440 ± 0.1012 -73.3772 ± 0.1851 26.8283 ± 0.1104

T2 -44.7706 ± 0.1838 -24.2509 ± 0.2109 -48.0673 ± 0.1393 -72.3182 ± 0.2853 27.5476 ± 0.1630

T3 -44.7706 ± 0.1838 -24.2509 ± 0.2109 -48.0673 ± 0.1393 -72.3182 ± 0.2853 27.5476 ± 0.1630

T4 -46.5489 ± 0.1251 -25.0332 ± 0.1442 -48.3440 ± 0.1012 -73.3772 ± 0.1851 26.8283 ± 0.1104

Tavg -45.6597 ± 0.1544 -24.6420 ± 0.1775 -48.2095 ± 0.1202 -72.8477 ± 0.2352 26.4379 ± 0.1367

Mutant T1 -38.2631 ± 0.1157 -16.2502 ± 0.2371 -42.1752 ± 0.1006 -58.4254 ± 0.2612 20.1624 ± 0.2386

T2 -38.2631 ± 0.1157 -16.2502 ± 0.2371 -42.1752 ± 0.1006 -58.4254 ± 0.2612 20.1624 ± 0.2386

T3 -38.2631 ± 0.1157 -16.2502 ± 0.2371 -42.1752 ± 0.1006 -58.4254 ± 0.2612 20.1624 ± 0.2386

T4 -39.3164 ± 0.1290 -19.2339 ± 0.2360 -43.8000 ± 0.1177 -63.0339 ± 0.2549 23.7175 ± 0.2088

Tavg -38.5251 ± 0.1190 -16.9961 ± 0.2368 -42.5814 ± 0.1049 -59.5775 ± 0.2569 21.0511 ± 0.2311

T1, T2, T3, T4, and Tavg denote for the four individual 5 ns MD trajectories and the overall average, respectively
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Results and Discussion

MD Simulations and Systems Stability

RMSD and potential energy fluctuations were monitored to

ensure that the systems were well equilibrated before any

further MD analysis. RMSD and potential energy plots are

provided as Supplementary Material (Supplementary

Materials 1).

All corresponding PDB coordinates of the simulated

systems (wild and mutant for unionized and ionized

phosphate moiety—4 systems in total) are provided with

the supplementary material files.

Post-dynamic Analysis: Wild-Type Versus M184I

Mutant

Root of Mean Square Fluctuation (RMSF)

Figure 4 shows per-residue C-a root mean square fluctu-

ations (RMSF) of the wild-type and M184I mutant sim-

ulations. The most interesting observation is that the

amino acid residues in the region 170–220 (which con-

tains the mutation site at position 184) show higher

fluctuation in the mutant than compared with the wild-

type. One possible explanation is that the Ile184 residue

in the mutant interacts less with the surrounding than

methionine.

Interestingly, the M184I mutation was also found to

impact the overall dynamics of some distal amino acid

regions (Fig. 4). For instances, residues 2–50 exhibit larger

fluctuations, while residues 300–400 were found to show

less fluctuation relative to the wild-type.

Steric Conflict Between Ile184 and Oxathiolane Ring

of Lamivudine

Steric conflict between the oxathiolane ring of lamivudine

and the side chain of beta-branched amino acids Ile at posi-

tion 184 has traditionally been assumed to be responsible for

the perturbed inhibitor binding. However, this assumption

was based on static models [13]. In this study to test this

assumption,wemonitored the distance between the (O) atom

of oxathiolane ring and the Cb of the amino acid residue at

position 184 (Met in wild-type and Ile in mutant) during the

MD trajectory. Figure 5 suggests that substitution of Met

with Ile results in increased steric conflictwith the ligand that

continues to exist during the duration of the MD simulation

as evident from the increased separation between the

(O) atom of oxathiolane ring and the Cb of the amino acid

residue of Ile184. These findings lend credence to the static-

based assumption of Sarafianos et al. [13].

MM/PBSA Binding Free Energy Calculations

All the components of molecular mechanics and solva-

tion energy were averaged over the a 4 9 5 ns multiple

MD simulation in each case using the MM/GBSA tech-

nique, which are listed in Table 1. The calculated bind-

ing free energy (DGbind) between lamivudine and wild-

type RT is -45.6597 kcal/mol compared to -38.5251

kcal/mol in the case of M184I mutant. Such a large

reduction in binding affinity (*8 kcal/mol) as a result of

mutation could significantly impair ligand binding and

thus the effectiveness of lamivudine against the mutant—

this is in a great accordance with experimental data (the

EC50 value in case of M184I mutant is *1000 times

lower than the wild-type) [73]. The calculated van der

Waals contributions (DEvdW) to the binding free energy

in the lamivudine wild-type-bound RT complex

(-48.2095 kcal/mol) are higher than that for the lami-

vudine-bound M184I mutant RT complex (-42.5814

kcal/mol). On the other hand, the calculated electrostatic

contributions (DEele) to the binding free energy for

lamivudine-bound M184I mutant RT complex

(-16.9961 kcal/mol) are lower compared to that for the

lamivudine wild-type-bound RT complex (-24.6420

kcal/mol). In the lamivudine wild-type-bound RT com-

plex, the calculated solvation contributions (DGsol.

DGsol = DGSA ? DGGB) to the binding free energy

(26.4379 kcal/mol) are higher than that for the lamivu-

dine-bound M184I mutant RT complex (21.0511 kcal/-

mol). The free energy components shown in Table 1

suggest that the majority of the favorable contributions

observed for lamivudine binding arise from DEvdW and

DEele. The remarkable difference (*13 kcal/mol) in the

DGgas as a result of mutation also confirmed that M184I

mutation could lead to loss of efficacy of lamivudine.

For the un-protonated triphosphate moiety, interestingly,

however, the same trend was observed in the overall

binding affinity, and the electrostatic contribution was

higher when compared to the protonated state—this might

be due to higher electrostatic interactions between the

active site residues with the charged triphosphate moiety

(see Supplementary Material 2).

cFig. 4 RMSF for the wild-type and M184I mutant lamivudine–RT

complex systems: T1, T2, T3, T4, and T-Avg denote for the four

individual 5 ns MD trajectories and the overall average, respectively.

A zoomed view of region that contains the point mutation, 170–200,

is shown in T-Avg plot. The RMSF was calculated taking in account

C-a atoms of the backbone
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Fig. 5 The distance between the (O) atom of oxathiolane ring and the Cb of the amino acid residue at position 184 (Met or Ile). T1, T2, T3, T4,

and T-Avg denote for the four individual 5 ns MD trajectories and the overall average, respectively
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Validation of the Binding Energy Calculations To vali-

date the binding free energy results, another RT mutation,

M184V, with available experimental data [74] was consid-

ered. Encouragingly, the calculated binding free energy was

found to be in a good agreement with experimental data (see

Supplementary Material). Such findings imply that the

simulation protocol of this work is appropriate and reliable.

Per-residue Interaction Energy Decomposition Analysis

The binding free energy was further decomposed into

contributions from each HIV-RT amino acid residue. In

Table 2, the comparison of protein–ligand interaction

spectra between wild-type and M184I mutant is shown. It

can be observed from the energy decomposition analysis

that in the lamivudine-bound wild-type HIV-RT system,

the major contributions were -3.21, -2.16, and

-1.14 kcal/mol from amino acid residues Arg72, Tyr115,

and Met184, respectively (Table 2). On the other hand,

there were some minor contributions towards the interac-

tion energy from residues Asp110 (-0.13 kcal/mol),

Ala114 (-0.79 kcal/mol), and Phe116 (-0.83 kcal/mol).

As shown in Table 2 below, the decomposed van der

Waals and electrostatic energies for residues 72, 115, and

184 in the lamivudine-bound M184I mutant complex imply

that the change in the van der Waals contribution is what is

mostly responsible for the decrease in the interaction

energy. Furthermore, when Met is mutated to Ile at position

184, the prominent van der Waals contributions towards

the total binding free energy from this residue increased by

twofold with a slight decrease in electrostatic contribution

but it ultimately lowers the total van der Waals contribu-

tions of other prominent residues which ultimately affects

the total binding free energy. This finding stands consistent

with decreased van der Waals contributions from Arg72

(-3.21 to -2.07 kcal/mol) and Tyr115 (-2.16 to

-2.10 kcal/mol) and an overall loss of van der Waals

contribution towards binding free energy (Table 1, 2).

Interestingly, as evident from Table 2, mutation of Met

to Ile at position 184 has improved the binding at the site of

mutation—this might be due to better hydrophobic inter-

actions with the Ile side chain—the overall drug binding

affinity is reduced due to the negative impact of the

mutation on the binding affinity of the nearby active resi-

dues. Different binding forces between the ligand and the

protein, wild and mutant, are shown in Fig. 6.

Table 2 The decomposed van der Waals and electrostatic energies

(kcal/mol) for residues 72, 113, 115, and 184 in Lamivudine-bound

wild-type and M184I mutant complexes

Residues van der Waals Electrostatic

Arg72 -3.21 ± 0.28 -2.01 ± 1.53

-2.07 ± 0.42a -0.18 ± 1.33a

Met184 -1.14 ± 0.21 0.16 ± 0.17

Ile184 -2.39 ± 0.52a 0.07 ± 0.37a

Tyr115 -2.16 ± 0.18 -0.19 ± 0.14

-2.10 ± 0.42a -0.32 ± 0.30a

Values were averaged over the four individual trajectories
a Mutant

Fig. 6 Representative structures for the lamivudine–RT complexes:

wild-type (a) and M184I (b), respectively, with graphical represen-

tation of the different binding forces
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Principle Component Analysis (PCA)

Figure 7 shows a PCA scatter plot generated for the wild-

type and M184I mutant showing a significant difference

between both systems as evident from the characteristic

structures plotted along the direction of two principal

components. From the scatter plot, it is clear that eigen-

vectors computed from the MD trajectory for both systems

are quite varied which clearly indicates difference in pro-

tein motion between wild and M184I mutant.

In most cases, a few low-frequency normal modes are

enough to capture major protein motions along specific

directions, which are represented by eigenvectors. In this

case, we generate porcupine plots with three low-frequency

modes (Mode = 1, 2, and 3) to visualize the comparative

motion difference between wild-type and mutant (Fig. 8).

The eigenvectors show a clear difference in direction of

motion, which is consistent with the PCA, scatter plot.

Residue Interaction Network (RIN)

The network analysis of the protein backbone is a new

strategy to identify key residue interactions and can be used

to explore the difference in RINs between different pro-

teins including wild-type and mutants. In this work, we

investigated the relationship between key residues of the

wild-type and M184I mutant by generating RINs using the

representative structures from the 5 ns of MD. As evident

from the RIN plots (Figs. 9, 10), it is clear that the M184I

mutation has distorted the overall RIN when compared to

wild-type. For instance, as shown in Figs. 7 and 8, there is

a hydrogen bond interaction between Tyr115 and Met184,

whereas in the case of the mutant where Met184 has been

mutated to Ile184, the hydrogen bond interaction with

Tyr115 changes to just a close atom interaction. It is

interesting to observe that in the case of the wild-type,

Pro157 builds a close atom interaction with Met184,

whereas in the case of the mutant, there is a close atom

Fig. 7 PCA scatter plot of 1000 snapshots along the pair of first two

principal components, PC1 and PC2 for wild-type and M184I mutant

showing difference in eigenvectors. Eigen values were averaged over

the 4 individual 5 ns MD trajectories

Fig. 8 Porcupine plots showing

atomic components for wild

(a) and M184I mutant (b), in
different active modes. The

green, red, and gray arrows

represent eigenvectors showing

direction of motions across

Mode 1, Mode 2, and Mode 3,

respectively (Color figure

online)

44 Cell Biochem Biophys (2016) 74:35–48

123



Fig. 9 Residue interaction

network showing close atom

interactions between Ile184 and

Tyr115 in case of M184I mutant

(a) and hydrogen bond

interaction between Met184 and

Tyr115 in case of wild-type

RT (b)

Fig. 10 Residue interaction

network showing close atom

interactions between Gln161

and Ile184 in case of M184I

mutant (a) and close atom

interaction between Pro157

and Met184 in case of wild-type

RT (b)
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interaction instead between Gln161 and Ile184. Again, the

M184I mutation affects the interaction network, which

ultimately affects the protein backbone and consequently

the drug binding landscape.

Conclusions

The precise molecular understanding of the serious impact

of a single M184I on the RT resistance to lamivudine is

lacking in literature. In this report, we embarked on a wide

range of computational approaches in order to provide a

multidimensional view on M184I resistance to lamivudine.

Multiple molecular dynamics simulations, binding free

energy calculations, principle component analysis (PCA),

and RIN analysis led us to several findings that can explain

the serious impact of M184I mutation on drug resistance.

These findings verified that mutation decreased drug

binding affinity by *8 kcal/mol, distorted the ligand

optimum orientation in the RT active site, affected the

overall enzyme conformational landscape, and distorted the

atomic interaction network with the ligand.

The findings of this report can provide potential markers

for further design of novel inhibitors that are less suscep-

tible to drug resistance.

Supplementary Materials

RMSD versus time and Potential Energy (kcal/mol) versus

time data for ionized and unionized form of wild and

M184I variant of HIV-RT complexed with lamivudine as

well as of M184V variant is provided with Supplementary

Materials 1 and Supplementary Materials 2.

Acknowledgments The authors acknowledge the School of Health

Sciences, UKZN, for financial support and the Center of High Perfor-

mance Computing (CHPC, www.chpc.ac.za) for computational facili-

ties. SB acknowledges the consultancy support from Open Source Drug

Design and In Silico Molecules (www.insilicomolecule.org) commu-

nity.RCWacknowledges funding from theNational ScienceFoundation

(NSF) through the Scientific Software Innovations Institutes program

NSF SI2-SSE (NSF114876) and a fellowship from NVIDIA Inc.

Compliance with Ethical Standards

Conflicts of Interest The authors declare that they have no potential

conflicts of interest.

References

1. Morah, E. U. (2007). Are people aware of their HIV-positive

status responsible for driving the epidemic in subsaharan Africa?

The case of Malawi. Development Policy Review, 25(2),

215–242.

2. Pani, A., Loi, A. G., Mura, M., Marceddu, T., La Colla, P., &

Marongiu, M. E. (2002). Targeting HIV: Old and new players.

Current Drug Target Infectious Disorders, 2, 17–32.

3. Esposito, F., Corona, A., & Tramontano, E. (2012). HIV-1

reverse transcriptase still remains a new drug target: Structure

function, classical inhibitors, and new inhibitors with innovative

mechanisms of actions. Molecular Biology International, 2012,

1–23.

4. Schinazi, R. F., Hernandez-Santiago, B. I., & Hurwitz, S. J.

(2006). Pharmacology of current and promising nucleosides for

the treatment of human immunodeficiency viruses (vol 71, pg

322, 2006). Antiviral Research, 72, 256.

5. Ilina, T., LaBarge, K., Sarafianos, S. G., Ishima, R., & Parniak,

M. A. (2012). Inhibitors of HIV-1 reverse transcriptase—asso-

ciated ribonuclease H activity. Biology, 1, 521–541.

6. Vivet-Boudou, V., Didierjean, J., Isel, C., & Marquet, R. (2006).

Nucleoside and nucleotide inhibitors of HIV-1 replication. Cel-

lular and Molecular Life Sciences, 63, 163–186.

7. Bauman, J. D., Das, K., Ho, W. C., Baweja, M., Himmel, D. M.,

Clark, A. D, Jr, et al. (2008). Crystal engineering of HIV-1

reverse transcriptase for structure-based drug design. Nucleic

Acids Research, 36, 5083–5092.

8. Turner, D., Brenner, B., & Wainberg, M. A. (2003). Multiple

effects of the M184V resistance mutation in the reverse tran-

scriptase of human immunodeficiency virus type 1. Clinical and

Diagnostic Laboratory Immunology, 10, 979–981.

9. Ray, A. S. (2005). Intracellular interactions between nucleos(t)ide

inhibitors of HIV reverse transcriptase. AIDS Reviews, 7(2),

113–125.

10. Hamers, R. L., Kityo, C., Sigaloff, K. C., & de Wit, T. F. R.

(2013). Pretreatment HIV-1 drug resistance in Africa. Lancet

Infectious Diseases, 13, 476.

11. Wainberg, M. A., & Turner, D. (2004). Resistance issues with

new nucleoside/nucleotide backbone options. JAIDS Journal of

Acquired Immune Deficiency Syndromes, 37, S36–S43.

12. Gao, H. Q., Boyer, P. L., Sarafianos, S. G., Arnold, E., & Hughes,

S. H. (2000). The role of steric hindrance in 3TC resistance of

human immunodeficiency virus type-1 reverse transcriptase.

Journal of Molecular Biology, 300, 403–418.

13. Sarafianos, S. G., Das, K., Clark, A. D., Ding, J. P., Boyer, P. L.,

Hughes, S. H., & Arnold, E. (1999). Lamivudine (3TC) resistance

in HIV-1 reverse transcriptase involves steric hindrance with

beta-branched amino acids. Proceedings of the National Academy

of Sciences of the United States of America, 96, 10027–10032.

14. Purohit, R. (2014). Role of ELA region in auto-activation of

mutant KIT receptor: A molecular dynamics simulation insight.

Journal of Biomolecular Structure and Dynamics, 32,

1033–1046.

15. Bahareh, H., Govender, T., Maguire, G. E. M., Soliman, M. E. S.,

& Kruger, H. G. (2013). Integrated approach to structure-based

enzymatic drug design: molecular modeling, spectroscopy, and

experimental bioactivity. Chemical Reviews,. doi:10.1021/

cr300314q.

16. Purohit, R., Rajendran, V., & Sethumadhavan, R. (2011). Studies

on adaptability of binding residues and flap region of TMC-114

resistance HIV-1 protease mutants. Journal of Biomolecular

Structure and Dynamics, 29, 137–152.

17. Rajendran, V., Purohit, R., & Sethumadhavan, R. (2012). In silico

investigation of molecular mechanism of laminopathy caused by

a point mutation (R482W) in lamin A/C protein. Amino Acids, 43,

603–615.

18. Purohit, R., Rajendran, V., & Sethumadhavan, R. (2011). Rela-

tionship between mutation of serine residue at 315th position in

M. tuberculosis catalase-peroxidase enzyme and isoniazid

46 Cell Biochem Biophys (2016) 74:35–48

123

http://www.chpc.ac.za
http://www.insilicomolecule.org
http://dx.doi.org/10.1021/cr300314q
http://dx.doi.org/10.1021/cr300314q


susceptibility: An in silico analysis. Journal of Molecular

Modeling, 17, 869–877.

19. Balu, K., Rajendran, V., Sethumadhavan, R., & Purohit, R.

(2013). Investigation of binding phenomenon of NSP3 and

p130Cas mutants and their effect on cell signalling. Cell Bio-

chemistry and Biophysics, 67, 623–633.

20. Rajendran, V., & Sethumadhavan, R. (2014). Drug resistance

mechanism of PncA in Mycobacterium tuberculosis. Journal of

Biomolecular Structure and Dynamics, 32, 209–221.

21. Aruksakunwong, O., Wolschann, P., Hannongbua, S., & Som-

pornpisut, P. (2006). Molecular dynamic and free energy studies

of primary resistance mutations in HIV-1 protease-ritonavir

complexes. Journal of Chemical Information and Modeling, 46,

2085–2092.

22. Hou, T. J., & Yu, R. (2007). Molecular dynamics and free energy

studies on the wild-type and double mutant HIV-1 protease

complexed with amprenavir and two amprenavir-related inhibi-

tors: Mechanism for binding and drug resistance. Journal of

Medicinal Chemistry, 50, 1177–1188.

23. Stoica, I., Sadiq, S. K., & Coveney, P. V. (2008). Rapid and

accurate prediction of binding free energies for saquinavir-bound

HIV-1 proteases. Journal of the American Chemical Society, 130,

2639–2648.

24. Zhou, Z. G., Madrid, M., Evanseck, J. D., & Madura, J. D.

(2005). Effect of a bound non-nucleoside RT inhibitor on the

dynamics of wild-type and mutant HIV-1 reverse transcriptase.

Journal of the American Chemical Society, 127, 17253–17260.

25. Xue, W. W., Qi, J., Yang, Y., Jin, X. J., Liu, H. X., & Yao, X. J.

(2012). Understanding the effect of drug-resistant mutations of

HIV-1 intasome on raltegravir action through molecular model-

ing study. Molecular BioSystems, 8, 2135–2144.

26. Chachra, R., & Rizzo, R. C. (2008). Origins of resistance con-

ferred by the R292K neuraminidase mutation via molecular

dynamics and free energy calculations. Journal of Chemical

Theory and Computation, 4, 1526–1540.

27. Liu, H. X., Yao, X. J., Wang, C. Q., & Han, J. A. (2010). In silico

identification of the potential drug resistance sites over 2009

influenza A (H1N1) virus neuraminidase. Molecular Pharma-

ceutics, 7, 894–904.

28. Guo, Z. Y., Prongay, A., Tong, X., Fischmann, T., Bogen, S.,

Velazquez, F., et al. (2006). Computational study of the effects of

mutations A156T, D168V, and D168Q on the binding of HCV

protease inhibitors. Journal of Chemical Theory and Computa-

tion, 2, 1657–1663.

29. Pan, D. B., Xue, W. W., Zhang, W. Q., Liu, H. X., & Yao, X. J.

(2012). Understanding the drug resistance mechanism of hepatitis

C virus NS3/4A to ITMN-191 due to R155K, A156V, D168A/E

mutations: A computational study. Biochimica Et Biophysica

Acta General Subjects, 1820, 1526–1534.

30. Cheng, X. L., Cui, G. L., Hornak, V., & Sinnnerling, C. (2005).

Modified replica exchange simulation methods for local structure

refinement. Journal of Physical Chemistry B, 109, 8220–8230.

31. Affentranger, R., Tavernelli, I., & Di Iorio, E. E. (2006). A novel

Hamiltonian replica exchange MD protocol to enhance protein

conformational space sampling. Journal of Chemical Theory and

Computation, 2, 217–228.

32. Okur, A., Wickstrom, L., Layten, M., Geney, R., Song, K.,

Hornak, V., & Simmerling, C. (2006). Improved efficiency of

replica exchange simulations through use of a hybrid explicit/

implicit solvation model. Journal of Chemical Theory and

Computation, 2, 420–433.

33. Liu, P., Kim, B., Friesner, R. A., & Berne, B. J. (2005). Replica

exchange with solute tempering: A method for sampling bio-

logical systems in explicit water. Proceedings of the National

Academy of Sciences of the United States of America, 102,

13749–13754.

34. Maisuradze, G. G., Liwo, A., & Scheraga, H. A. (2009). Principal

component analysis for protein folding dynamics. Journal of

Molecular Biology, 385, 312–329.

35. Thomas, J. R., Gedeon, P. C., Grant, B. J., & Madura, J. D.

(2012). LeuT conformational sampling utilizing accelerated

molecular dynamics and principal component analysis. Biophys-

ical Journal, 103, L01–L03.

36. Amadei, A., Linssen, A. B., de Groot, B. L., van Aalten, D. M., &

Berendsen, H. J. (1996). An efficient method for sampling the

essential subspace of proteins. Journal of Biomolecular Structure

and Dynamics, 13, 615–625.

37. van Aalten, D. M., Findlay, J. B., Amadei, A., & Berendsen, H. J.

(1995). Essential dynamics of the cellular retinol-binding pro-

tein—Evidence for ligand-induced conformational changes.

Protein Engineering Design and Selection, 8, 1129–1135.

38. Amadei, A., Linssen, A. B. M., & Berendsen, H. J. C. (1993).

Essential dynamics of proteins. Proteins: Structure Function, and

Bioinformatics, 17, 412–425.

39. Word, J. M., Lovell, S. C., LaBean, T. H., Taylor, H. C., Zalis, M.

E., Presley, B. K., et al. (1999). Visualizing and quantifying

molecular goodness-of-fit: Small-probe contact dots with explicit

hydrogen atoms. Journal of Molecular Biology, 285, 1711–1733.

40. Case, D. A. (1994). Normal-mode analysis of protein dynamics.

Current Opinion in Structural Biology, 4, 285–290.

41. Brooks, B., & Karplus, M. (1985). Normal-modes for specific

motions of macromolecules—Application to the Hinge-Bending

mode of lysozyme. Proceedings of the National Academy of

Sciences of the United States of America, 82, 4995–4999.

42. Laine, E., de Beauchene, I. C., Perahia, D., Auclair, C., &

Tchertanov, L. (2011). Mutation D816V alters the internal

structure and dynamics of c-KIT receptor cytoplasmic region:

Implications for dimerization and activation mechanisms. PLoS

Computational Biology, 7(6), e1002068–e1002068.

43. Teodoro, M. L., Phillips, G. N., & Kavraki, L. E. (2003).

Understanding protein flexibility through dimensionality reduc-

tion. Journal of Computational Biology, 10, 617–634.

44. Yang, L., Song, G., Carriquiry, A., & Jernigan, R. L. (2008).

Close correspondence between the motions from principal com-

ponent analysis of multiple HIV-1 protease structures and elastic

network modes. Structure, 16, 321–330.

45. del Sol, A., Fujihashi, H., Amoros, D., & Nussinov, R. (2006).

Residues crucial for maintaining short paths in network com-

munication mediate signaling in proteins. Molecular Systems

Biology, 2. doi:10.1038/msb4100063.

46. Welsch, C., Schweizer, S., Shimakami, T., Domingues, F. S.,

Kim, S., Lemon, S. M., & Antes, I. (2012). Ketoamide resistance

and hepatitis C virus fitness in Val55 variants of the NS3 serine

protease. Antimicrobial Agents and Chemotherapy, 56,

1907–1915.

47. Welsch, C., Domingues, F. S., Susser, S., Antes, I., Hartmann, C.,

Mayr, G., et al. (2008). Molecular basis of telaprevir resistance

due to V36 and T54 mutations in the NS3-4A protease of the

hepatitis C virus. Genome Biology, 9, R16.

48. Xue, W. W., Jin, X. J., Ning, L. L., Wang, M. X., Liu, H. X., &

Yao, X. J. (2013). Exploring the molecular mechanism of cross-

resistance to HIV-1 integrase strand transfer inhibitors by

molecular dynamics simulation and residue interaction network

analysis. Journal of Chemical Information and Modeling, 53,

210–222.

49. Doncheva, N. T., Klein, K., Domingues, F. S., & Albrecht, M.

(2011). Analyzing and visualizing residue networks of protein

structures. Trends in Biochemical Sciences, 36, 179–182.

50. Doncheva, N. T., Assenov, Y., Domingues, F. S., & Albrecht, M.

(2012). Topological analysis and interactive visualization of

biological networks and protein structures. Nature Protocols, 7,

670–685.

Cell Biochem Biophys (2016) 74:35–48 47

123

http://dx.doi.org/10.1038/msb4100063


51. Ahmed, S. M., Kruger, H. G., Govender, T., Maguire, G. E.,

Sayed, Y., Ibrahim, M. A., et al. (2013). Comparison of the

molecular dynamics and calculated binding free energies for nine

FDA-approved HIV-1 PR drugs against subtype B and C-SA HIV

PR. Chemical Biology and Drug Design, 81, 208–218.

52. Soliman, M. E. S. (2013). A hybrid structure/pharmacophore-

based virtual screening approach to design potential leads: A

computer-aided design of south African HIV-1 subtype C pro-

tease inhibitors. Drug Development Research, 74, 283–295.

53. Kanibolotsky, D. S., Novosyl’na, O. V., Abbott, C. M., Negrut-

skii, B. S., & El’skaya, A. V. (2008). Multiple molecular

dynamics simulation of the isoforms of human translation elon-

gation factor 1A reveals reversible fluctuations between ‘‘open’’

and ‘‘closed’’ conformations and suggests specific for eEF1A1

affinity for Ca(2?)-calmodulin. BMC Structural Biology, 8(1), 4.

54. Goetz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S.,

& Walker, R. C. (2012). Routine microsecond molecular

dynamics simulations with AMBER on GPUs. 1. Generalized

born. Journal of Chemical Theory and Computation, 8,

1542–1555.

55. Salomon-Ferrer, R., Goetz, A. W., Poole, D., Le Grand, S., &

Walker, R. C. (2013). Routine microsecond molecular dynamics

simulations with AMBER on GPUs. 2. Explicit solvent particle

mesh Ewald. Journal of Chemical Theory and Computation, 9,

3878–3888.

56. Salomon-Ferrer, R., Case, D. A., & Walker., R. C. (2013). An

overview of the Amber biomolecular simulation package. WIREs

Computational Molecular Science, 3, 198–210.

57. Case, D. A., Darden, T. A., Cheatham, III, T. E., Simmerling, C.

L., Wang, J., Duke, R. E., et al. (2012). AMBER 12. San Fran-

cisco: University of California.

58. Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis,

J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain

torsion potentials for the Amber ff99SB protein force field.

Proteins Structure Function and Bioinformatics, 78, 1950–1958.

59. Cieplak, P., Cornell, W. D., Bayly, C., & Kollman, P. A. (1995).

Application of the multimolecule and multiconformational RESP

methodology to biopolymers: Charge derivation for DNA, and

proteins. Journal of Computational Chemistry, 16, 1357–1377.

60. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E.,

Robb, M. A., Cheeseman, J. R., et al. (2009). Gaussian 09,

Revision D.01. Wallingford, CT: Gaussian, Inc.

61. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R.

W., & Klein, M. L. (1983). Comparison of simple potential

functions for simulating liquid water. Journal of Chemical Phy-

sics, 79, 926–935.

62. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., &

Pedersen, L. G. (1995). A smooth particle mesh Ewald method.

Journal of Chemical Physics, 103, 8577–8593.

63. Ryckaert, J. P., Giovanni, C., & Berendsen, H. J. C. (1977).

Numerical integration of the cartesian equations of motion of a

system with constraints: Molecular dynamics of n-alkanes.

Journal of Computational Physics, 23, 327–341.
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