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Abstract
Doxorubicin (DOX) is commonly used for the treatment of various types of cancer, however can cause serious side 
effects, including cardiotoxicity. The mechanisms involved in DOX-induced cardiac damage are complex and not yet fully 
understood. One mechanism is the disruption of cardiac metabolism, which can impair cardiac function. The mammalian 
target of rapamycin (mTOR) is a key regulator of cardiac energy metabolism, and dysregulation of mTOR signaling has 
been implicated in DOX-induced cardiac dysfunction. Natural compounds (NCs) have been shown to improve cardiac 
function in vivo and in vitro models of DOX-induced cardiotoxicity. This review article explores the protective effects of 
NCs against DOX-induced cardiac injury, with a focus on their regulation of mTOR signaling pathways. Generally, the 
modulation of mTOR signaling by NCs represents a promising strategy for decreasing the cardiotoxic effects of DOX.

Keywords  Autophagy · Cardiotoxicity · Doxorubicin · mTORC1 · mTORC2

Received: 22 September 2023 / Accepted: 9 December 2023 / Published online: 18 December 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

The Role of mTOR in Doxorubicin-Altered Cardiac Metabolism: A 
Promising Therapeutic Target of Natural Compounds

Fatemeh Yarmohammadi1  · Mahvash Hesari1  · Dareuosh Shackebaei1

1 3

http://orcid.org/0000-0002-0552-8766
http://orcid.org/0000-0001-5884-0844
http://orcid.org/0000-0002-5919-9750
http://crossmark.crossref.org/dialog/?doi=10.1007/s12012-023-09820-7&domain=pdf&date_stamp=2023-12-16


Cardiovascular Toxicology (2024) 24:146–157
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ULK1	� Unc-51-like kinase 1
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Introduction

Doxorubicin (DOX), an FDA-approved chemotherapy drug, 
is used to treat various types of cancers, including breast 
cancer and leukemia [1]. DOX can cause serious and poten-
tially life-threatening side effects, such as cardiotoxicity [1]. 
The mechanisms involved in DOX-induced cardiac damage 
are complex and not yet fully understood [2], however, it 
is thought that may be caused by several factors, including 
reactive oxygen species (ROS) generation, mitochondrial 
dysfunction, calcium homeostasis disruption, and activation 
of apoptotic pathways [1, 3]. One of the mechanisms under-
lying the treatment with DOX is cardiac metabolism disrup-
tion [4]. DOX alters the expression of genes implicated in 
cardiac metabolism, which can impair cardiac function [5].

The mammalian target of rapamycin (mTOR) is a key 
regulator of cardiac energy metabolism by regulating fatty 
acid metabolism, glucose uptake and glycolysis, and mito-
chondrial function [6]. DOX has been shown induce cardiac 
dysfunction by the dysregulation of mTOR signaling [7]. It 
has also been suggested that DOX induces cardiac metab-
olism dysfunction in an mTOR-dependent manner [7, 8]. 
Recent research has proposed that the mTOR pathway could 
be a potential target for reducing the cardiotoxic effects of 
DOX [8, 9].

Several natural compounds (NCs) have been revealed 
to improve cardiac function in animal models of DOX-
induced cardiotoxicity [10]. Some NCs can regulate mTOR 
expression, which may contribute to their cardioprotective 
effects against DOX treatment [11, 12]. The present study 
provides a review of the protective effects of NCs against 
DOX-induced cardiac injury, with a focus on their regula-
tion of mTOR signaling pathways.

DOX-dependent Change in Cardiac 
Metabolism

The function and contraction of cardiomyocytes are sus-
tained by oxidative phosphorylation of adenosine diphos-
phate (ADP) and the production of adenosine triphosphate 
(ATP) [5]. Mitochondria is responsible for supplying over 
95% of the ATP molecules; the remaining 5% comes from 
the glycolysis process and the citric acid cycle [13]. Most 
of cardiac ATP (approximately 70%) is derived from fatty 
acids β-oxidation [14]. Glycolysis, a glucose metabolic 
pathway, produces a small amount of cardiac ATP. Ketone 
bodies, lactate, and amino acids contribute less to cardiac 
ATP generation in comparison with fatty acids and glucose 
[14]. Creatine phosphate (PCr) is a reservoir of high-energy 
phosphates in the myocardium to recycle ATP from ADP 
[15]. Therefore, the PCr/ATP ratio reflects the myocardial 
energy status [15]. Due to the continuous contractility, the 
myocardium consumes a high rate of ATP and depletes phos-
phate storage within a few seconds [14]. Since the cardiac 
function is dependent on mitochondrial ATP production, 
therefore ATP generation deficiency can alter myocardial 
contractility [14].

The cardiac metabolic change during DOX treatment 
has been reported that represents a compensatory response 
to imbalances in ATP demand and supply [16, 17]. DOX 
has been suggested that disrupt mitochondrial respiration 
and fatty acid oxidation in cardiomyocytes [18]. The mito-
chondrial accumulation of DOX is following its binding to 
cardiolipin located in the inner mitochondrial membrane 
[19]. The electron transport chain (ETC) is disrupted after 
DOX accumulation into the mitochondria and repressing 
mitochondrial complexes I and II [19]. ETC dysfunction 
is lead to decreasing in the cardiac ATP/ADP ratio and an 
increase in ROS generation, which damages the heart tissue 
[20]. DOX also affects glucose, amino acids, and fatty acids 
metabolism in the heart, resulting in decreased ATP produc-
tion and cardiac dysfunction [4].

The overproduction of ROS in cardiomyocytes caused 
by DOX can have an impact on the metabolism of purine 
and pyrimidine nucleotides [21, 22]. This can occur through 
direct modifications to the nucleotides, inducing changes in 
DNA bases, activating DNA repair pathways, altering the 
availability of nucleotides, and influencing signaling path-
ways related to nucleotide metabolism [21]. As a result of 
the DNA damage, the metabolites of purine and pyrimidine 
can disrupt normal cardiac metabolism in various ways [21]. 
For example, they can affect the availability of nucleotides 
and interfere with the function of crucial enzymes involved 
in energy production [21, 22]. Additionally, DOX can affect 
the balance between pro-apoptotic BCL-2-associated X pro-
tein (BAX ) and anti-apoptotic B-cell lymphoma 2 (BCL-2) 
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proteins, leading to structural modification of these proteins. 
BAX promotes cell death, while BCL-2 inhibits apoptosis 
[23]. The altered conformation of BCL-2 and BAX proteins 
caused by DOX can disrupt the normal regulation of apop-
tosis and have significant consequences on cardiac metabo-
lism, including mitochondrial dysfunction, alterations in 
energy metabolism, and changes in nutrient utilization [21, 
23].

mTOR-regulated Cardiac Metabolism

The mTOR is a protein kinase that phosphorylates the ser-
ine or threonine residues on cell proteins [24]. Phosphoryla-
tion is one of the primary mechanisms for regulating protein 
activity in signal transduction pathways [25]. The mTOR 
plays an essential role in regulating cardiac metabolism, 
cardiomyocyte growth, and survival [26]. Glycolysis is a 
metabolic pathway that generates ATP by converting glu-
cose into pyruvate [27]. The mTOR activation promotes 
glycolysis by enhancing the expression and activity of 
key glycolytic enzymes, increasing the expression of glu-
cose transporters, and facilitating glucose uptake into the 
heart cells [27, 28]. Lipid metabolism is another critical 
energy source in the heart, as it relies on the oxidation of 
fatty acids to generate ATP [27]. The mTOR regulates lipid 
metabolism by suppressing fatty acid synthesis and promot-
ing fatty acid oxidation [27, 28]. The mTOR is the major 
component of two multiprotein complexes, mTOR complex 
1 (mTORC1) and mTORC2 [24]. Each complex possesses 
distinct subunits that play a role in their specific functions 
[29] as depicted in Fig.  1. The regulatory-associated pro-
tein of mTOR (Raptor) plays a crucial role in the mTORC1 
complex as its core component [29]. It is responsible for 
the cellular localization of mTORC1 and the recruitment of 
substrates [29, 30]. Additionally, Raptor is involved in con-
ferring sensitivity of mTORC1 to rapamycin, a drug that 
inhibits its activity [29]. The core component of mTORC2 
includes the stress-activated map kinase-interacting pro-
tein 1 (Sin1) and the rapamycin-insensitive companion of 

mTOR (Rictor) [29]. Sin1 plays a vital role in preserving 
the integrity of mTORC2 and facilitating the binding of sub-
strates [30]. Rictor is responsible for conferring rapamycin 
insensitivity to mTORC2 [30]. Both complexes, mTORC1 
and mTORC2, have two subunits in common: mTOR and 
the mammalian lethal with SEC13 protein 8 (mLST8) [30]. 
The mLST8 plays a critical role in stabilizing the mTOR 
kinase domain [30]. Moreover, the DEP domain-containing 
mTOR-interacting protein (Deptor) binds to both mTORC1 
and mTORC2, acting as an endogenous inhibitor for both 
complexes [29, 30].

Deptor, DEP domain-containing mTOR-interacting 
protein; mLST8, mammalian lethal with SEC13 protein 
8; mTOR, mammalian target of rapamycin; mTORC1, 
mTOR complex 1; mTORC2, mTOR complex 2; Raptor, 
regulatory-associated protein of mTOR; Rictor, rapamycin-
insensitive companion of mTOR; Sin1, stress-activated map 
kinase-interacting protein 1.

The mTORC1 is mainly localized in the cytoplasm [31]. 
The activation of mTORC1 is regulated by levels of nutri-
ents (amino acids, glucose, and fatty acids), growth factors, 
and hormones [6]. During nutrient-rich conditions, the lyso-
somal recruitment of mTORC1 by Ras-related GTP binding 
proteins (Rags) is the well-characterized mode of its acti-
vation [32]. Activated mTORC1 phosphorylates and inacti-
vates the transcription factor EB (TFEB), a master regulator 
of lysosomal biogenesis and autophagy, and causes its bind-
ing to 14-3-3 protein at the lysosome surface [33]. However, 
the inactivation of mTORC1 under starvation conditions 
leads to the TFEB/14-3-3 complex dissociation and rapid 
transport of TFEB to the nucleus for regulating the expres-
sion of autophagosomal and lysosomal genes [34]. There-
fore, TFEB regulation by mTORC1 provides a mechanism 
for coordinating lysosomal biogenesis and autophagy with 
the availability of nutrients within the cell [31]. During 
autophagy, damaged proteins or organelles are delivered to 
the lysosome via the autophagosomes, a double-membrane 
vesicle, for degradation and maintaining cellular homeosta-
sis [35].

The main upstream regulators of mTORC1 activity 
are the protein kinase AKT and the adenosine monophos-
phate–activated protein kinase (AMPK) [36, 37]. AKT 
phosphorylates and inactivates the tuberous sclerosis com-
plex 2 (TSC2), a mTORC1 negative regulator, leading to 
mTORC1 activation [37]. AMPK conserves cellular energy 
by the inhibition of mTORC1 during low energy states [36].

The mTORC2 is activated by growth factors, insulin, 
and cellular stress signals [38]. It is localized in both the 
cytoplasm and the cytoplasmic membrane and regulates a 
variety of cellular processes, including metabolism and cell 
survival [39]. The mTORC2 is known as a critical regu-
lator of AKT and protein kinase C (PKC) [39]. AKT and 

Fig. 1  The subunits of mTORC1 and mTORC2 complexes
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cardiomyocytes, while others have reported a decrease in 
mTOR expression [45–47]. It has been suggested that the 
dysregulated mTOR expression may be involved in the 
development of DOX-induced cardiotoxicity [48]. Stud-
ies have explored how NCs can protect against DOX-
induced cardiac injury by modulating the mTOR pathway 
[12, 47, 49] (Table 1).

The AKT/mTOR Pathway

Apigenin (API) is a flavonoid obtained from parsley, celery, 
and vine spinach [50]. It has various health benefits, includ-
ing anti-inflammatory, antioxidant, antiviral, and anticancer 
effects [50]. API has been found to have cardioprotective 
properties, reducing blood pressure and the risk of athero-
sclerosis [51]. A study on mice investigated the potential 
protective effect of API against the cardiotoxic of DOX [52]. 
It was observed that API prevented DOX-induced apoptosis 
and autophagy, possibly through the activation of the AKT/
mTOR pathway [52].

Curcumin (CUR) is a natural compound found in the 
turmeric (Curcuma longa L.) [53]. It possesses antitumor, 
antidiabetic, antihyperglycemic, antioxidant, and neuropro-
tective properties [54–56]. CUR has shown positive effects 
on cardiovascular health [56–58] and therapeutic efficacy 
against DOX-induced cardiomyopathy [49]. CUR reversed 
the down-regulation of AKT and mTORC1 caused by DOX 
in mice hearts and activated the AKT/mTOR signaling [49].

Luteolin-7-O-glucoside (LUTG) is a flavonoid found in 
Dracocephalum tanguticum Maxim [59]. It has various bio-
logical activities, such as anti-diabetic, anti-inflammatory, 
and anticancer effects [60–62]. LUTG has shown a potential 
protective effect in a cardiac hypertrophy model and pro-
tected against DOX-induced cardiotoxicity by down-regu-
lating the AKT/mTOR pathway [63].

Neferine (NEF) is an alkaloid isolated from Nelumbo 
nucifera [64]. It possesses anti-diabetic, anti-cancer, and 
anti-microbial effects [65]. NEF has been reported to have 
potential therapeutic benefits for cardiovascular conditions, 
including atherosclerosis, hypertension, and heart failure 
[64, 66, 67]. NEF has shown a protective role in DOX-
induced cardiotoxicity by inhibiting cardiac autophagy and 
increasing the expression of AKT and mTOR, thereby acti-
vating the AKT/mTOR pathway [68].

Wheat phenolics, such as ferulic acid (FA) and apigenin 
(AP) are natural compounds found in wheat and other cereal 
grains [69]. These phenolics have various biological activi-
ties, including antioxidant and anti-inflammatory effects 
[69, 70]. In a study investigating the potential protective 
effects against DOX-induced cardiotoxicity, the expressions 
of PI3K, p-AKT, and p-mTOR were found to be up-regu-
lated in DOX-exposed cardiomyocytes treated with FA, AP, 

PKC signaling modulates glucose and lipid metabolism 
through the phosphorylation of metabolic enzymes or con-
trol of various transcription factors [39, 40]. AMPK and sir-
tuin 1 (SIRT1) can reduce mTORC2 activity by regulating 
upstream signaling pathways [39, 41].

Overall, the mTOR protein plays a significant role in 
heart metabolism by regulating metabolism of fatty acid 
and the intake and use of glucose [6]. It functions as a cel-
lular sensor, coordinating the cellular response to changes 
in nutrient availability [29]. When there is an abundance 
of nutrients, the mTOR signaling is activated, promoting 
anabolic processes such as protein synthesis and suppress-
ing catabolic processes such as autophagy [29]. mTORC1 
mainly promotes cell growth by enhancing protein synthesis 
[30]. It regulates glucose uptake glycolysis, and fatty acid 
synthesis, thereby providing energy to cells in the form of 
ATP [30]. By regulating these processes, mTORC1 ensures 
that the heart has the necessary energy to function properly 
[6]. mTORC2 regulates the glucose transporter proteins, 
which are responsible for carrying glucose into cells [30]. 
By controlling the activity of these transporters, mTORC2 
can influence the amount of glucose that enters cells and 
is available for energy production [29]. Additionally, 
mTORC2 is implicated in the regulation of fatty acid oxida-
tion, the process by which fatty acids are broken down to 
generate energy [29].

Myocardial ischemia, or energy stress in the heart, can 
lead to the inhibition of mTORC1 and trigger protective 
adaptations, such as autophagy, which help limit myocar-
dial infarction [42]. It has been suggested that mTORC1 
has different roles during ischemia and reperfusion 
[42, 43]. During ischemia-reperfusion injury, mTORC1 
activation promotes a metabolic shift from fatty acid 
oxidation to glycolysis by the upregulation of glucose 
transporters and increasing glucose uptake into the myo-
cardium [42]. This increased glucose availability favors 
glycolysis, which is a more efficient energy-generating 
pathway during reperfusion. mTORC1 activation also 
can inhibit the activity of key enzymes involved in fatty 
acid oxidation [42]. Inhibition of these enzymes shifts the 
metabolism away from fatty acid oxidation and towards 
glycolysis [42, 43]. Dysregulation of mTOR signaling 
pathways has been implicated in a variety of diseases, 
including metabolic and cardiovascular diseases [6, 44].

Targeting mTOR by Natural Compounds in 
the DOX-induced Cardiotoxicity

Numerous studies have shown the effects of DOX on 
cardiac mTOR expression [7, 8, 45]. Some studies 
have shown that DOX induces mTOR expression in 
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The mTOR/TFEB Pathway

Corosolic acid (CRA) is a natural triterpenoid isolated 
from the leaves of the banaba tree (Lagerstroemia spe-
ciosa) [72]. It possesses several health benefits such as 
anti-inflammatory, antioxidant, antidiabetic, and anticancer 
properties [72]. Studies have shown that CRA can reduce 

or whole wheat grain polyphenolic extract (WWGPE) [71]. 
The study suggests that WWGPE exhibited more effective 
cardioprotective effects compared to FA and AP, possibly 
due to the synergic interaction between the compounds [71]. 
These finding indicate that the protective effects of these 
wheat phenolics may be mediated through the activation of 
the PI3K/AKT/mTOR signaling pathway [71].

Table 1  Targeting mTOR by natural compounds in the DOX-induced cardiotoxicity
NCs Experimental 

model
Dose/route of administration 
of NCs

Dose/route of administra-
tion of DOX

Findings Ref

Apigenin Kunming mice 125 or 250 mg/kg, orally for 
17 days

3 mg/kg/day, i.p. for 8 times ↑PI3K/AKT/mTOR 
pathway

[52]

Aspalathin H9c2 cell 0.2 μM for 5 days 0.2 μM for 5 days ↑AMPK expression [9]
Astragalus polysaccharide Neonatal rat 

cardiomyocyte
50 μg/ml for 24 h 0.5 μM for 24 h ↓AMPK/mTOR 

pathway
[46]

C57BL/6J mice 1.5 g/kg/day, orally, for 3 days 20 mg/kg, i.p. in a single 
dose

Beta-LAPachone C57BL/6J mice 2.5 or 5 mg/kg, orally for 14 
days

15 mg/kg, i.p. for 3 days ↑LKB1/AMPK/mTOR 
pathway

[47]

Corosolic acid C57BL/6J mice 10 or 20 mg/kg/day, orally for 
4 weeks

5 mg/kg, i.p. every week for 
4 weeks

↑AMPK/mTORC1/
TFEB pathway

[75]

Curcumin Kunming mice 5, 100, 200, or 400 mg/kg, 
orally for 17 days

3 mg/kg, i.p. for 8 times ↑AKT/mTOR pathway [49]

Dihydromyricetin C57BL/6J mice - 2.5 mg/kg, i.p. in single 
dose

↑AMPK/mTOR 
pathway

[12]

Dihydrotanshinone I Zebrafish 10 nM 100 μM ↓mTOR expression [78]
C57BL/6 mice 20 mg/kg, orally for 4 weeks 5 mg/kg, i.v. once weekly 

for 4 weeks
H9C2 cells 10 nM 1 μM

Glycyrrhizin H9C2 cells 512 mM for 12 h 1 μM for 24 h ↓HMGB1-dependent 
AKT/mTOR pathway

[11]
Neonatal rat 
cardiomyocyte

512 mM for 12 h 1 μM for 24 h

Rats 25 or 50 mg/kg/day, i.p. for 
14 days

20 mg/kg, i.p. a single dose

Luteolin-7-O-glucoside H9C2 cells 10 or 20 μM for 24 h 10 μM for 24 h ↓AKT/mTOR pathway [63]
Neferine H9C2 cells 10 μM for 24 h 1 μM for 24 h ↑AKT/mTOR pathway [68]
Resveratrol H9C2 cells 20 μM for 24 h 1 μM for 24 h ↑E2F1/mTORC1 

pathway
[117]

C57BL/6 mice 10 mg/kg/day, i.p. for 7 days 5 mg/kg/day, i.p. for 7 days
Resveratrol H9C2 cells 5, 10, or 20 μM for 24 h 2 μM for 24 h ↑AMPK/mTOR/ULK1 

pathway
[118]

Scutellarin Rats 10 mg/kg/day, i.p. for 6 weeks 2.5 mg/kg, i.p. twice a week 
for 4 weeks

↓AMPK/mTOR 
pathway

[99]

Scutellarin H9C2 cells 25, 5, 0r 100 μM for 24 h 0.2 μM for 24 h ↓AKT-mTOR pathway [100]
Cardiac fibroblasts
Endothelial cells

Spinacetin Rats 50 or 100 mg/kg - ↑SIRT3/AMPK/mTOR 
pathway

[127]

Tanshinone IIA H9C2 cells 0.5 ~ 20 μM for 24 h 1 μM for 24 h ↓mTOR/TFEB 
pathway

[85]
Zebrafish 20 μM 100 μM
C57BL/6 mice 10 mg/kg/day, orally for 4 

weeks
5 mg/kg/week, i.v. for 4 
weeks

Thymoquinone H9C2 cells 5 or 10 μM for 24 h 5 μM for 24 h ↑AMPK/mTOR 
pathway

[104]

WWGPE Rat 
cardiomyocytes

10–200 μg/ml for 24 h 1 μM for 24 h ↑PI3K/AKT/mTOR 
pathway

[71]
Ferulic acid 10–100 μM for 24 h
Apigenin 1–40 μM for 24 h
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DOX treatment [9]. While DOX treatment resulted in a 
slight increase in the p-mTOR/ t-mTOR ratio, Asp did not 
revered this effect [9]. Instead, ASP increased the expres-
sion of p-AMPK and autophagy in cardiomyocytes treated 
by DOX [9]. These findings suggest that the cardioprotec-
tive effects of ASP may not be mediated through the mTOR 
pathway [9].

Astragalus polysaccharide (APS) is derived from the 
roots of Astragalus membranaceus [88]. It exerts various 
pharmacological effects, including antidiabetic, anti-aging, 
antitumor, antibacterial, and antiviral properties [89]. ASP 
has shown a wide range of therapeutic effects in experi-
mental cardiomyopathy, including cardiotoxicity caused by 
DOX and hypertrophic myocardium induced by isoproter-
enol [90, 91]. In a study on DOX-treated mice hearts, APS 
promoted mTOR activation and normalized autophagic flux 
[46]. The AMPK/mTOR pathway is considered one of the 
main targets of APS in protecting against DOX-induced 
impaired cardiac autophagy [46].

Dihydromyricetin (DHM) is a flavonoid found in the 
leaves of the Ampelopsis grossedentata [92]. It exhibits 
antioxidant, anti-inflammatory, mitochondrial dysfunction 
improvement, and autophagy regulation properties [93, 94]. 
Many benefits of DHM on the cardiovascular system have 
been reported [95]. In a study by Li et al. DHM pretreatment 
normalized left ventricular dysfunction in mice with DOX-
induced cardiac injury [12]. DHM reversed DOX-induced 
inhibition of AMPK and induction of mTOR expression, 
suggesting that the cardioprotective effect of DHM involves 
activating the AMPK/mTOR pathway [12].

Scutellarin (SCU) is a polyphenolic flavonoid derived 
from Erigeron breviscapus [96]. It has antioxidant, anti-
inflammatory, antiapoptotic, and neuroprotective proper-
ties [97, 98]. It has shown potential therapeutic benefits 
for cardiovascular diseases, such as heart failure and myo-
cardial ischemia/reperfusion injury [96–98]. In rats with 
DOX-induced chronic cardiotoxicity, SCU treatment 
decreased AMPK expression and increased mTOR expres-
sion, preventing autophagy [99]. In another study, SCU 
reduced autophagy by increasing the expression of p-AKT 
and p-mTOR in cardiomyocytes treated by DOX [100]. 
SCU could potentially be a therapeutic option for prevent-
ing DOX-induced cardiotoxicity by inhibiting the AMPK/
mTOR and the AKT-mTOR pathways [99, 100].

Thymoquinone (TQ) is a bioactive compound found in 
the seeds of Nigella sativa [101]. TQ has different pharma-
cological effects, such as antimicrobial, antihistamine, anti-
inflammatory, antioxidant, and anticancer activities [102]. 
It has shown potential in preventing and treatment of myo-
cardial ischemia/reperfusion injury and diabetic cardiomy-
opathy [101, 103]. TQ was found to have protective effects 
against DOX-induced cardiotoxicity in cardiomyocytes 

cardiac fibrosis in mice with heart failure and acute myocar-
dial injury in diabetic rats [73, 74]. A study investigated the 
potential of CRA in improving myocardial injury caused by 
DOX [75]. It was found that CRA improved cardiac metab-
olism, ATP generation, and mitochondrial function [75]. It 
also increased the expression of AMPK and TFEB while 
reducing the expression of mTORC1 [75]. The study sug-
gested that the cardioprotective effect of CRA against DOX-
induced cardiotoxicity is related to the AMPK/mTORC1/
TFEB pathway activation [75].

Dihydrotanshinone I (DHT) is a terpenoid compound 
derived from Salvia miltiorrhiza [76]. It has potential ther-
apeutic effects in the treatment of cardiovascular diseases 
and cancer [76, 77]. In a study on DOX-induced cardio-
toxicity, DHT was found to suppress the activation and 
nuclear localization of the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) [78], a transcription 
factor involved in the expression of inflammatory cytokines 
[79]. It also increased the nuclear expression of TFEB and 
decreased the cardiac ratio of p-mTOR/mTOR [78]. How-
ever, these effects were reversed by an mTOR agonist [78]. 
Therefore, the inhibition of mTOR expression by DHT may 
play a role in preventing DOX-related cardiac inflammation 
[78].

Tanshinone IIA (Tan-IIA) is the main lipophilic com-
ponent extracted from Salvia miltiorrhiza [80]. Tan-IIA has 
anti-inflammatory, anti-oxidant, and immunomodulatory 
activities [81]. The cardiovascular pharmacology of Tan-
IIA is characterized by its vasodilatory effect, antiarrhyth-
mic effect, and inhibition of ischemia-reperfusion injury 
[82–84]. In a study on DOX-induced cardiotoxicity, Tan-
IIA was found to restore the dynamic balance of autopha-
gosome/autolysosome [85]. It reduced autolysosome 
accumulation and increased autophagosome formation, 
thereby promoting autophagy [85]. Tan-IIA up-regulated 
the expression of autophagy markers, including Beclin1 and 
the lysosomal-associated membrane proteins-1 (LAMP1), 
while decreasing the p-mTOR expression and increasing the 
TFEB expression [85]. These findings suggest that Tan-IIA 
protects against DOX-mediated cardiac damage by promot-
ing autophagy through the inhibition of the mTOR/TFEB 
signaling pathway [85].

The AMPK/mTOR Pathway

Aspalathin (ASP), the primary polyphenol isolated from 
the rooibos plant (Aspalathus linearis), has various benefi-
cial properties, antioxidant, anti-inflammatory, antidiabetic, 
antithrombotic, and anticancer effects [86, 87]. It has been 
shown to improve cardiovascular complications associ-
ated with diabetes [86]. In a study by Johnson et al. ASP 
prevented the decrease in cardiac ATP activity caused by 
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β-LAP increased the cardiac NAD+/NADH ratio and up-
regulated SIRT1 expression in DOX-exposed heart tissues 
[47]. Increased SIRT1 expression and activity is associated 
with the deacetylation of the liver kinase B1 (LKB1) [125], 
level of autophagy marker LKB1 was elevated in the heart 
tissues of mice treated with β-LAP [47]. LKB1, as a kinase, 
activates AMPK through its phosphorylation [126]. β-LAP 
up-regulated AMPK expression and down-regulated the 
cardiac expression of mTOR [47]. These findings suggested 
that β-LAP up-regulated the LKB1/AMPK/mTOR pathway 
[47].

Spinacetin (SP) is a flavonoid found in spinach (Spinacia 
oleracea L.) [127]. There are various health benefits associ-
ated with the consumption of SP, including cardiovascular 
protection, antiasthmatic properties, hypoglycemic activity, 
and anti-inflammatory effects [128, 129]. In the context of 
DOX-induced myocardiopathy, SP treatment increased the 
expression of AMPK and SIRT3, while decreasing mTOR 
expression [127]. SIRT3 is a deacetylase localized to the 
mitochondria, which plays a role in phospho-activation of 
AMPK and acts as a positive regulator of autophagy [130]. 
This led to the induction of autophagy in cardiomyocytes, 
suggesting that SP alleviates DOX-triggered cardiotoxicity 
by up-regulating the SIRT3/AMPK/mTOR pathway [127].

Conclusion

The regulation of the mTOR pathway is complex, and the 
effects of NCs on this pathway seem to differ depending on 
the stage of DOX-mediated cardiotoxicity progression. DOX 
may impact mTOR signaling in dissimilar ways depending 
on the stage of cardiotoxicity. According to findings, the 
AKT/mTOR and AMPK/mTOR signaling have been impli-
cated in the protective effects of NCs against DOX-changed 
cardiac metabolism. Figure 2 effectively represents the pro-
tective effects of NCs against DOX-induced cardiotoxicity 
by targeting the mTOR pathways. In general, the use of NCs 
to modify mTOR signaling shows promise as a strategy to 
reduce the harmful effects of DOX on the heart in clinical 
settings. However, thorough clinical trials are necessary to 
establish the right dosages, treatment duration, and potential 
interactions with other medications. Nevertheless, further 
research is needed to gain a complete understanding of the 
safety and effectiveness of these compounds before they can 
be widely utilized in clinical practice.

by decreasing the p-mTOR expression and increasing the 
p-AMPK expression [104]. This suggests that TQ induces 
cardiac autophagy through up-regulating the AMPK/mTOR 
pathway [104].

Glycyrrhizin (GL) is a glycoside derived from the 
Glycyrrhiza glabra root [105]. Many therapeutic activi-
ties of GL are determined, such as cardioprotective, neu-
roprotective, and hepatoprotective activities [106–108]. 
The protective effects of GL have been revealed in diabetic 
cardiomyopathy and isoproterenol-induced cardiac damage 
[109, 110]. LV et al. have revealed GL therapeutic strat-
egy against DOX-induced cardiomyopathy [11]. Previous 
research have indicated that the high-mobility group box 1 
(HMGB1) inhibitors down-regulated the AKT/mTOR path-
way [111, 112]. GL is known as a direct HMGB1 antagonist 
[113]. In DOX-treated H9c2 cells, GL decreased the expres-
sions of AKT, mTOR, and HMGB1 [11]. It also reduced 
the expressions of autophagy markers, including the protein 
light chain 3 (LC3) II and p62, and improved autophagy 
flux [11]. Overall, GL attenuated DOX-mediated cardiac 
autophagy by the down-regulation of the HMGB1-depen-
dent AKT/mTOR pathway [11].

Resveratrol (RSV) is a polyphenol derived from grapes, 
berries, and peanuts [114]. It has anti-inflammatory, anti-
oxidant, anti-cancer, neuroprotective, and cardioprotective 
properties [114]. Numerous studies have indicated that 
RSV can protect against heart failure, ischemia-reperfusion 
injury [115, 116], and DOX-induced cardiotoxicity [117, 
118]. RSV was found to enhance DOX-mediated cardiac 
autophagy by reducing mTORC1 and increasing the E2 pro-
moter binding factor 1 (E2F1) expression [117]. E2F1 is a 
transcription factor that is involved in regulating the expres-
sion of genes related to autophagy [119]. The up-regulation 
of the E2F1/mTORC1 pathway appears to contribute to 
the protective effect of RSV against cardiotoxicity [117]. 
Another study found that RSV activates AMPK, inhibits 
mTOR, and stimulates autophagy through the ULK1 com-
plex [118]. ULK1 is a protein kinase involved in the process 
of autophagy and is stimulated by AMPK [120]. This sug-
gests that RSV increases autophagy in cardiomyocytes via 
the activation of the AMPK/mTOR/ULK1 pathway [118].

Beta-LAPachone (β-LAP), a quinone-containing com-
pound, is extracted from the lapacho tree [121]. It has antiox-
idant, anti-inflammatory, anti-obesity, anticancer, antiviral, 
antimicrobial, nephroprotective, neuroprotective, and car-
dioprotective effects [121–123]. The potential of β-LAP to 
prevent DOX-mediated cardiotoxicity has been investigated 
[47]. β-LAP has been found to reduce histopathological 
injury and improve the cardiac function [47]. SIRT1 is a 
main energy sensor that requires the nicotinamide adenine 
dinucleotide (NAD+) as a substrate [124]. Therefore, the 
intracellular level of NAD+ regulates SIRT1 function [124]. 
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