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Abstract Cyclic-dependent kinase 2 (CDK2) is one of

the primary protein kinases involved in the regulation of

cell cycle progression. Flavopiridol is a flavonoid derived

from an indigenous plant act as a potent antitumor drug

showing increased inhibitory activity toward CDK2. The

presence of deleterious variations in CDK2 may produce

different effects in drug-binding adaptability. Studies on

nsSNPs of CDK2 gene will provide information on the

most likely variants associated with the disease. Further-

more, investigating the relationship between deleterious

variants and its ripple effect in the inhibitory action with

drug will provide fundamental information for the devel-

opment of personalized therapies. In this study, we pre-

dicted four variants Y15S, V18L, P45L, and V69A of

CDK2 as highly deleterious. Occurrence of these variations

seriously affected the normal binding capacity of flavo-

piridol with CDK2. Analysis of 10-ns molecular dynamics

(MD) simulation trajectories indicated that the predicted

deleterious variants altered the CDK2 stability, flexibility,

and surface area. Notably, we noticed the decrease in

number of hydrogen bonds between CDK2 and flavopiridol

mutant complexes in the whole dynamic period. Overall,

this study explores the possible relationship between the

CDK2 deleterious variants and the drug-binding ability

with the help of molecular docking and MD approaches.
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Introduction

Cyclin-dependent kinase 2 (CDK2) is a member of highly

conserved family of protein kinases that govern the

eukaryotic cell cycle. Human CDK2 is highly parallel to

the gene products of S. cerevisiae cdc28, and S. pombe

cdc2 [1]. CDK2 is a catalytic subunit of the cyclin-

dependent protein kinase complex, whose activity limited

to the G1-S phase, and is essential for cell cycle G1/S

phase transition [2]. The CDK2 is regulated by the regu-

latory subunits of the complex including cyclin A or E

[3, 4] and also by protein phosphorylation. In addition,

CDK2 is treated as a potent therapeutic target to inhibit the

activity of cell cycle in cancerous cells. Thus, research

works were started to develop small molecule to inhibit

CDK2 which can act as a potential therapy for various

cancers [5]. Flavopiridol is a potential antitumor drug,

currently used in phase II trials and showed an inhibitory

activity toward CDK2 [6]. Genetic variations in the CDK2

gene may affect its regular biological activity such as cell

cycle, cell division, DNA damage repair, meiosis, and

mitosis. In annexation with these normal processes, genetic

variation has the potent to alter the binding adaptability of

drugs and also leads to failure of inhibitory action.

Understanding the impact of deleterious genetic variations

promises to have a greatest impact on our ability to identify

the basis of individual variation in response to therapeutics.

Recent progress of the high throughput human genome

analysis has provided a wealth of information detailing tens

of millions of human genetic variations between individ-

uals [7, 8]. Single-nucleotide variations are commonly

observed in all the human genome occurs at the rate of

greater than one percentage are referred as ‘‘Single

Nucleotide Polymorphisms’’ (SNPs). It was estimated that

SNPs occur in just about every 3,000 bp in human genome
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[7] and frequency of occurrence of the different alleles

differs in different populations. Several studies tried to

explain how SNPs can cause deleterious effect on the

stability and function of a protein [9–13]. Given the large

number of SNPs, a comprehensive experimental study of

effects on the biological function is a daunting task. A

powerful replacement will be the use of in silico methods

to predict the change in molecular phenotype allowing

prioritization to the experimental studies.

Recently, more sophisticated bioinformatics algorithms

are available to predict the effect of amino acid substitutions

on protein structure and function. Some of the variation

tolerance methods follow the same kind of procedure, in

which the missense variant is marked with its property

related to the damage it may cause to the protein structure

[14]. In other computational methods, predictions were

based on the difference in the free energy of unfolding

between a native-type protein and its mutant [15]. The ulti-

mate goal of all these approaches is to determine the dele-

terious nsSNPs from the neutral ones. To understand the

atomistic level changes and the dynamic behavior of protein

with respect to the potential mutations, we conducted

molecular dynamics (MD) simulations analysis. Dynamic

motions of proteins were studied intensively by the structural

biologists. The motions are known to play a vital role in

protein folding, enzyme catalysis, recognition processes, and

signaling [16–25]. MD simulations study helps us to explore

and to understand how an amino acid substitution can create

rigorous changes in the protein structure and its function.

Offman et al. [26, 27] found strong correlation between MD

analysis and experimental work on the molecular basis of the

most common protein upon N370S mutation in causing

Gauche’s disease. Based on these studies, we believe that

MD simulation could provide more reliable structural

information on CDK2 mutations.

The major objective of this in silico analysis is to

determine the highly deleterious variants in CDK2 gene.

Figure 1 displays the work flow adopted for SNP analysis

in CDK2 gene. This was achieved using the publicly

available bioinformatics tools like Sorting Intolerant From

Tolerant (SIFT) [28], Polymorphism Phenotyping (Poly-

Phen) version 2 [29], PANTHER [30], and I-mutant 3.0

[31]. Next, molecular docking studies were carried out on

the CDK2 protein with its potential inhibitor flavopiridol.

We performed docking analysis for both native and mutant

CDK2 proteins using the molecular docking suite Auto-

Dock 4.0 [32]. Finally, we conducted MD simulation study

for the native and mutant complexes of CDK2-flavopiridol

using GROMACS 4.5.3 package [33, 34]. MD simulations

explain the structural conformational changes occurred by

the incorporation of deleterious mutations in CDK2 protein

with respective to the time-scale level.

Materials and Methodology

Computational Methods for Finding Deleterious

Variants

The ability to distinguish between deleterious and benign

variants by computationally could significantly boost the

prediction of disease-related mutations by helping in the

identification of deleterious candidate from a pool of data.

Recently, different computational algorithms were devel-

oped to predict the impact of disease-associated variants.

Some of the methods classify deleterious variants

according to the predicted pathogenicity and other meth-

ods predict the deleterious variants based on protein sta-

bility changes upon mutation. We used both these

approaches to identify deleterious variants in the CDK2

gene. Sequence evolutionary information-based methods

(SIFT, PANTHER) and the combination of protein

structural and functional parameter-based methods (Poly-

Phen 2, I-Mutant 3) are some of the most reliable tools

used for deleterious nsSNPs prediction. SIFT, PANTHER,

and I-Mutant 3 make their prediction in two categories

either tolerated or deleterious, while PolyPhen 2 predicts

in three categories benign, possibly damaging, and prob-

ably damaging. SIFT prediction is based on the sequence

homology and the physicochemical properties of amino

acids which dictated by the substituted amino acid. SIFT

score B0.05 indicates the amino acid substitution is

intolerant or deleterious, whereas the score C0.05 pre-

dicted as tolerant [35, 36]. PANTHER estimates the

likelihood of a particular variant causing a functional

impact on the protein [30]. PANTHER uses multiple

sequence alignment (MSA) and hidden markov model

(HMM)-based statistical modeling methods to perform

evolutionary analysis on the coding nsSNPs. PANTHER

subPSEC scores vary from zero (neutral) to about -10

(more deleterious). Query sequences which are obtained

subPSEC value B-3 categorized to be deleterious. Poly-

Phen 2.0 utilizes sequence phylogenetic and structural

information in identifying the deleterious substitution. A

mutation is classified as ‘‘probably damaging’’ if its

probabilistic score is above 0.85–1, ‘‘possibly damaging’’

if its probabilistic score is above 0.15–0.84 and the

remaining mutations classified as ‘‘benign’’ [29]. I-Mutant

3 [31] is a support vector machine (SVM)-based algorithm

for the prediction of protein stability changes in the

occurrence of single point mutation. The output is the

predicted free energy change which is calculated from the

unfolding Gibbs free energy change of the mutated protein

minus the unfolding Gibbs free energy value of the native

protein (Kcal/mol). DDG \0 means that the mutated

protein has less stability and vice versa.
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Protein–Ligand Docking Study

For docking analysis, mutant structures were generated

based on the crystal structure of CDK2 protein using Swiss

Protein Data Bank (PDB) Viewer [37]. Protein–ligand

interaction studies were performed between native and the

four mutated models of CDK2 protein with its inhibiting

compound, flavopiridol. In order to carry out the docking

analysis, we used the AutoDock4 suite as a molecular

docking tool [32]. AutoDock4 is a suite of programs making

it possible to predict how ligand binds to large macromole-

cules. In this docking simulation, we used semi-flexible

docking protocols. Throughout the docking simulation, the

target protein was kept rigid. The ligand being docked is

usually flexible and, therefore, explores an arbitrary count of

torsional degrees of freedom with addition to the six spatial

degrees of freedom spanned by the rotational and parame-

ters. AutoDock4 provides different optimization algorithms

to search the space of possible protein–ligand combinations,

such as simulated annealing (SA), genetic algorithm (GA),

and a hybrid evolutionary algorithms (EA) termed

Lamarckian GA (LGA) combining the GA with a local

search strategy [38, 39]. The energy functions used in

docking simulations attempt to account for the intermolec-

ular energies between ligand and protein as well as the

intermolecular energies arising from the ligand conforma-

tion itself. AutoDock4 uses a grid-based approach to

approximate the energy calculations used by the energy

function. During the evaluation of a candidate conformation,

the grids are used as lookup tables storing the values used in

the calculation, thus making the overall docking simulation

remarkably fast. The graphical user interface program

AutoDock Tools (ADT) was used to prepare, run, and ana-

lyze the docking simulations. Polar hydrogens, solvation

parameters, and kollman united atom charges were added

into the receptor PDB file for the preparation of protein in

docking simulation. Gasteiger charges were added on the

ligand PDB file. The geometry of CDK2 structures were

optimized through steepest descent method with 1,000 steps

each of GROMACS 4.5.3 package. Each minimization was

carried out with GRO-MOS-96 [40] 43a1 force field.

MD Simulation Procedure

MD simulations for native and mutant complexes were

done with the aid of GROMACS 4.5.3, that adopts GRO-

MOS96 43a1 force field parameter for energy minimiza-

tions. Energy-minimized structures of the native CDK2 and

four mutant models were used as a starting point for MD

simulations. All the proteins were solvated in a cubic box

with wall extending at least 0.9 nm from all atoms and

filled with simple point charge (SPC) [41] water molecules.

Periodic boundary conditions were applied on the system

to maintain the number of particle, constant pressure, and

temperature (NPT). In order to obtain electrically neutral-

ized system, we utilized GENION procedure from the

GROMACS package to replace random water molecule

with Na? or Cl- ions. The temperature was kept constant

using a Berendsen algorithm [42] with a coupling time of

0.2. In order to soak the macromolecules into the water

molecules both the native and the mutant-minimized sys-

tems were equilibrated for 10,000 ps by position restrained

Fig. 1 Flow chart displays the

work flow followed in SNP

analysis of CDK2 gene
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MD simulation at 300 K. Then the equilibrated systems

were subjected to 10-ns MD simulations. To treat long-

range coulombic interactions, particle mesh Ewald method

[43] was used and to perform simulations SANDER

module [44] was used. To constrain bond lengths involving

in hydrogen bond formations, the SHAKE algorithm was

used at a time step of 2 fs. The coordinates were saved at

regular time intervals of 1 ps. The coulomb interactions

were truncated at 0.9 nm and the van der Waals force was

maintained at 1.4 nm.

Analysis of MD Trajectories

Structural properties of the native and mutant models of

CDK2 protein were calculated from the trajectory files with

the built-in functions of GROMACS 4.5.3. The trajectory

files were analyzed through the use of g_rmsd and g_rmsf

GRO-MACS algorithms to get the root mean square

deviation (RMSD) and root mean square fluctuations

(RMSF) graph. Total number of hydrogen bonds formed

between protein and ligand during the simulation was

calculated using g_hbond utility. Number of hydrogen

bonds determined based on the donor acceptor angle larger

than 90 nm and donor acceptor distance smaller than

3.9 nm [45]. Distance formed between CDK2 protein and

ligand was analyzed using g_dist GROMACS utility.

Further solvent accessible surface area (SASA) calculated

by g_sas utility. To generate the three-dimensional back-

bone RMSD, RMSF of c-alpha atom, hydrogen bond,

distance between molecules, and SASA analysis motion

projection of the molecules in phase space of the system

were plotted for all five simulations using graphing,

advanced computation and exploration (GRACE) program.

Results

Sources of CDK2 Information

Dataset for the evaluation of potential variants in CDK2 gene

was retrieved from dbSNP [46] and Swiss-Prot [47] database.

We selected the 11 nsSNPs for investigation, and its related

information was retrieved from OMIM [48], PubMed, and

Swiss-Prot database. Related experimental data about the

CDK2 protein and PDB structural file with PDB ID 1HCL

[49] were obtained from Swiss-Prot database and PDB [50],

respectively. For docking analysis, the ligand molecule,

flavopiridol, was retrieved from Drug Bank database [51].

Deleterious Variants in CDK2 by In Silico Tools

Identifying the deleterious variants has become more fea-

sible with the aid of improved in silico tools. In this study,

we analyzed 11 variants of CDK2 gene using four different

in silico tools namely SIFT, PolyPhen 2, PANTHER, and

I-Mutant 3 to determine their pathological significance.

Table 1 displays the distribution of the deleterious and

neutral variants of CDK2 gene with the corresponding

amino acid substitution. SIFT makes inferences from

sequence similarity using mathematical operations. SIFT

constructs a MSA and considers the position of the mis-

sense variants. SIFT calculates the probability based on the

amino acids present at each position in the MSAs, and

classifies a missense variant ‘‘tolerant’’ or ‘‘intolerant’’.

SIFT can be applied to not only naturally occurring vari-

ations but also artificial missense mutations. Among the

11 variants analyzed in SIFT tool, 6 (54.5 %) were iden-

tified as deleterious which obtained score B0.05. PolyPhen

2 utilizes both the sequence- and the structure-based

information to describe the effect of an amino acid sub-

stitution, and the effect of mutation is predicted by a

Bayesian classifier. The sequence-based features are posi-

tion-specific independent count (PSIC) scores, MSA

properties, and position of mutation in relation to domain

boundaries as defined by Pfam [52]. The structure-derived

features include changes in solvent accessibility for

buried residues, solvent accessibility, and crystallographic

B-factor. By PolyPhen 2, 7 nsSNPs (63.63 %) were pre-

dicted to be probably damaging the effect on the protein

structure and function of CDK2 protein and the remaining

four variants were classified as benign which obtained score

\0.15. In order to verify the prediction of evolutionary-

based SIFT results, we used PANTHER, a HMM-based

evolutionary approach to verify its effect on protein func-

tion upon a single point mutation. PANTHER predicts all

the 11 variants as highly deleterious. In order to improve

overall prediction accuracy, we used I-Mutant 3 a SVM-

based stability prediction tool. A score \0 means the var-

iant decreases the stability of protein. Conversely, a score

[0 means variant increase the stability of protein. Among

the 11 variants of the CDK2 gene, 9 variants (81.81 %)

showed the negative DDG values, were considered to be

less stable and deleterious. Remaining two nsSNP, N3K

and G16R, showed positive DDG value and classified as

non-deleterious. By comparing the results of all the four in

silico tools used in this study, four variants of CDK2 gene

specifically Y15S, V18L, P45L, and V69A were filtered as

highly deleterious. Among these variants, P45L variant was

found in genes of 210 diverse human cancers patients [53].

CDK2–Flavopiridol Interaction Analysis

in the Presence of CDK2 Deleterious Variant

Experimental study of flavopiridol shows considerable

inhibitory effect toward CDK2 protein [6, 54]. Amino acid

variants in CDK2 protein may affect the binding efficacy of
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protein with flavopiridol. This has to be analyzed to

improve the potentiality of drugs to inhibit CDK2 protein

actions. Hence, we analyzed the binding ability of flavo-

piridol with native and mutant models of CDK2 protein

using in silico docking tool-Autodock4. Before entering

into docking analysis, we evaluated the binding sites of

native CDK2 protein. De Azevedo et al. [54] and Kim et al.

[6] observed that flavopiridol directly binds at the ATP-

binding pocket between the larger C-terminal and smaller

N-terminal domains. Kim et al. [6], in their crystallography

study, demonstrated the role of surrounding residues Ile10,

Lys33, Glu81, Leu83, His84, Gln85, Asp86, Lys89, and

Asp145 in the inhibitory effect of flavopiridol toward

CDK2. Our in silico docking analysis showed the similar

results as of experimental studies, i.e., flavopiridol binds at

the very similar position of ATP-binding site to the native

CDK2 protein (Fig. 2a). In contrast to the experimental

studies, flavopiridol binds at different positions in all the

four mutant models Y15S, V18L, P45L, and V69A

(Fig. 2b–e). Change in the binding residues will certainly

affect the complementarities between the mutant models

and flavopiridol. Shape complementarity and non-covalent

interactions were believed to drive protein–ligand interac-

tion. Non-covalent bonds such as hydrogen bonds, van der

Waals contacts, and electrostatic forces are the major for-

ces involved in protein–ligand interactions. Calculating the

interaction energies of non-covalent bonds is extremely

important to understand the binding ability of ligand mol-

ecule. The number of hydrogen bonds formed between the

protein and the ligand, van der Waals interacting energies,

and electrostatic interacting energies were computed using

Autodock4. The binding energy and the non-covalent

bonds interaction energy between CDK2 protein (native

and mutant) and flavopiridol molecule were calculated and

displayed in Table 2. In the native complex, the significant

contribution of van der Waals and electrostatic energy was

observed as -7.38 and 0.48 kcal/mol, respectively. On the

contrary, mutant models Y15S, V18L, P45L, and V69A

interacting with flavopiridol showed an increased van der

waals and electrostatics energies as -7.06, -6.93, -6.49,

-7.35 and 0.29, 0.43, 0.35, 0.36 kcal/mol, respectively.

The total ligand receptor binding energy exhibited by

the native, Y15S, V18L, P45L, and V69A complexes were

-6.47, -6.17, -5.9, -5.54, and -6.04 kcal/mol, respec-

tively. Lower binding energy of the native complex shows

the better interaction and complete agreement with flavo-

piridol compound. This docking analysis gives a ‘‘theo-

retical quantitative’’ assessment on the binding efficiency

of CDK2 mutant proteins with flavopiridol drug.

Structural Stability and Flexibility Analysis

in CDK2–Flavopiridol Complex

MD simulations provide detailed information about the

motions and dynamics of the system studied. Analyses of

the trajectories from MD simulations allow us to calculate

the stability and flexibility changes for the time averaged

atomic motions. The overall protein stability changes upon

mutation were evaluated by RMSDs values. We calculated

the backbone RMSD for all the atoms from the initial

structure, and considered to be a primary criterion to

determine the convergence of the protein structure con-

cerned. The backbone RMSD was calculated for both the

native and the mutant models of CDK2 protein from the

appropriate trajectory files (Fig. 3). We observed a sub-

stantial structural deviation in mutant models Y15S, V18L,

P45L, and V69A when compared to native CDK2 protein

structure. The native and the mutant P45L and V69A

structure obtained a mean deviation range of *0.1 to

*0.25 nm in the entire 10-ns simulation period. But the

Table 1 List of nsSNPs showing deleterious/non-deleterious scores by SIFT, PolyPhen 2, PANTHER, and I-Mutant 3

Gene Rs IDs and variants Amino acid position SIFT PolyPhen 2 PANTHER I-Mutant 3

CDK2 rs139342756 N3 K 0.91 0.003 -5.42956 0.15

rs3087335 Y15S 0 1 -8.60424 -1.33

rs113816950 G16R 0 1 -5.91158 0.66

rs11554376 V18L 0 0.998 -8.15827 -1.1

VAR_041972 P45L 0 1 -7.83965 -0.41

rs11554375 V69A 0.04 1 -5.15915 -1.79

rs144092294 R245Q 0.34 0.045 -5.05356 -0.99

rs183298846 A277S 0.06 1 -5.37404 -0.81

rs148619120 K278E 0.02 0.421 -5.2614 -0.34

rs142099990 A279V 0.26 0.001 -5.81499 -0.37

rs2069413 T290S 0.72 0 -3.5821 -0.66

Highly deleterious Rs IDs and variants by SIFT, probably and possibly damaging by PolyPhen 2, deleterious subPSEC score by PANTHER, and

negative score of I-Mutant 3 were highlighted in bold
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Fig. 2 Interaction of

flavopiridol with native and

mutant structures of CDK2

protein. Binding of drug

flavopiridol with a native CDK2

protein, b mutant model Y15S,

c mutant V18L, d mutant P45L,

e mutant V69A
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mutant model, Y15S and V18L, obtained a high RMSD

range of *0.1 to *0.3 nm and *0.1 to *0.3 nm,

respectively. This difference in the deviation range in

mutant model explains the stability changes and which

reflects the impact of substituted amino acid in CDK2

protein. MD provides valuable information about long-

range motions and correlated motions, and it allows ther-

mal fluctuations, and long period motions to be distin-

guished [55, 56]. In order to evaluate the structural

flexibility, we calculated the RMSFs values from the 10-ns

simulation trajectory data. The RMSFs values of native and

mutant models are shown in Fig. 4. The native CDK2

Fig. 2 continued

Table 2 Binding and non-bonded interaction energies of native and mutant model of CDK2 protein with inhibitor flavopiridol

Native and

mutant

models

Binding

energy

Kcal/mol

Van der waals

energy Kcal/

mol

Electrostatc

energy Kcal/

mol

Residues involved in

H-bonding with ligand

atom

Inhibition

constant

(lm)

Intermolecular

energy Kcal/

mol

Torsional

energy Kcal/

mol

Ref

RMS

Native -6.47 -7.38 0.48 Thr14 18.0 -7.07 0.6 8.28

Thr14

Y15S -6.17 -7.06 0.29 Val251 30.25 -6.76 0.6 8.2

V18L -5.9 -6.93 0.43 Thr218 47.43 -6.5 0.6 9.41

P45L -5.54 -6.49 0.35 Arg214 86.61 -6.14 0.6 5.65

V69A -6.04 -7.35 0.36 Lys250 20.5 -6.99 0.6 4.26

Gln246
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protein residues 13–100 showed a higher fluctuation which

belongs to the glycine-rich loop (G-loop) and identified as

an inhibitory segment of CDK2 roofing the ATP-binding

site [57]. Decrease in fluctuation was observed for all the

four mutant models in the residue position of 13–100

indicate the reduction in the flexibility at the inhibitory site.

Including these functional residue regions, RMSFs of all

the mutant models were remarkably deviated from the

native structure in the entire residue portions. Differences

in the RMSF value indicate the mode of flexibility change

in the mutant models and also reflect the impact of

substituted deleterious variants in CDK2 protein.

Hydrogen Bonding and Minimum Distance Change

Analysis

Hydrogen bonds are the most significant weak interactions

in chemistry and biology [58–60]. A hydrogen bond arises

when a hydrogen atom covalently bound to a molecule

interacts with an electronegative atom in the same or

another molecule. As they are responsible for maintaining

the stability of protein structure, determining the hydrogen

bonds significantly revels about the stability of protein

[61]. Therefore, to assess the stability between protein and

ligand, it is essential to gain knowledge of the hydrogen

bond strength in protein–ligand interactions. Figure 5

depicts the number of hydrogen bonds formed between

CDK2 and flavopiridol complex in both native and mutant

state. Native complex of CDK2–flavopiridol exhibits a

maximum of five hydrogen bonds throughout the 10-ns

simulation period. Mutant protein models Y15S, V18L,

P45L, and V69A complexes with flavopiridol obtained

maximum of three hydrogen bonds in the entire simulation

period. Notably, four mutant protein–ligand complexes

obtained less number of hydrogen bonds when compared

with the native CDK2–flavopiridol complex. Decrease in

the number of hydrogen bond formation between mutant

proteins–flavopiridol complexes explains the impact of

deleterious amino acid substitution and their ability to

destroy the hydrogen bond formations between mutant

proteins and ligand.

Furthermore, the minimum distance between the CDK2

protein and ligand was computed for both the native and

the mutant complexes (Fig. 6). The minimum distance

Fig. 3 Backbone RMSDs are shown as a function of time for native and mutant structures of CDK2 at 300 K (Color figure online)
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between native CDK2 and flavopiridol was observed as

*0.1 to *0.2 nm in the whole 10-ns simulation period.

But for the four mutant complexes Y15S, V18L, P45L, and

V69A increase in the distance range was observed as

*0.15 to *0.3 nm. From this minimum distance analysis,

we infer that the distance between mutant protein and

ligand was increased in compared native complex which

may due to the substitution of deleterious amino acid

variants.

Effect of CDK2 Deleterious Variants in SASA

of Protein Structure

The SASA of a bimolecular is that, accessible to a solvent.

Solvation effect plays an important role in maintaining

protein stability and folding. Likewise, the solvation effects

accompanied the protein–ligand binding process and the

rearrangement of solvent molecules. These solvation

effects can be calculated by explicit solvent models, such

as MD simulations, using a sphere of water molecules [62].

Solvent accessibility was generally divided into exposed

and buried regions, indicating the high accessibility and

least accessibility of the amino acid residues to the solvent

molecules [63]. SASA was calculated for both the native

and the mutant trajectory values of CDK2 protein. From

Fig. 7, it was observed that native CDK2 protein obtained

SASA of *88 to *96 nm2 in the whole 10-ns simulation

period, while the mutant models Y15S, V18L, P45L, and

V69A obtained less SASA of *78 to *88 nm2, *82 to

*94 nm2, *80 to *92 nm2, and *78 to *88 nm2,

respectively. In compare with native protein, all the four

mutant proteins obtained less SASA. Reduced in the SASA

of mutant proteins indicates that there may be a shift in

amino acid residues from accessible area to buried state,

which may be the cause of ligand binding other than the

active site in mutant proteins.

Discussion

Substitution of deleterious nsSNPs in the coding region

may lead to alteration in the protein structure and function

Fig. 4 Central C-alpha RMSF are shown as a function of time for the native and mutant structures of CDK2 at 300 K (Color figure online)
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which account for susceptibility to disease and altered

drug-binding site. Identification of such a deleterious

nsSNPs from neutral one is the main task in detecting

pathogenesis of disease, individual susceptibility to dis-

ease, identifying molecular targets for drug treatment, and

for conducting individualized medicine. Several experi-

mental studies were carried out to analyze the relationship

between nsSNPs and drug response in cancer treatments.

Garcia-Campelo et al. [64] reported the involvement of

polymorphism in repair genes such as ERCC1, RRM1,

XPD, and BRCA1 resistance to anticancer drug cisplatin.

Giovannetti et al. [65] demonstrated the role of nsSNPs in

the DNA repair protein to be candidate biomarkers of

primary resistance to gemcitabine-/cisplatin-based poly-

chemotherapeutic agent in the treatment of pancreatic

cancer. In another analysis, Wang and Moult [66] reported

the role of nsSNPs in individuals by inducing or influ-

encing the disease by affecting protein–protein interactions

(PPI), protein expression, alternative splicing, stability,

folding and ligand binding, or catalysis. These mounting

studies on nsSNPs insist their role in better understanding

the phenotypic changes occurred among the individuals

which enhance toward new drug design and development.

The exponential increase in the number of SNPs makes

impossible by wet laboratory experiments to determine the

biological significance of each nsSNP. Alternatively, bio-

informatics tools can be used to investigate the potentially

deleterious nsSNPs that might affect important drug targets

before further consideration by wet laboratory techniques.

Previously, our group had identified and analyzed the

effects of deleterious nsSNPs in several proteins at struc-

tural and functional levels, and drug-binding capability

Fig. 5 Number of hydrogen bonds formed between CDK2 protein and flavopiridol in both the native and mutant complexes (Color figure online)
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using various in silico tools [67–69]. In this study, we

performed a systematic in silico study to determine the

potential deleterious and their structural and functional

significance with molecular docking and MD approach.

Sequence-based methods (based on homology and

evolutionary conservation) such as SIFT and PANTHER

have more advantage over the structure-based methods

(PolyPhen 2.0 and I-Mutant 3.0), as they include all types

of effect at the protein sequence level, and can be used on

any human protein with knowledge relative protein

sequence. They are unable to reveal the underlying

mechanisms of how SNPs result in changed protein phe-

notypes. On the other hand, structure-based methods have

limited applicability due to unavailability of known 3D

structures. Analyzing deleterious nsSNPs by both sequence

and structure level have the added benefit of being able to

determine the reliability of the predicted results by cross

verifying the outputs obtained from both the approaches.

Tools that combine sequence- and structure-based approaches

use different algorithms and methodologies in their pre-

diction, thereby having a wider coverage of the different

aspects of SNP analysis. Both the methods have disad-

vantages and advantages in their predictions. So, user only

must decide which tool is most optimal to the specific

objectives of their analysis to gain the optimum knowledge.

To determine the possible effects of nsSNPs in CDK2 gene,

we employed four widely used in silico tools SIFT, Poly-

Phen 2, I-Mutant 3, and PANTHER. SIFT predicted 50 %

of nsSNPs as deleterious, whereas PolyPhen 2, I-Mutant 3,

and PANTHER predicted 87.5 % of nsSNPs to be delete-

rious. Basically all the four algorithms follow different

strategies for predicting the impact of deleterious variant

and, we would expect that the results to be in some ways,

dissimilar. However, the positive predictions that overlap

all these four in silico tools should give high reliability to

behave similarly. The variation in their predictions might

Fig. 6 Minimum distances between CDK2 protein and flavopiridol in both native and mutant complexes (Color figure online)
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be due to the difference in features utilized by the methods

or the training dataset. Comparing the prediction of all the

four methods, four amino acid variants Y15S, V18L, P45L,

and V69A were identified as highly deleterious and filtered

for further structure and functional investigations. In

docking analysis, several factors enhancing the protein–

ligand interactions were analyzed. All the parameters elu-

cidated the less binding capability of mutant models with

flavopiridol drug. Particularly, the number of hydrogen

bonds and its forming residues differed in the mutant

proteins in comparison with native CDK2 protein. Mutant

proteins Y15, V18L, and P45L and their residues Val251,

Thr218, and Arg214, respectively, form single hydrogen

bond with the ligand oxygen atoms. Native protein residue

Thr14 formed two hydrogen bonds by interacting with two

oxygen atoms of ligand, and the another mutant protein

V69A residues Lys250 and Gln256 obtained two hydrogen

bonds with the flavopiridol molecule by interacting with

two different oxygen atoms of the flavopiridol. Even

though the mutant model V69A obtained two hydrogen

bonds with flavopiridol, but the ligand fails to binds on the

ATP-binding site of V69A and other three (Y15S, V18L,

P45L) mutant proteins. It actually interprets the structural

changes in the CDK2 protein due to the inclusion of del-

eterious amino acids. Furthermore, we performed a serious

of MD simulation analysis on the native and the mutant

models of CDK2–flavopiridol complexes which will pro-

vide insight knowledge about the atomic level motion in

time-scale level. Five different analyses such as RMSD,

RMSF, hydrogen bond, minimum distances, and SASA

were performed on the 10-ns simulation trajectories.

Molecular stability and flexibility changes were observed

by RMSD and RMSF analyses. Stability is the fundamental

property enhancing bimolecular function, activity, and

Fig. 7 Solvent accessible surface area (SASA) of native and mutant models of CDK2 protein (Color figure online)
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regulation. CDK2 protein stability analysis results inferred

that all the four mutant proteins Y15S, V18L, P45L, and

V69A obtained averagely high RMSD values than the

native protein. Higher the deviation increases the stability

of a protein. Higher the stability increase in the rigidity of a

protein and decrease in the stability increases the flexibility

of a protein. Conformational changes are required for many

protein functions [70–72], but the conformational flexibil-

ity and rigidity must be finely balanced [73]. Hence, from

the stability analysis of native and mutant CDK2 proteins it

was observed that mutant proteins obtained high rigidity

due to the incorporation of deleterious amino acids and

these changes may affect the binding adaptability of

flavopiridol. From the RMSF analysis, we observed

decrease in flexibility for all the four mutant proteins in the

first half of the residues ranging from 0 to *100. But

native protein obtained high flexibility in the same residue

range. Protein active sites always have high flexibility,

which facilitates good interaction with binding drug mol-

ecules. In docking analysis, we observed that flavopiridol

binds at the highly flexible region (0 to *100) of the native

protein. But the substitution of deleterious amino acids in

mutant protein affected the original flexibility of CDK2

protein and obtained new flexible region range from *200

to *250. In all the four mutant proteins, flavopiridol binds

within the newly formed flexible residues region. Thus, in

consistence with the RMSD, RMSF analysis also con-

firmed that the substitution of amino acids adversely

affected the structure of CDK2 protein. Besides from the

different electrostatic forces, the hydrogen bonds across the

protein–ligand interactions serve as a main contributor in

maintaining the stable contact between the molecules.

Furthermore, the incorporation of deleterious nsSNP may

change the possible electrostatic formation between the

molecules. Consequently, in all the four mutant complexes

Y15S, V18L, P45L, and V69A less number of hydrogen

bonds were observed between protein and ligand molecule.

In the whole simulation period, mutant complexes obtained

an average of one hydrogen bond and maximum of three

hydrogen bonds. Whereas, the native CDK2–falvopiridol

complex obtained an average of two hydrogen bonds and

maximum of five hydrogen bonds in the entire 10-ns

simulation period. Decrease in the number of hydrogen

bonds reveals the change in binding stability in CDK2–

flavopiridol mutant complexes. The path traced by hydro-

gen bonds is an essential characteristic that may be used to

infer how a perturbation caused by a mutation [74]. Min-

imum distances between protein–ligand complexes were

analyzed in both native and mutant condition. Distance

between the CDK2 protein and flavopiridol were increased

in all the four mutant complexes when compared to the

native complex. Increased in the distance may reduce the

binding affinity between the CDK2–flavopiridol mutant

complexes. Further in SASA analysis, it was found that

with respect to the native, less area of solvent accessible

surface observed in all the four mutant proteins. Lesser the

accessible area, decrease in probability of regular interac-

tion with ligand molecules and other biomolecules. For

example, residues with high solvent accessible area are

significantly having higher probability to interact with

DNA [75]. Thus, SASA analysis indicates that the presence

of deleterious mutations in CDK2 protein results in change

in the hydrophilic area of the mutant proteins. In the last

few decades, molecular science has made many advances

in benefit of medicine, including the international hapmap

project, human genome project, and genome wide associ-

ation studies [76]. SNPs are now recognized as the

important source of human genetic variability and consid-

ered as a valuable resource for mapping complex genetic

traits [77]. So for thousands of DNA, variants were iden-

tified that are associated with diseases and phenotypic

changes [78]. With the knowledge of genetic relationship

between phenotypes and the drug response, personalized

medicine will tailor to treat patients with specific genotype.

Based on this context, we explored the relationship

between deleterious variants of CDK2 protein and its

impact on the drug (flavopiridol)-binding ability with the

help of in silico molecular docking and MD approaches.

This analysis could pay a way for the development of new

drugs with respect to the acquired structural changes in

CDK2 protein. The proposed methodology demonstrates

the convincing links between genetic variation and drug

responses via computational methods to experimental

biologists. This information can be later translated into

useful pharmacogenomic assessments.
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