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Abstract The effect of cosolvents on biomolecular

equilibria has traditionally been rationalized using simple

binding models. More recently, a renewed interest in the

use of Kirkwood–Buff (KB) theory to analyze solution

mixtures has provided new information on the effects of

osmolytes and denaturants and their interactions with bio-

molecules. Here we review the status of KB theory as

applied to biological systems. In particular, the existing

models of denaturation are analyzed in terms of KB theory,

and the use of KB theory to interpret computer simulation

data for these systems is discussed.
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Introduction

Protein denaturation is an important process which pro-

vides information on the relative stability of the folded and

unfolded forms of proteins and thereby insights into the

protein folding process [1]. It is well established that

cosolvents (anything other than the primary solvent) can be

used to alter protein solubility and stability [2]. Small

molecules such as urea and guanidinium chloride (gdmcl)

are known to destabilize ordered protein structures and are

often referred to as protein denaturants. In contrast, many

polyols, sugars and amino acids can help stabilize the

native form and are often referred to as osmolytes. Other

molecules such as 2,2,2-trifluoroethanol (TFE) can actually

induce secondary structure. A summary of the general

effects of different cosolvents can be found in several

comprehensive reviews [3–8]. However, even though the

use of cosolvents to induce protein denaturation has a long

history, our knowledge of the structural and dynamic

details of the resulting denatured state remains rather

limited. The exact interactions between cosolvents such as

urea and a native or denatured protein are also poorly

understood. Furthermore, it is clear that cosolvents can also

be used to manipulate protein–protein interactions and

therefore provide information on peptide and protein

aggregation [9–16]. Hence, a clear picture of cosolvent

effects in biomolecular systems is highly desirable.

The desire to understand cosolvent induced protein

denaturation [17, 18], equilibrium dialysis [19], osmotic

stress [20], the Hofmeister series [5], and light scattering

from protein solutions [21–23], has led to the theory of

preferential binding and the concept of preferential inter-

actions [19, 24]. In principle, preferential binding is a

purely thermodynamic quantity. Traditionally, however,

simple binding models have been applied to model and
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understand the preferential interactions of cosolvents with

biomolecules [17, 25]. More recently, Kirkwood–Buff

(KB) theory has been used to generate exact expressions

for the preferential interactions of cosolvents with proteins

which have provided a different view of the cosolvent

distribution around a protein. Interestingly, this view is

complimentary to the original thermodynamic (dialysis)

experiments on open systems. The KB approach is partic-

ularly well suited for a description of the weak binding

exhibited by most denaturants—where common experi-

mental structural techniques (X-ray crystallography and

nmr) produce useful, but limited data concerning cosolvent

interactions with biomolecules [26–33].

Our interest in KB theory has stemmed from a desire to

use computer simulations to understand the details of

cosolvent effects at the atomic level. Our early studies,

while providing some interesting observations, were rather

qualitative in nature [34–36]. It became increasing more

desirable to relate the computer simulation results to real

experimental data. This is not a trivial problem as one

cannot study the protein denaturation process in full atomic

detail with current computational resources, and so a direct

determination of the equilibrium constant is not possible. In

addition to the sampling issue, we were also concerned as

to the quality of the force fields being used for our studies

and how accurately they mimic cosolvent effects [37–39].

It was at this stage that we turned to KB theory to help

quantify the effects we were observing in our simulations.

KB theory is particularly attractive as it is exact and can be

applied to solutions containing molecules of any size and

type. Initially, our studies focused on the theory and sim-

ulation of cosolvents effects on hydrophobic hydration [40,

41], but this has since developed into a general approach

for biological systems [42]. Several other authors have

pursued a similar approach. Here we review the progress to

date.

Notation and Overview

Traditionally, the subscripts 1, 2, and 3 refer to the primary

solvent (water), the biomolecule solute, and the cosolvent,

respectively. We retain that notation here. However, there

are several differences in the present notation from more

traditional work [43]. This is primarily a reflection of our

desire to use computer simulations to study cosolvent

effects, and to apply KB theory to analyze the results. In

doing so, we have embraced the pseudo chemical potential

approach of Ben-Naim [44]. This is closely related to the

excess chemical potential expressions obtained from

statistical mechanics and used in previous simulation

studies. However, it is different from the traditional excess

chemical potential adopted by experimentalists. In

particular, number density (or molarity) is the natural

concentration unit for most formulations of the chemical

potential used in simulation studies. In contrast, the

majority of early experimental studies have focused on the

molal concentration scale. Furthermore, the thermody-

namics of cosolvent effects involve derivatives of the

chemical potentials with respect to the cosolvent concen-

tration. Again, there are multiple choices for the cosolvent

concentration. Each one produces slightly different, but

related, expressions. This is somewhat unfortunate and

therefore one must be careful to distinguish between the

different definitions, approaches, and notations being

used.

The application of KB theory to understand cosolvent

effects is the primary advance from existing traditional

approaches that is presented here. In particular, the exist-

ing approaches are not well suited for the analysis of

computer simulations, whereas the descriptions provided

through KB theory are simple and easy to apply. Expres-

sions for the preferential interactions and associated

activity derivatives in terms of KB integrals have only

appeared recently. We believe that the KB integrals, which

can be obtained from experiment or through simulation,

provide the most promising approach to improve our

understanding of cosolvent effects. This is the focus of the

current review.

The review is organized as follows. A general outline of

the concept of preferential interactions is provided

including a simple derivation of the effects of a cosolvent

on the chemical potential of a biomolecule. KB theory is

introduced and applied to both open and closed binary and

ternary systems. Specific applications of KB theory to

biological systems that have appeared in the literature are

then reviewed. Several currently available models for

protein denaturation are outlined and discussed with ref-

erence to the proceeding KB analysis. Finally, we review

the use of computer simulations to determine preferential

interactions, and the use of KB theory to analyze the results

of these simulations.

Preferential Binding and Preferential Interactions

Historically, the effect of a cosolvent on the properties of a

biomolecule has been quantified in terms of the concept of

preferential binding. The general theory has been outlined

in detail by Scatchard [45], Wyman [17, 46], Eisenberg

[19, 43], Tanford [25, 47], Timasheff [7], Schellman [48–

50], and Record [6, 51]. Preferential binding is a thermo-

dynamic expression of the degree of cosolvent binding

(over the solvent) derived for systems open to the solvent

and cosolvent. The preferential binding parameter at a

temperature T is defined by [2],
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C23 ¼
om3

om2

� �
T ;l1;l3

ð1Þ

where mi ¼ ni=n1 is the species molality, ni is the number of

molecules of i, and l is the chemical potential. In an equi-

librium dialysis experiment the above quantity measures the

increase or decrease in the number of cosolvent and water

molecules in the system on changing the biomolecule con-

centration, as determined from the corresponding solution

density changes [19]. The preferential binding parameter is

the central property of interest in this work. While it is

defined in an open system, we will see that it is just as

important and relevant in closed systems. Furthermore, one

can use alternative definitions to Eq. 1 to quantify prefer-

ential binding when the concentrations are expressed in

molarity units and/or the system is open to just species 1 or

3. Relationships between these different definitions are also

available [19, 43], and will be discussed later.

Wyman derived a general expression relating changes in

the equilibrium constant for a biomolecular process on the

addition of a cosolvent, to the binding of the cosolvent to

the different species involved in the equilibrium [17]. This

was then extended by Tanford to specifically include water

binding and exchange [47]. Both Wyman and Tanford used

a general binding polynomial approach and the concept of

linked thermodynamic functions to provide,

o ln K

o ln a3

� �o

T ;P;l1

¼ DB3 �
q3

q1

DB1; ð2Þ

where DB3 (and DB1) describe the difference in cosolvent

(and water) binding to each state, qi is the bulk number

density (=ni=V) of each species, and the superscript o

denotes the condition of an infinitely dilute protein.

Timasheff and Tanford have emphasized that the B values

are not independent thermodynamic quantities and so they

cannot be separated on thermodynamic grounds [2, 47].

However, one can use models to evaluate the degree of

cosolvent (or water) binding which allows one to determine

both DBi values, although this is not a true thermodynamic

decomposition. We will see later that KB theory provides a

rigorous thermodynamic relationship between B3 and B1.

The preferential binding parameter can be used to

understand equilibria in closed systems by suitable ther-

modynamic transformations. One usually assumes that [19],

C23 ¼
om3

om2

� �
T ;l1;l3

� om3

om2

� �
T ;P;l3

ð3Þ

coupled with the thermodynamic relationship,

om3

om2

� �
T ;P;l3

¼ � ol2

ol3

� �
T ;P;m2

ð4Þ

and reference to the Wyman linkage equation to obtain the

following result for the effect of a cosolvent on the

equilibrium constant (K) for denaturation,

o ln K

o ln a3

� �o

T ;P

¼ CD3 � CN3 ¼ DC23 ð5Þ

where a3 is the cosolvent activity (on any scale).

Comparison with Eq. 2 therefore suggests that,

C23 ¼ B3 �
q3

q1

B1 ð6Þ

Consequently, a cosolvent that displays a larger

preferential binding to the denatured (over the native)

form will tend to shift the equilibrium in favor of the

denatured form and is therefore classified as a denaturant.

Alternatively, a cosolvent that displays preferential

exclusion from the denatured form, also referred to as

preferential hydration, will tend to shift the equilibrium in

favor of the native form and is typical of an osmolyte.

The above equation is correct as we shall see in the

following section. However, we could not find a rigorous

transformation from Eq. 1 through Eqs. 2–5 in the literature,

even though many of the required transformations are

known [19, 43]. It involves both a change in ensemble and a

change from the total to a standard chemical potential.

Gibbs–Duhem Approach for Formulating Cosolvent

Effects

A more physical picture of the cosolvent effect can be

obtained by considering the Gibbs–Duhem equations cor-

responding to an open system containing 1 and 3 with a

fixed amount of 2 in equilibrium with a closed reference

solution of just 1 and 3 at the same chemical potentials.

This outline is based on an approach by Hall [52], which

has also been used by Wyman and Gill [46, p. 299],

Parsegian and coworkers [53], Record [51], and more

recently by Shimizu [54]. The physical picture is clearly

illustrated in Reisler et al. [55]. At constant T and external

P one can write,

N2dl2 þ N1dl1 þ N3dl3 � ðV � N2V2ÞdP ¼ 0 ð7Þ
n1dl1 þ n3dl3 ¼ 0 ð8Þ

for the biomolecule and reference solutions, respectively.

Here, P is the osmotic pressure due to the presence of the

biomolecule, V is the solution volume after addition of the

biomolecule, and V2 is the partial molar volume (pmv) of

the biomolecule. The values of Ni represent the number of

molecules per biomolecule in the open system, while the ni

values are the corresponding numbers in the bulk reference

Cell Biochem Biophys (2008) 50:1–22 3



solution at the same cosolvent and water chemical

potentials. The Ni values can differ from the ni values

due to the perturbing effect of the biomolecule on the

solvent and cosolvent chemical potentials, which requires a

solution redistribution to maintain equilibrium with the

reference solution. The two equations shown above can be

rearranged to eliminate dl1 and provide, in the limit that N2

tends to zero and using the limiting van’t Hoff equation for

the osmotic pressure ðP ¼ RTq2Þ, the final expression,

� olO
2

ol3

� �o

T ;P

¼ N3 �
q3

q1

N1 ð9Þ

where the number densities refer to the bulk reference

solution. Therefore, if N3/N1 is greater than the bulk ratio

of cosolvent to solvent (q3/q1) then the standard chemical

potential of the biomolecule (using any concentration

scale) is decreased upon increasing the cosolvent activity

(or concentration). Alternatively, if it is less than the bulk

ratio the standard chemical potential is increased, whereas

if it is the same as the bulk ratio the cosolvent has no effect

on the standard chemical potential. The effect on an

equilibrium process is then simply,

o ln K

o ln a3

� �o

T ;P

¼ DN3 �
q3

q1

DN1 ð10Þ

where we have assumed a simple two state process.

The above equations provide a rigorous thermodynamic

description of the effects of cosolvents on biomolecules.

The equations are exact within the infinitely dilute bio-

molecule limit. The values of DN3 and DN1 have

traditionally been estimated using simple binding polyno-

mials or binding models which assume (or at least suggest)

binding to the surface of the protein. It is clear that the

values of DNi measure changes in the number of cosolvent

and waters molecules over the whole solution and not just

at the surface of the protein. We will see that KB theory is

particularly well suited to this type of situation. Equa-

tion 10 is the same as Eq. 5 if we interpret DBi to be the

same as DNi. One will observe that many of the equations

that result from the application of KB theory will bear a

striking resemblance to those already established using

previous approaches. However, they are fundamentally

different from the general binding polynomial models, and

therefore the details they provide concerning the intermo-

lecular distributions.

Kirkwood–Buff Theory

The original paper concerning KB theory was published in

1951 [56]. An expanded derivation was subsequently pro-

vided by Mazo and others [52, 57, 58]. However, the

approach suffered from several drawbacks compared to

other solution theories being developed at that time. First,

KB theory requires radial distribution functions as input,

whereas these are typically output data from other theories.

Second, it cannot be applied directly to ionic solutions. It is

fair to say that the theory lay relatively unused until 1977

when Ben-Naim illustrated how one can use KB theory to

analyze experimental data on solution mixtures [59]. Since

then it has been used extensively in the chemistry and

chemical engineering fields to provide information on

intermolecular distributions and preferential solvation in

solution [60, 61]. The potential for understanding the

properties of biomolecular solutions was recognized rela-

tively early [44, 62], but very little analysis of real

experimental data was forthcoming. Only recently has KB

theory gained attention for its potential to rationalize the

effects of both osmolytes and protein denaturants. The

specific advantages of KB theory include:

1. It is an exact theory.

2. It can be applied to any stable solution mixture

involving any number of components.

3. It can be applied to molecules of all sizes and

complexity.

4. It does not assume pairwise additivity of interactions.

5. It is well suited for the analysis of computer simulation

data.

Several disadvantages will become apparent during the

following discussion.

KB theory provides relationships between particle dis-

tribution functions in the grand canonical (l VT) ensemble

and derivatives of the chemical potentials of all species

involved in either open, semi-open or closed systems. The

primary quantity of interest is the KB integral (Gij)

between species i and j given by [44],

Gij ¼ Gji ¼ 4p
Z1

0

glVT
ij ðrÞ � 1

h i
r2 dr ð11Þ

where gij is the corresponding center of mass based radial

distribution function (rdf). The above integral quantifies the

deviation in the distribution of j molecules around a central

i molecule from that of a random distribution in an

equivalent volume of the bulk solution. We note that the

KB integrals are sensitive to small deviations from the bulk

distribution at large separations due to the r2 weighting

factor. The above integrals adopt a similar form as the

Mayer f-functions used in classical solution theory. How-

ever, the above rdf should be interpreted as a potential of

mean force (pmf), through the relationship WijðrÞ ¼
�RT ln gijðrÞ, where one has averaged over the configu-

rations of all other species in the solution including any

4 Cell Biochem Biophys (2008) 50:1–22



other i and j molecules. The Mayer f-functions typically

represent the pmf between pairs of solute molecules at

infinite dilution in a system of solvent molecules [63]. The

former is directly applicable at finite solute concentrations

and is easily provided by computer simulations, whereas

the latter forms part of a series expansion and can be sta-

tistically unreliable via simulation.

An equivalent expression for the KB integral can be

written in terms of particle number fluctuations,

Gij ¼ V
hNiNji � hNiihNji
hNiihNji

� dij

hNii

� �
ð12Þ

where dij is the Kronecker delta function. The above

expression emphasizes the fact that the KB integrals are

defined in an open system where the number of particles

can fluctuate. Hence, KB theory is often referred to as the

fluctuation theory of solutions. This is also apparent from

the fact that the value of qjGij equals 0 if i 6¼ j and - 1 if

i = j for a closed system [44]. Only after suitable ther-

modynamic transformations do the integrals provide

information on closed systems. In this case the KB inte-

grals correspond to an equivalent open system in which the

hNii equals the fixed Ni in the closed system, etc.

An excess coordination number can be defined ðNij ¼
qjGij 6¼ NjiÞ which characterizes the number of j molecules

observed around an i molecule in the open system, above

that observed within an equivalent volume of a bulk ref-

erence solution at the same chemical potential [52]. It is a

measure of how the addition of a single i molecule affects

the distribution of i and j molecules around it in reference

to the corresponding bulk distribution. For small molecules

(but not proteins), a positive value of Nij typically indicates

an increase in the local density of j around i above that of

their bulk ratios. This can be viewed as the result of some

favorable net interaction or affinity between the two

species.

As the KB integrals correspond to distributions in open

systems the expressions for solution properties in open

systems are generally rather simple. The KB integrals

provide expressions for derivatives in the grand canonical

ensemble [44],

RT

V

ohNii
olj

 !
T ;V ;lk 6¼j

¼ qiqjGij þ qidij ¼
hNiNji � hNiihNji

V

ð13Þ

where R is the gas constant and the system is open to all

components. The above set of equations can then be

transformed to other ensembles. The expressions become

more complicated as we move to closed systems and/or

increase the number of components in the solution. A

general matrix formulation is available for chemical

potential derivatives in closed systems [44]. Recently, we

have suggested a stepwise transformation process which

provides expressions for preferential interaction parameters

in semi-open and closed systems in a simple manner

[64, 65].

There are many concentration scales which can be used

to monitor changes in the chemical potentials. For instance,

li ¼lo;m
i þ RT ln cimi

li ¼lo;c
i þ RT ln yici

li ¼lo;x
i þ RT ln fixi ¼ lo;x

i þ lex
i þ RT ln xi

li ¼l�i þ RT ln K3
i qi

ð14Þ

The first three represent common definitions used in

experimental work based on whether one measures

concentrations in units of molality (m), molarity (c), or

mole fraction (x), respectively. The last expression is the

result obtained from statistical mechanics [44]. Here, K is

the thermal deBroglie wavelength and the number density

(proportional to molarity) is the natural concentration scale.

The pseudo chemical potential ðl�Þ is important in the

current analysis. It captures the effect of the solution

composition on the Gibbs free energy for transfer of a

molecule of i from a fixed position in a vacuum to a fixed

position in the solution [44]. The advantages of using this

type of approach have been discussed extensively by

Ben-Naim [44, 63]. Other concentration scales introduce

additional (arguably unwanted) terms into the analysis

which depend on properties of the solution and have nothing

to do with the biomolecule itself [64]. We will focus on the

molarity based activities and derivatives for this reason.

Finally, we note that derivatives of the above expres-

sions for the chemical potentials depend on the species

involved. If one considers the solvent or cosolvent then we

have dli ¼ RTd ln ai —as the standard chemical potential

is constant whether the biomolecule is at infinite dilution or

not. However, the standard state or pseudo chemical

potential of the biomolecule depends on the bulk solution

composition, even at infinite dilution, and therefore one has

dl2 ¼ dlo
2 þ RTd ln a2 unless the mole fraction scale (pure

protein reference state) is adopted.

Application of KB Theory to Closed Binary Systems

Before applying KB theory to understand biomolecular

equilibria in solution, it is informative to examine some of

the results obtained for binary systems. This is particularly

relevant for situations where the biomolecule concentration

is low and therefore many thermodynamic transformations

simply involve the properties of the pure cosolvent and

water solutions. We will keep the solvent (1) and cosolvent

(3) notation to remain consistent with the previous and

following sections. The KB inversion procedure involves

Cell Biochem Biophys (2008) 50:1–22 5



the analysis of experimental activity derivatives, pmvs, and

the isothermal compressibility ðjTÞ of solutions as a

function of composition [59]. Using this data the three KB

integrals (G11;G33, and G13) can be obtained via the rela-

tionships [56],

a33 ¼ b
ol3

o ln q3

� �
T ;P

¼ o ln a3

o ln q3

� �
T ;P

¼ 1

1þ q3ðG33 � G13Þ
ð15Þ

with,

Vi ¼
1þ qjðGjj � GijÞ

q1 þ q3 þ q1q3ðG11 þ G33 � 2G13Þ
ð16Þ

and,

RTjT ¼
1þ q1G11 þ q3G33 þ q1q3ðG11G33 � G2

13Þ
q1 þ q3 þ q1q3ðG11 þ G33 � 2G13Þ

ð17Þ

where b ¼ 1=RT . The three equations allow one to obtain

the three KB integrals as a function of composition.

Alternatively, if the KB integrals can be determined from

simulation then one can predict the above thermodynamic

properties. In practice, the experimental analysis is rela-

tively insensitive to the exact value of jT for most

solutions. Therefore, one can safely set the value of jT

equal to that of pure water and treat the resulting expres-

sion as a constraint equation for the three KB integrals

without significantly affecting the accuracy of the results

[66].

A KB analysis of some common cosolvent solutions of

biological interest (urea, gdmcl, NaCl, and TFE) has been

provided [67]. Fitting equations and parameters for the

required activity derivatives for common denaturants and

osmolytes have also been determined [42, 68–70]. A KB

analysis for the above cosolvents and water mixtures at

298 K and 1 atm is presented in Figs. 1 and 2 as an

illustrative example. Here, it is observed that urea solutions

are almost ideal on the molarity scale. Ideality being a

direct result of the similar values for G33 and G13 leading to

a33 = 1. Urea and GdmCl display remarkably similar

values for the excess coordination numbers and a33 val-

ues—especially considering one is a salt. TFE displays

rather large values of Nij and the value of a33 deviates

significantly from that of an ideal solution. We will see that

the value of a33 is of central importance in our under-

standing of cosolvent binding to, and exclusion from,

biomolecules in solution [42].

KB theory can also be used to provide additional rela-

tionships which can be used to simplify the general results.

For example, an equivalent expression for the pmv of the

cosolvent is available [52, 65, 67],

V3 ¼ RTjT � N31V1 � N33V3 ð18Þ

and can be used to eliminate G13 from the above equation

for a33 to generate [71],

a33 ¼
/1

1þ q3ðG33 � RTjTÞ
� /1

1þ N33

ð19Þ

where /1 ¼ q1V1 is the volume fraction of water and the

approximation is very good (\1%) due to the low

compressibility of solutions. Relationships between the

-3
4 6 8 1020

4 6 8 1020 4 6 8 1020
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N
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N
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N
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Fig. 1 Experimental excess

coordination numbers (Nij) for

different cosolvent (3) and

water (1) mixtures at 298 K and

1 atm as a function of cosolvent

molarity (c3). Data taken from

[67]. Note the change in scale

for TFE. For comparison, 5 M

TFE corresponds to a value of

x3 ¼ 0:12 and a %v/v of 35%
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molarity, molality, mole fraction, and activity derivatives

are provided by the following thermodynamic expressions,

o ln q3

o ln m3

� �
T ;P

¼ /1

o ln x3

o ln m3

� �
T ;P

¼ x1

o ln q3

o ln x3

� �
T ;P

¼ /1

x1

o ln q3

o ln q1

� �
T ;P

¼ �/1

/3

�b
ol1

o ln q3

� �
T ;P

¼ q3

q1

a33

a33V1 ¼ a11V3

ol3

ol1

� �
T ;P

¼ o ln a3

o ln a1

� �
T ;P

¼ �q1

q3

ð20Þ

and so one can easily transform between concentration

scales.

The application of KB theory to solutions of salts is

complicated by correlations between the ions which are a

consequence of electroneutrality constraints [72, 73].

Hence, one cannot treat salt solutions as ternary systems of

solvent, cations, and anions, i.e., one cannot determine

derivatives of the chemical potentials with respect to the

cation concentration, for example. However, one can treat

the solution as a binary system of solvent and indistin-

guishable ions [40, 42, 67, 72]. In this case, the chemical

potential and concentration of component 3 are different

from that that used experimentally. If we consider a salt (s)

which generates n+ cations and n- anions and therefore a

total of n� ¼ nþ þ n� ions in solution, then the relation-

ships between the traditional salt properties and the

properties of the indistinguishable species 3 used in our KB

analysis are given by; q3 ¼ n�qs; d ln q3 ¼ d ln qs; n�
dl3 ¼ dls, and y3 ¼ y�, etc. [42, 67]. Hence, the cosolvent

concentration (q3) becomes the total ion concentration, for

example. There are also electroneutrality relationships

available between the KB integrals (rdfs) for the indistin-

guishable ion species 3 and the corresponding KB integrals

for the anions and cations [67, 73]. More details can be

found in the literature [42, 67, 73].

Application of Kirkwood–Buff Theory to Open Ternary

Systems

The following results all refer to a ternary system where

component 2 is at infinite dilution. We will discuss the KB

results for the preferential binding parameter first as this is

also defined in open systems and hence the corresponding

expression in terms of KB integrals is relatively simple.

Several derivations of the expression for C23 have appeared

in the literature and differ in complexity depending on the

starting ensemble [42, 74–77]. We have recently applied

KB theory to understand the density changes observed in

equilibrium dialysis experiments [64]. In our opinion this is

the simplest and most direct approach. Starting from the

Gibbs–Duhem relationship for the open and closed systems

(Eqs. 7 and 8) and using Eq. 13 it can be shown that

[64, 65],

C23 ¼ q3ðG23 � G21Þ ¼ N23 �
q3

q1

N21 ð21Þ

The above expression is exact and quantifies the cosolvent

and solvent redistribution which occurs in an open system

on introduction of a biomolecule. It is both visually and

formally identical to the expression presented in Eq. 6. A

few points concerning the above equation are worth noting.

First, the KB integrals characterize changes in the molecule

distributions over all distances away from the central bio-

molecule, not just the surface distribution. Second, the

expression only contains KB integrals involving the bio-

molecule and not other thermodynamic properties of the

solution mixture. Third, it includes changes in both the

cosolvent and solvent distributions—primarily due to

the use of molalities in the definition of the preferential

binding parameter and the fact that the system is open to

both species.

The above equation has to be modified when the

cosolvent is a salt and the biomolecule releases ions on

addition to the solution which are identical to one of the

salt ions [19]. In this case one obtains a Donnan contri-

bution which gives rise to the following expression [42],

n�C23 ¼ N23 �
q3

q1

N21 � Z ð22Þ

where Z is the absolute charge on the biomolecule, and the

factor of n ± corrects the experimental data to fit the

indistinguishable ion approximation. The most common

example where the Z factor is important is for DNA.

Hence, studies of NaZDNA polyelectrolytes in NaCl solu-

tion require the additional term. The physical picture is to

reduce the preferential binding by subtracting the first Z

c
3 (M)

0
0 2 4 6 8 10

0.5

1

1.5

2

2.5

3
a 33

Urea
GdmCl
NaCl
TFE

Fig. 2 Experimental values of the activity derivative a33 for different

cosolvents (3) and water (1) mixtures as a function of cosolvent

molarity (c3) at 298 K at 1 atm. Data taken from [67]
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cations which are closest to the DNA from the counting

process as these are required for electroneutrality. The

above expression agrees with that of Record and coworkers

but is slightly different from that of Schellman due to a

different definition of the excess chemical potential of the

biomolecule in the latter case [49, 78, 79]. In the remaining

discussion, we shall ignore the Donnan term.

The main source of preferential interaction data corre-

sponding to the above equations is obtained from

equilibrium dialysis data. However, there are a variety of

other sources which provide experimental data for systems

that are only open to either just the solvent or just the co-

solvent. Furthermore, one can measure the concentration

changes using molarities or mole fractions. Hence, a series of

preferential binding parameters are available which differ in

the concentration scales and ensembles used [42, 49, 76, 77,

80]. Expressions for these parameters in terms of KB inte-

grals are summarized in Table 1. We have argued that the

simplest and most useful is the original definition contained

in Eqs. 1 and 21 [64]. The main reason for this is the fact that

the preferential interaction, as measured using molalities in a

fully open system, only contains KB integrals involving the

biomolecule. Other ensembles introduce contributions which

involve properties of the solution mixture itself. For instance,

the relationship between the molality based preferential

interactions in the various ensembles is given by [19, 42],

om3

om2

� �o

T ;P;l3

¼ C23 þ
/3

a33/1

ð23Þ

and,

om3

om2

� �o

T ;P;l1

¼ C23 �
1

a33

ð24Þ

Other relationships are provided in Table 1. The presence

of the last term in both equations involves properties of the

reference solution. These correction terms may be small for

urea and gdmcl as a33 is approximately unity, but can

become significant for solutions such as TFE where a33 can

be small (0.2 or so). In addition, only the molality based

preferential binding parameters display the appealing

property of being zero when there is no change from the

bulk solution distributions. Several studies have demon-

strated various relationships between the preferential

interactions in different ensembles [6, 19, 42, 49, 51, 64,

75, 76, 80]. For instance, it can be shown that [64],

C23 ¼ /1

om3

om2

� �o

T ;P;l3

þ/3

om3

om2

� �o

T ;P;l1

ð25Þ

Expressions for the preferential binding and chemical

potential derivatives in systems where the biomolecule is at

finite concentrations are also available [65, 81].

Application of Kirkwood–Buff Theory to Closed

Ternary Systems

Most experiments are performed in closed systems, usually

with a fixed number of molecules at a constant T and P.

Many equivalent expressions for derivatives of the total

chemical potentials have been proposed for these systems.

However, changes in the pseudo chemical potential are the

most relevant for the present discussion. Ben-Naim origi-

nally determined the effect of a cosolvent on the pseudo

chemical potential of an infinitely dilute solute

ðdl�2=dn3ÞP;T [44, 82]. Chitra and Smith then used this

expression combined with the results for binary systems to

formulate a simple expression for the effects of cosolvents

on the solubility of molecules in solutions [41]. In the

present notation this expression is,

�b
ol�2

o ln q3

� �o

T ;P

¼ q3ðG23 � G21Þ
1þ q3ðG33 � G31Þ

¼ C23a33 ð26Þ

The expression is exact and can be used to interpret the

effect of a cosolvent on the solubility of a biomolecule, or

Table 1 Kirkwood–Buff derived expressions for preferential binding parameters defined in different ensembles and using various concentration

scales

z Ensemble, E

T, l1, l3 T, P, l1 T, P, l3

m q3ðG23 � G21Þ �1þ q3ðG23 � G21 þ G13 � G33Þ q3

q1
þ q3ðG23 � G21 þ G11 � G13Þ

C23 C23 � 1
a33

C23 þ /3

a33/1

q q3G23 �1þ q3ðG23 � G33Þ q3ðG23 � G13Þ
/1C23 � q3ðV2

O � RTjT Þ /1C23 � /1

a33
� q3V2

O
/1C23 þ /3

a33
� q3V2

O

x �x3 þ x1q3ðG23 � G21Þ �1þ x1q3ðG23 � G21 þ G13 � G33Þ x1q3ðG23 � G21 þ G11 � G13Þ
x1C23 � x3 x1C23 � x1

a33
� x3 x1C23 þ x1/3

a33/1
� x3

The preferential binding parameter can be written as ðoz3=oz2ÞE , where z is the concentration scale used and E is the ensemble. All refer to an

infinitely dilute biomolecule [2]. The upper expressions involve just number densities and KB integrals. The lower expressions represent the

relationship to C23 in terms of thermodynamic properties of the solutions
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for understanding transfer data on small molecules

resembling the common functional groups of amino

acids. The value of a33 must be positive for real solutions

and so a positive preferential binding corresponds to a

decrease in the pseudo chemical potential (salting in

effect). The above equation involves four KB integrals.

The values of G33 and G13 are relatively easy to determine.

The values of G23 and G21 are more difficult. However, one

can use the general expression valid for any component i at

any concentration in any n component solution [52, 64],

RTjT ¼
Xn

j¼1

VjðNij þ dijÞ ð27Þ

to obtain the KB result for the pmv of the biomolecule

(i = 2) at infinite dilution,

V2
o ¼ RTjT � N21V1 � N23V3 ð28Þ

which in combination with the approximation used in

Eq. 19 provides [71],

�b
ol�2

o ln q3

� �o

T ;P

¼ q3ðG23 þ V2
o � RTjTÞ

1þ q3ðG33 � RTjTÞ
ð29Þ

The above relationship reduces the problem to a

determination of two KB integrals (G23 and G33), one of

which (G33) should be relatively easy, and properties of

the system (V2
O

and jT) which can be determined or

approximated fairly accurately. The transfer free energy for

a solute can then be obtained upon integration of the above

equation. The difference between derivatives of the total

and the pseudo chemical potential is given by,

� ol2

ol3

� �o

T ;P;m2

¼ � ol�2
ol3

� �o

T ;P;m2

þ /3

a33/1

ð30Þ

The same relationship is true for changes in the molar

concentration standard state of an infinitely dilute bio-

molecule, but not for other concentration scale standard

states. In particular, the use of the above relationship

coupled with Eq. 23 provides an exact route from Eqs. 1

to 5.

We now turn to the thermodynamics of protein dena-

turation by cosolvents in closed systems. We will assume a

simple equilibrium between a native (N) and denatured (D)

state described by an equilibrium constant ðK ¼ qD=qNÞ
where all biomolecule species are at pseudo infinite dilu-

tion, i.e., we can ignore the interactions between any

bimolecule species. In principle, this is a quaternary solu-

tion of 1, 3, N, and D. However, the N and D components

are not independent as their concentrations are related

through q2 ¼ qN þ qD. Ben-Naim has shown how one can

treat such a system when the cosolvent concentration is

small [62]. In applying the same procedure but using finite

cosolvent concentrations (Smith, unpublished results), one

obtains equivalent results to that obtained by treating both

biomolecule states as independent species in a ternary

solution of 1, 3, and N or D. This simpler approach was

outlined by Smith using the pseudo chemical potential

definitions [42]. Equating the total chemical potentials of N

and D one finds,

ln K ¼ �bðl�D � l�NÞ ¼ �bDGO ð31Þ

We note that one could use any of the concentration

scales to express K in terms of the standard chemical

potentials of the different forms (see Eq. 14). However,

this is a unique situation for protein denaturation due to the

unit stoichiometries of the process and the fact that all

activity coefficients will be unity at infinite dilution. In

general this will not be the case. Taking derivatives of both

sides of Eq. 31 one obtains,

o ln K

o ln q3

� �o

T ;P

¼ �b
ol�D

o ln q3

� �o

T ;P

� ol�N
o ln q3

� �o

T ;P

" #

¼ DC23a33 ð32Þ

where we have used the result from Eq. 26. Protein dena-

turation is therefore favored by an increase in binding to

the denatured state over the native state. The overall picture

is displayed in Fig. 3. Before leaving this section, we note

that DC23 can be determined using any of the expressions

for om3=om2 defined in the different ensembles (see

Table 1) as they differ by KB integrals or thermodynamic

properties which refer to the bulk solution composition.

Hence, these differences disappear when determining

changes in C23—but only for processes with a 1:1 stoi-

chiometry. Relationships to preferential interactions on

other concentrations scales are available and are also pro-

vided in Table 1 [43, 64].

Smith and others have also used the KB expression for

the pmv of an infinitely dilute solute (Eq. 28) and applied it

to understand volume changes on protein denaturation, and

to separate the cosolvent and solvent binding as described

by the two KB integrals [15, 42, 83, 84]. One finds that,

DV2
O þ DN23V3 þ DN21V1 ¼ 0 ð33Þ

which is simply a statement that there is no change in the

total volume of the system upon denaturation. The change

in protein volume on denaturation is usually negative [85].

However, Smith has argued that the change in protein

volume is small and can be neglected [42, 83], especially in

comparison to the inherent errors in the experimental

values of C23. This allows one to write a thermodynamic

relationship between the change in cosolvent and solvent

distributions which can be used to relate the total

preferential binding to just cosolvent binding (as

described by the corresponding KB integral). In this case

one finds,
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DN23 ¼ /1DC23 � q3DV2
O � /1DC23 ð34Þ

which is a consequence of the fact that each cosolvent mol-

ecule which redistributes itself from the bulk solution to the

vicinity of the protein must displace an equivalent volume of

water. The ratio of pmvs for urea and water is &2.5 and

hence each addition of urea replaces 2.5 water molecules.

The majority of experimental protein denaturation

studies involve determining a change in the equilibrium

constant with denaturant concentration. This provides,

through Eqs. 32 and 34, information on the difference in

cosolvent affinity for the denatured and native states. When

one also has access to equilibrium dialysis data for the

same protein under the same conditions of T, P, and pH one

can determine the individual cosolvent affinity to either

state [42, 86]. For instance, the value of C23 obtained from

equilibrium dialysis is dependent on the cosolvent con-

centration. If the biomolecule exists as a mixture of

different major forms (native and denatured for example),

the dialysis experiment provides an average preferential

interaction such that [86],

C23 ¼ xDCD3 þ xNCN3 ð35Þ

where xi is the mole fraction of state i. Hence, the total

preferential interaction is simply the sum of the individual

preferential interactions. Using the fact that protein

denaturation in closed systems provides information on

the difference between the same two preferential binding

parameters (Eq. 32) one finds that,

CD3 ¼ C23 þ xDDC23 ð36Þ

which allows one to isolate both CD3 and CN3 at any

cosolvent concentration if the composition dependence of

xD is known. This will prove particularly useful for simu-

lation studies as described below.

In summary, the general consensus is, and always has

been, that when a cosolvent preferentially binds to a par-

ticular state ðC23 [ 0Þ it will tend to shift the equilibrium

in favor of that state. A cosolvent denatures a protein

because it preferentially binds to the denatured over the

native state. The difference in preferential binding reflects

changes in both the cosolvent and solvent distributions, and

includes changes in the solution composition over all dis-

tances away from the protein (see Fig. 3). Alternatively, a

cosolvent that is excluded from the protein surface

ðC23\0Þ will tend to favor the native form, i.e., increased

protein stabilization. Cosolvents can also change the sol-

ubility of a protein—with a positive preferential interaction

leading to an increase in solubility. KB theory can be used

to quantify these effects [87, 88].

Hydrostatic and Osmotic Pressure Studies

Many investigations have used hydrostatic or osmotic

pressure to study their effects on biomolecular processes in

both pure water and cosolvent solutions [20, 53, 85, 89].

The effects produced by changes in osmotic pressure are

somewhat different from that of hydrostatic pressure. For

closed systems one can write,

ol�2
oP

� �o

T ;N

¼ V2
O � RTjT ¼ �N21V1 � N23V3 ð37Þ

which comes directly from Eqs. 14 and 28, and the

relationship ðoli=oPÞT ;N ¼ Vi. Therefore, defining

VO
2 ¼ V2

O � RTjT , the effect of hydrostatic pressure on

an equilibrium is given by,

RT
o ln K

oP

� �o

T ;N

¼ �DVO
2 ¼ DN21V1 þ DN23V3 ð38Þ

K

Fig. 3 A schematic representation of protein denaturation due to the

increased preferential binding of a cosolvent (larger shaded circles)

over water (small open circles) to the denatured state compared to the

native state. The dashed line represents the region over which the

local solution distribution ðN3=N1Þ differs from the bulk solution

distribution ðN3=N1Þ. Although the above figure represents a closed

system, the local region can be considered an open system in contact

with a large excess of bulk solvent which maintains a constant

chemical potential between the local and bulk regions. This descrip-

tion is only appropriate when the biomolecule is at infinite dilution
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and forms the basis of pressure denaturation studies [90]. If

there is no cosolvent present in the solution then the final

terms in the two above equations disappear. An increase in

pressure favors the form with the smallest volume. Typi-

cally, several hundreds of atmospheres are required to

induce denaturation as the volume changes are usually

small and negative (-50 cm3/mol) [85, 91, 92], although

this might not be the case at low pressures [93].

In closed systems, it is also possible to use the ther-

modynamic transformations outlined in Eq. 20 to obtain

[2, 54],

o ln K

o ln a1

� �o

T ;P

¼ � q1

q3

DC23 ¼ DN21 �
q1

q3

DN23 ¼ DC21

ð39Þ

Alternatively, one can start from the Gibbs–Duhem rela-

tions at constant pressure (Eqs. 7 and 8). Hence, an

increase in water activity (concentration) shifts the equi-

librium in favor of the state with the largest degree of

preferential hydration. It should be noted that the above

equation was generated for closed systems and, in princi-

ple, is not directly applicable to osmotic systems. It merely

involves a change in focus to the primary solvent and can

be generated by a simple index change from 3 to 1 and vice

versa. One cannot, however, do this index change with the

corresponding preferential binding parameters unless one

redefines molality in terms of the cosolvent 3. The activity

change denoted above is simply due to a change in water

activity with concentration and does not include any

changes in the activity of water with (osmotic) pressure.

Equations 7 and 8 describe the thermodynamic con-

straints for an osmotic system open to both solvent and

cosolvent in equilibrium with a closed system of cosolvent

and solvent. Here one switches the focus to that of changes

in water concentration or activity with osmotic pressure.

Starting from these equations one can show that,

� ol�2
ol1

� �o

T ;P

¼ C21 ð40Þ

Application of the above equation to an equilibrium

process and use of the standard relationship between

osmotic pressure and the activity of water ðRTd ln a1 ¼
�V1dPÞ provides,

RT
o ln K

oP

� �o

T ;P

¼ �V1DC21 ð41Þ

which is formally the same result as that would be obtained

starting from Eq. 39. In this case the increase in osmotic

pressure leads to an increase in the standard chemical

potential of pure water, which requires a decrease in water

activity to maintain a constant total chemical potential.

Hence, an increase in osmotic pressure shifts the

equilibrium in favor of the least hydrated form. If DC21 �
DN21 then one can view the above difference as purely a

change in the associated volume of water, or hydration,

during the process. This will be true if there is little or no

cosolvent present or the value of DN23 is small, i.e., N23 is

constant. However, in general, this will not be the case.

Osmotic pressure changes are typically \ 1 atm and occur

with a value of DC21 that is larger and of the opposite sign

to DC23 [94, 95]. Therefore, an increase in osmotic pres-

sure favors the denatured form if the cosolvent exhibits

preferential binding, and vice versa. Compared to hydro-

static pressure effects, much lower osmotic pressures

produce similar changes in the equilibrium as the value of

DC21 can be in the hundreds (or even thousands for poly-

ols) [84, 96]. Equations 38 and 41 are clearly different

when a cosolvent is present. The first probes changes in the

protein volume. The second probes changes in the degree

of preferential hydration. Consequently, osmotic pressure

has a rather different effect on the equilibrium compared to

hydrostatic pressure in the presence of cosolvents.

Applications of KB Theory to Systems of Biological

Interest

The ability to apply KB theory to any type of system,

coupled with the fact that it involves no approximations,

provides a solid foundation for the theory of biomolecular

solutions and the analysis of experimental data. Early

theoretical progress included the equations presented by

Ben-Naim for multicomponent solutions which are also

applicable to biological systems at very low cosolvent

concentrations [62]. In addition, Pjura et al. used KB the-

ory to interpret experimental data concerning partial

specific volumes of proteins [97], and Hirata and cowork-

ers have applied KB theory to understand changes in

protein volumes on denaturation [98, 99]. Apart from these

early studies, the application of KB theory to biological

systems was rather limited. However, there has been a

recent increase in the number of biologically relevant

studies relying on results from KB theory, presumably in

the hope that the use of KB theory will lead to an improved

understanding of cosolvent effects in biological systems.

Recent studies are encouraging.

One approach to understand cosolvent effects is to study

small molecule systems. Hydrocarbons represent simple

models for the side chains of many amino acids. Urea is

known to increase the solubility of hydrocarbons larger

than ethane [100], although the exact reason for this

behavior is unknown. Our early studies on hydrophobic

hydration investigated the effects of several cosolvents on

the solubility using KB theory—albeit with several

approximations [40]. This was subsequently developed into
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a consistent picture of changes in solubility [41], including

the ability to eliminate one of the KB integrals using the

solute pmv [71]. Cosolvent effects on small hydrocarbons

have also been investigated by van der Vegt and coworkers

[101, 102]. Shimizu and also Shulgin and Ruckenstein have

applied similar approaches to understand salting in and out

effects on protein solubility [88, 103], which follow the

framework developed for smaller solutes [87, 104]. It is

clear that a33 is a property of solution mixtures that mod-

ulates the thermodynamic effects of cosolvents, although

this is only one component of the overall thermodynamic

effect. Hence, a KB analysis of common (urea, gdmcl,

NaCl, and TFE) cosolvent solutions was also performed by

Chitra and Smith and discussed in the context of changes in

water structure [67]. Subsequent analysis has been per-

formed for other osmolytes [70, 93].

Simultaneously, Smith and Shimizu applied KB theory

to understand cosolvent mediated protein denaturation and

protein stability by osmolytes [42, 54, 83, 84, 105].

Shimizu and coworkers have used KB theory to determine

hydration changes for allosteric transitions and ligand

binding, and to clarify the assumptions made in osmotic

stress analysis [54, 84, 96, 103, 105]. Smith outlined a

rigorous link between the results of computer simulations

and the corresponding experimental thermodynamic data

[42, 83]. Subsequently, Shulgin and Ruckenstein have

applied KB theory to quantify the excess or deficiency of

water around several proteins in the presence of both

osmolytes and protein denaturants [74, 76, 88, 106]. As

expected, an increase in hydration was observed for the

osmolytes, while a decrease in hydration was found for the

denaturants. Rosgen et al. have also formulated the effects

of osmolytes in terms of KB integrals [70, 93]. Schurr et al.

have expressed preferential interactions in terms of KB

integrals and used these expressions to develop some

simple models for the interaction of cosolvents with pro-

teins [75]. The results suggest a significant excluded

volume effect.

Our own work has focused on using KB theory to

understand preferential interactions [40–42, 71], the

development of a model of cosolvent effects based on KB

theory [107], and to express the density changes observed

in equilibrium dialysis experiments in terms of KB inte-

grals [64, 65]. More recently, Schellman and others have

compared the results from KB theory to the corresponding

expressions obtained from thermodynamic binding models

[77, 106]. A variety of studies have attempted to clarify the

exact KB expressions for the different preferential binding

parameters corresponding to the different concentration

scales and ensembles, and to derive relationships between

them [42, 64, 65, 75, 76]. Hence, it is clear there is con-

siderable recent interest in analyzing cosolvent effects in

terms of KB integrals.

Models for Protein Denaturation

In this section, we will review a variety of models that have

been proposed for understanding protein denaturation. In

doing so we will compare many of the predictions and

parameters with the KB expressions presented in the pre-

vious sections which, being exact, provides a solid

foundation for comparison. Protein denaturation by cosol-

vents is commonly used to determine the stability of the

native state in the absence of cosolvent [108]. It provides

an alternative to heat, pressure, or pH denaturation. Typi-

cally, a protein will denature over a relatively limited range

of cosolvent concentration providing accurate values of

DGO only in that region (see Fig. 4) [109]. A potentially

dangerous extrapolation back to zero cosolvent concen-

tration is then required to establish the relative stabilities of

the native and denatured states. Fortunately, urea denatur-

ation curves are typically linear in urea concentration

[110]. GdmCl curves display more nonlinearity [111].

Hence, an increased understanding of protein denaturation

would hopefully improve our ability to extrapolate the

experimental data. All the models considered here assume

an infinitely dilute protein. Other theoretical treatments of

cosolvent effects are available in the literature [112–118].

The m-Value Approach

The assumption of linear behavior for the denaturation free

energy curve was originally proposed by Greene and Pace

based on a purely empirical observation [110]. The popu-

larity and simplicity of this approach provide an excellent

reference point for other models. In this case one can write

0

c3

c3

*

GO

Fig. 4 A schematic cosolvent promoted protein denaturation curve

corresponding to the standard free energy for unfolding ðDGOÞ as a

function of cosolvent molarity (c3). The solid line represents real

experimental data centered on the midpoint cosolvent concentration

ðc�3Þ. The dashed lines represent the extrapolation back to zero

cosolvent assuming linear or (somewhat exaggerated) nonlinear

behavior
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the change in the standard Gibbs free energy for denatur-

ation DDG ¼ DGOðq3Þ � DGOð0Þ as,

bDDG ¼ �mq3 ð42Þ

where m is a constant for a particular protein and cosolvent

at a given T, P, and pH. Hence, we will compare the ability

of other models to provide linear behavior as characterized

by an apparent m-value (mapp). However, it should be noted

that linear behavior will be a recurring problem for all of

the models discussed here as they involve more than one

(unknown) parameter. There is an observed correlation

between m-values for a series of proteins and the estimated

changes in the accessible surface area upon denaturation

[119, 120]. This will also be a useful reference in our

following discussion. Combining with our KB derived

results we find,

mapp ¼ o ln K

oq3

� �o

T ;P

¼ DC23a33

q3

ð43Þ

and mapp ¼ m. Hence, linear behavior will be observed

when the difference in preferential binding is proportional

to q3/a33. Alternatively, one can write that the following

must be true,

DC23 ¼ mq3½1þ q3ðG33 � G13Þ� ð44Þ

for exact linear behavior to be observed for all cosolvent

concentrations. The difference in KB integrals ðG33 � G13Þ
for urea is small and negative and therefore the change in

preferential binding predicted by Eq. 44 resembles that of a

Langmuir isotherm. Alternatively, if one assumes that the

value of 1/a33 is relatively constant and equal to unity (an

ideal solution) then we expect DC23 to be proportional to

the bulk urea concentration.

At this stage it is informative to consider a model

example. For a protein that has an m-value of 2 M-1 and a

denaturation transition midpoint at q�3 = 5 M urea, then the

standard free energy for unfolding in pure water is given by

mq�3 = 10. Therefore, the difference in preferential binding

of urea at the midpoint is mq�3 = 10. The change in excess

urea binding ðDN23Þ is then given by Eq. 34 and equal to

13 in this particular example. Clearly, these values are

small compared to the number of urea molecules that

would be in contact with the protein, and the number of

peptide or side chain groups on a typical protein. This

emphasizes the weak binding exhibited by most denatur-

ants and highlights why such high concentrations of urea

are required for denaturation.

Group Transfer Model

One of the earliest expressions used to model the dena-

turation process involved the group transfer concept

proposed by Tanford [25]. Here, a series of chemically

meaningful groups in the protein are considered and the

change in the standard free energy of denaturation related

to the exposure (or burial) of each group on denaturation

such that,

bDDG ¼ b
X

i

niaiDgtr;iðq3Þ ð45Þ

where ni is the number of groups of type i, ai is the average

fractional increase in the accessible surface area on

unfolding ðASAD
i � ASAN

i Þ=ASAO
i , and Dgtr;i is the free

energy for transfer of group i from pure water to a

cosolvent concentration of q3. This can be related to small

molecule transfer data via,

�bDgtr;i ¼ a33Ci3 ð46Þ

where Ci3 is given by Eq. 26 and we have assumed linear

transfer free energies on the molar concentration scale.

Experimental free energy transfer data are available [100,

121–129]. The model is simple and very intuitive. It is

somewhat impractical as it requires a detailed knowledge of

the denatured state in order to determine the ai values.

However, Bolen and coworkers have illustrated that one can

use the above model, together with the required transfer free

energies (and a careful choice of the concentration scale), to

reproduce experimental m-values [129, 130]. This type of

predictive power promises to be extremely valuable. In

addition, these studies provide the first evidence that the

general assumption of additivity is reasonable for pro-

teins—although it may not be universally true [131, 132].

Without this simplicity the role of a denaturant or osmolyte

would become specific to each protein. The general con-

clusion is that urea denaturation is driven by the favorable

interaction of urea with the peptide group, with some pos-

sible contribution from aromatic residues [130]. This is also

in agreement with earlier conclusions [91, 133].

Binding Site Model

The most common model used for the analysis of experi-

mental thermodynamic data, with the exception of the

empirical m-value model, is the binding site model [24,

134]. This is a simplification of the more general binding

polynomial approach [17]. Here one assumes a series of

equivalent independent binding sites on the surfaces of the

native and denatured states which display the same (or an

average) equilibrium constant (Kb). The relative concen-

tration of species such as 2, 2:3, 2:32, etc., can then be

determined. In this case, denaturation is favored by the

presence of a larger number of binding sites for the dena-

tured form which has a larger surface area. The binding

model predicts that,
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bDDG ¼ �Dn ln ½1þ Kbq3� ð47Þ

where Dn is the difference in the number of binding sites.

The number of sites and the equilibrium constant can also

be estimated from calorimetry data [135]. The corre-

sponding expression for the apparent linear behavior and

the preferential binding parameter are provided in Table 2.

The preferential binding parameter equation clearly

resembles a Langmuir binding isotherm. Values of Kb vary

but are of the order of 0.04 and 0.6 M-1 for urea and

gdmcl, respectively, while values of Dn are typically 10–

100 [135]. Linear behavior is predicted when the value of

Kb q3 is small.

The simple binding model provides a convenient

description of cosolvent effects on protein denaturation.

However, it has several drawbacks, especially in compar-

ison to the KB approach. First, the idea of simple binding

sites is intuitively appealing but clearly incorrect for weak

binding cosolvents. There is also no accounting for the

exchange of solvent molecules. These are well-known

problems. Furthermore, binding to sites on the surface does

not directly account for possible changes in the cosolvent

distribution in successive solvation shells away from the

surface. The implied presence of distinct species such as

2:3 or 2:32 is also incorrect. These problems are usually

circumvented by interpreting the binding constant and

number of sites in a rather loose manner [136, 137]. In this

way the approach becomes more of a representation rather

than a physical model of cosolvent binding. Unfortunately,

it is essentially impossible to relate computer simulation

data to this type of representation. Even so, the model is

relatively simple and has been very useful in developing

and understanding the basic thermodynamic principles of

the denaturation process.

Exchange Models

The classic binding model was extended by Schellman in

1990 to include the exchange of water by cosolvent during

the binding process [48, 49]. The resulting equation is,

bDDG ¼ �Dn ln ½a1 þ Kea3� ð48Þ

where Ke is the corresponding intrinsic exchange binding

constant. Schellman then defined an effective binding

constant, K 0e ¼ Key3=y1, although this is clearly not inde-

pendent of concentration. The preferential binding

predicted by the model is given in Table 2. Obviously, the

same assumptions regarding the number and type of

exchange sites are inherent in both the exchange and

binding models. It is also limited to the case of 1:1

exchange, whereas it is known that most denaturants are

significantly larger than a single water molecule. The use

of activities is also inconvenient and actually leads to less

linearity for the denaturation profile. Hence, Schellman has

suggested that the activities be replaced by concentrations

in most practical applications [138]. The major advantage

of the model is that the exchange process allows for neg-

ative preferential binding depending on the sign of K 0e � 1,

something that is not allowed in the simple binding model,

and which is required to explain the effects of osmolytes

and preferential hydration.

A simpler exchange model has been proposed by

Jasanoff and Fersht to account for the helix inducing

effects of TFE on peptide structure [139]. The corre-

sponding equation being,

bDDG ¼ �me

q3

q1

ð49Þ

where me is a constant. The above equation allows for

increased nonlinearity in the free energy curve, such as

that observed for helix induction by TFE. The resulting

preferential binding expression is also provided in

Table 2.

Local-Bulk Domain Model

A significant conceptual step forward was provided by

Record and coworkers with the development of the local-

bulk domain model [78, 140, 141]. This was the first model

specifically designed to focus directly on changes in the

solution composition in the local domain surrounding a

biomolecule. In contrast to a binding constant, the local-

bulk domain model characterizes the increase or decrease

in cosolvent concentration in terms of a partition coeffi-

cient KP. The corresponding decrease or increase in local

water density is also included. The partition coefficient is

defined by,

Table 2 A summary of formulas for the apparent linearity in the

denaturation free energy curves (mapp) and the corresponding pref-

erential binding parameter differences ðDC23Þ for different models of

protein denaturation

Model mapp DC23

m-value m mq3

a33

Transfer a33

q3

P
i niaiCi3

P
i niaiCi3

Binding site DnKb

1þKbq3

DnKbq3

1þKbq3

1
a33

Exchange 1
DnðK 0e�1Þa33

q1þq3þq3ðK 0e�1Þ
Dnq3ðK 0e�1Þ

q1þq3þq3ðK 0e�1Þ

Exchange 2 me

q1/1

meq3

q1/1a33

Local-bulk
ðKP�1Þb0

1
DASAa33

m1/1ð1þKPS3m3=m1Þ
q3ðKP�1Þb0

1
DASA

m1/1ð1þKPS3m3=m1Þ

LCPE A½1þ BðN33 þ q3N 033Þ�
q3A½1þBðN33þq3N 0

33
Þ�

a33

See text for an explanation of the symbols. We have used the fact that

m3 ¼ q3=/1 for the Local-bulk model [140] and ðoq3=oq1ÞP;T ¼
�V1=V3 for the Exchange 2 model. N 033 is the derivative of N33 with

respect to cosolvent concentration
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KP ¼
B3=B1

q3=q1

ð50Þ

and is assumed to be independent of cosolvent

concentration. Here, B3 and B1 are the number of

cosolvent and water molecules observed in the local

domain surrounding the protein. Hence, the local

concentration ratio remains the same as in the bulk

solution, but both species are increased in the case of

denaturants. Using the above condition, coupled with an

exchange coefficient ratio (S3), and the surface hydration in

the absence of cosolvent ðASA b0
1Þ one finds,

bDDG ¼ ðKP � 1Þb0
1DASA

m1

Iðq3Þ ð51Þ

where I(q3) is an integral which depends on the properties

of the pure solution. The corresponding slope and prefer-

ential binding parameters are provided in Table 2.

Denaturation is therefore favored due to the larger surface

area (local volume) surrounding the denatured state. The

model is consistent with the concept of preferential binding

in open systems, while still focusing on changes in the first

solvation shell (surface) of the biomolecule. An analytical

expression for the above integral has been provided for

urea and gdmcl [140]. Typical values of KP are 1.12 and

1.16 for urea and gdmcl, while the surface hydration per

unit surface area of protein (b1
0) is usually taken to be 0.11

waters/Å.

LCPE Model

Recently, we have provided a relatively simple model

based on a local chemical potential equalization (LCPE)

principle which uses many of the concepts and equations of

KB theory [107]. In particular, the model uses KB integrals

to quantify the changes in cosolvent and water concentra-

tions in the vicinity of the biomolecule. The model

accounts for changes over all solvation shells and includes

the concept of exchange as provided by Eq. 34. It differs

from many of the other models by using the equations for

the grand canonical ensemble to characterize the region of

solution close to the biomolecule, which is then surrounded

by bulk solvent. One can think of the biomolecule as being

enclosed by a virtual dialysis membrane as illustrated in

Fig. 3. If the cosolvent forms favorable interactions with

the protein, then the chemical potential of the cosolvent in

the vicinity of the protein will be reduced (to ll
3) and

therefore the local cosolvent concentration will be

increased in order to increase the cosolvent chemical

potential and reestablish equilibrium. The change in local

cosolvent density after introduction of the protein is then

related, via a Taylor series expansion to second order, to

changes in the chemical potential of the cosolvent due to

interactions with the protein,

ql
3 ¼ q3 þ Dl3

oq3

ol3

� �
T ;l1

þDl2
3

2

o2q3

ol2
3

� �
T ;l1

þoðDl3
3Þ

ð52Þ

where the derivatives can be found from Eq. 13. The

change in cosolvent density is formally DN23=V l, which is

related to the preferential binding parameter through

Eq. 34. The model includes two parameters. The first is

the volume of the local region (Vl) around the protein

where the cosolvent density differs from the bulk solution.

It is dependent on the protein. The second parameter is the

initial change in chemical potential of the cosolvent

ðDl3 ¼ l3 � ll
3Þ; and is considered the same for all

proteins and conformations. Manipulation of the above

relationship provides,

bDDG ¼ �q3A½1þ BN33� ð53Þ

with A ¼ DV lbDl3ð1þ 1=2bDl3Þ and B ¼ 1=2bDl3=ð1þ
1=2bDl3Þ are constants. Analytical expressions giving N33

for urea, gdmcl, NaCl, and TFE have been provided [107].

The model is very similar in concept to the local-bulk

domain model in that it focuses on local concentrations

instead of binding sites. It differs from this model as it

accounts for possible changes in the cosolvent distribution

beyond the protein surface. The final equations differ due

to the assumption of a partition coefficient that is inde-

pendent of cosolvent concentration in the local-bulk

domain model. Denaturation is favored due to the increase

in local volume on denaturation. This local volume can be

written as V l ¼ ASA� Rl if the shell thickness Rl is small

compared to the protein size. Exact linear behavior is

obtained upon truncation of the Taylor series expansion

after the first derivative, or if N33 is independent of

concentration.

Summary

The description of cosolvent effects that has developed

according to the local-bulk domain model and the LCPE

model is one of a general increase in cosolvent density in

the vicinity of the protein surface. In this respect, one is

returning to the picture provided by the original measures

of preferential binding. It could be argued that, while one

has changed the specifics of the physical picture of the

cosolvent (and water) distribution, there are still typically

two unknown parameters to fit a denaturation profile which

is usually linear in cosolvent molarity. In the local-bulk

domain model these are KP and DASA. In the LCPE model

they are Dl3 and DV l. Hence, one has not gained
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significantly on the binding model where Dn and Kb are the

unknowns. However, we will see that the recent models

provide a more appropriate framework for the analysis of

computer simulation data. Finally, we note that only the

transfer model takes into account the specific amino acid

composition of the protein concerned through the sum-

mation over groups. This also allows for specific

differences between the native and denatured states. Other

models generally involve a generic increase in the number

of binding sites/surface area on forming the denatured

state.

Computer Simulation of Cosolvent Effects

Computer simulations can provide valuable information

concerning the interaction of cosolvents with a variety of

solutes. Most previous simulations have focused on deter-

mining possible cosolvent binding sites, using radial

distribution functions and coordination numbers between

the cosolvent and different groups on the protein surface, or

the number of hydrogen bonds a cosolvent makes with the

protein or representative molecules, in an effort to probe

the initial stages of protein denaturation [31, 128, 142–

156]. Unfortunately, while these studies have provided

useful insights into possible mechanisms of denaturation,

they have not provided any data which can be directly

related to the experimental thermodynamic data. Hence, we

will focus on some recent results related to the direct cal-

culation of preferential interactions.

Before doing so, however, we will discuss a few tech-

nical issues which arise during the analysis of computer

simulations of preferential interactions. The vast majority

of simulations (and experiments) are performed in closed

systems. Therefore, the corresponding KB integrals have to

be approximated by assuming that beyond some distance Rl

all the required rdfs are unity and therefore [39, 44],

Gij � 4p
Z Rl

0

½gNPT
ij ðrÞ � 1�r2 dr ð54Þ

Numerical simulations of the rdfs in open and closed

systems support this approximation [157]. The

convergence properties of the above integral can be

easily checked by examining the behavior of the KB

integral as a function of integration distance. In practice,

the integration does not have to be performed as one can

simply count cosolvent or water molecules directly to give,

NijðRÞ ¼ n23ðRÞ �
4

3
pR3qj ð55Þ

and hence Gij ¼ Nij=qj. The nij(R) values representing the

number of j molecules found within a distance R from a

central i molecule. We note that for differences between

KB integrals, such as that required in Eq. 21, the second

term on the rhs of Eq. 55 will disappear.

The KB integrals traditionally use the center of mass (or

geometry) as a reference. In our experience, it is more

satisfactory to use the molecular surface as a reference for

applications involving peptides and proteins [83, 158]. The

two approaches should be identical. However, for the rel-

atively small systems studied currently there can be

significant differences. The convergence properties appear

to be better when using the protein surface as a reference.

However, it should be noted that this approach can only be

used when determining differences in KB integrals to the

protein ðG23 � G21Þ. If one requires just G23, then the

center of mass reference must be used. A further correction

is sometimes required to account for small changes in the

bulk solution distribution. As one counts cosolvent and

water molecules away from the surface of the protein, one

effectively is saying they become part of the local distri-

bution and not the bulk solvent distribution. In computer

simulations with a fixed number of cosolvent (n3) and

water (n1) molecules the initial bulk distribution (n3/n1) has

to be redefined to account for the local composition

changes. Hence, the preferential binding parameter

becomes,

C23ðRÞ ¼ n23ðRÞ �
n3 � n23ðRÞ
n1 � n21ðRÞ

n21ðRÞ ð56Þ

The correction can be significant for protein systems,

even though the bulk ratio will change only slightly, as the

value of n21 can be large.

Using this type of approach we have used computer

simulation to relate changes in hydrocarbon solubility to

the preferential interaction of the cosolvent with the

hydrocarbon [40, 41]. A direct correlation was observed, as

predicted by Eq. 26. A decomposition into local (first

shell), and distant (second, third shell, etc) density changes

demonstrated a degree of proportionality between the two

for most cosolvents (but not TFE) [41]. Additional studies

of the properties of hydrocarbons in urea and other cosol-

vent solutions have also been performed and analyzed

using KB theory [101, 102]. A study of cavity formation in

urea solutions indicated that the free energy for cavity

formation is essentially independent of the urea model used

[71]. However, the preferential exclusion of urea from the

cavity was inversely proportional to the value of a33 dis-

played by the models. This suggests that urea models

which do not accurately reproduce the experimental value

of a33 may lead to inaccurate descriptions of the degree of

cosolvent exclusion. We have also studied the ability of

common force fields to reproduce the KB integrals for

binary solution mixtures [37, 38]. In general, currently

available force fields struggle to reproduce the experi-

mental KB integrals—which appear to be a sensitive test of
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the quality of a force field [71, 159]. Hence, a major focus

for us has been the development of improved cosolvent

force fields using the experimental KB integrals as fitting

data [159–164].

The application of simulation for the study of prefer-

ential interactions in protein systems is relatively scarce.

Tang and Bloomfield have used grand canonical Monte

Carlo simulations of model systems to evaluate C23 [165].

While they did not specifically use KB theory, the type of

analysis performed is equivalent to Eq. 21. Baynes and

Trout were the first to determine preferential binding

parameters for a real protein from molecular simulations

[158]. However, they too used simple counting techniques

and did not directly invoke KB theory. Their results for the

distribution of urea and glycerol around Ribonuclease A at

low cosolvent concentrations were in good agreement with

experiment, and a correlation was observed between the

number of cosolvents and the number of water molecules

in the vicinity of the protein. We have applied computer

simulations and KB theory to study the effects of NaCl on

the equilibrium thermodynamics of folded and unfolded

forms of the leucine enkephalin pentapeptide [83, 166].

This study demonstrated that a combined simulation and

KB approach is feasible for small systems. However, an

attempt to decompose the overall effect into contributions

from different groups was less successful.

As an example of a preferential binding parameter

analysis we will discuss a recently performed simulation

study of 8 M urea around native lysozyme [167]. The

experimental data indicates that CN3 ¼ 16 for this system

at pH 7 and the protein remains folded even in 8 M urea

[86]. The corresponding value at pH 2, where the protein

denatures with a midpoint transition at 3.7 M urea, is

CN3 ¼ �10 in 8 M urea [86]. The latter value was obtained

from a combination of dialysis and normal denaturation

studies using Eqs. 36 and 44. This type of approach is

particularly useful for simulations as we can study the

native state (which is known for many proteins) under

conditions of high cosolvent which provides good statistics

for the corresponding distributions. Some of our results are

displayed in Figs. 5 and 6. The preferential binding

parameter was sensitive to the urea model used and neither

model quantitatively reproduced the experimental data. We

believe this is due to inaccuracies in current force fields.

Urea clearly associates with lysozyme in both cases and is

in agreement with experiment. However, the OPLS model

indicates a rather large region of influence of the protein,

whereas the differences in the solution composition for the

KBFF model are more local with the major changes

occurring within 0.5 nm from the surface.

In summary, it is now possible to calculate thermody-

namic data from computer simulations of cosolvents

around proteins. This is achieved by a simple counting

procedure and linked to the thermodynamics through KB

integrals. Simulations in this area are just beginning. There

are no general conclusions to be drawn at present. How-

ever, the use of KB theory clearly provides a solid

foundation for future studies. The only additional require-

ments for the simulations are the need for larger system

sizes to ensure the distributions reach their bulk values, and

the use of extended simulation times required to precisely

determine the KB integrals.
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Fig. 5 The simulated preferential binding parameter ðCN3Þ for 8 M

urea (3) and native lysozyme (N) at 300 K and pH 7 as a function of

integration distance from the protein surface (R). The simulated

values have been obtained using the Gromos 45a3 parameters for

lysozyme, the SPC water model, and either the KBFF of OPLS

models for urea. Total simulation time was 6 ns. The experimental

value is 16
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Fig. 6 Simulated radial distribution functions (gij) between lysozyme

and 8 M urea (3) or water (1) as function of distance from the protein

surface (r) at 300 K and pH 7. Results are shown for two urea models
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Conclusions and Future Directions

There has been a recent resurgence in the use of KB theory

for the analysis of biomolecular equilibria. This has helped

to clarify the relationships between different preferential

binding parameters and provide a clear picture of the

effects of cosolvents which is consistent with many of the

original experiments performed for open systems. At this

point a theoretical analysis of the expressions describing

preferential interactions in ternary systems in terms of KB

integrals is essentially complete within the infinitely dilute

solute approximation. While this has allowed a quantifi-

cation of many cosolvent effects, and an effective

decoupling of the contributions from both the cosolvent

and the solvent, it has not resulted in a clear atomic picture

of these effects. In our opinion, the only reasonable

approach to solve this problem is by the use of computer

simulation. Again, KB theory can play an integral role in

understanding and analyzing this data. However, it is clear

that (in principle) one has to be able to rationalize changes

in solution distributions over many solvation shells. While

direct interactions between a cosolvent and the surface of a

protein should be relatively easy to comprehend, these

longer range packing effects are currently very difficult to

understand. A further possible use of KB theory will

involve studies of peptide and protein aggregation. These

involve a peptide or protein at finite concentrations and will

therefore involve some modification of the current equa-

tions. However, the ability to influence protein–protein

interactions is of great interest in understanding the

growing number of diseases which are in some way related

to misfolding and aggregation. In our opinion, KB theory

can provide a solid foundation for such studies.
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