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Abstract Epidemiological studies suggest that an

increase of diesel exhaust particles (DEP) in ambient air

corresponds to an increase in hospital-recorded myocardial

infarctions within 48 h after exposure. Among the many

theories to explain this data are endothelial dysfunction and

translocation of DEP into vasculature. The mechanisms for

such DEP-induced vascular permeability remain unknown.

One of the major mechanisms underlying the effects of

DEP is suggested to be oxidative stress. Experiments have

shown that DEP induce the generation of reactive oxygen

species (ROS), such as superoxide anion and H2O2 in the

HUVEC tube cells. Transcription factor Nrf2 is translo-

cated to the cell nucleus, where it activates transcription of

the antioxidative enzyme HO-1 and sequentially induces

the release of vascular permeability factor VEGF-A. Fur-

thermore, a recent study shows that DEP-induced intra-

cellular ROS may cause the release of pro-inflammatory

TNF-a and IL-6, which may induce endothelial perme-

ability as well by promoting VEGF-A secretion indepen-

dently of HO-1 activation. These results demonstrated that

the adherens junction molecule, VE-cadherin, becomes

redistributed from the membrane at cell–cell borders to the

cytoplasm in response to DEP, separating the plasma

membranes of adjacent cells. DEP were occasionally found

in endothelial cell cytoplasm and in tube lumen. In addi-

tion, the induced ROS is cytotoxic to the endothelial tube-

like HUVEC. Acute DEP exposure stimulates ATP

depletion, followed by depolarization of their actin

cytoskeleton, which sequentially inhibits PI3K/Akt activity

and induces endothelial apoptosis. Nevertheless, high-dose

DEP augments tube cell apoptosis up to 70 % but disrupts

the p53 negative regulator Mdm2. In summary, exposure to

DEP affects parameters influencing vasculature perme-

ability and viability, i.e., oxidative stress and its upregu-

lated antioxidative and pro-inflammatory responses, which

sequentially induce vascular permeability factor, VEGF-A

release and disrupt cell–cell junction integrity. While

exposure to a low dose of DEP actin triggers cytoskeleton

depolarization, reduces PI3K/Akt activity, and induces a

p53/Mdm2 feedback loop, a high dose causes apoptosis by

depleting Mdm2. Addition of ROS scavenger N-acetyl

cysteine suppresses DEP-induced oxidative stress effi-

ciently and reduces subsequent damages by increasing

endogenous glutathione.
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Introduction

A very high proportion of the particles in diesel exhaust is

PM2.5 (particulate matter B2.5 lm), which have been

reported as a carcinogen and associated with adverse dis-

orders [1–4]. The cardiopulmonary system is affected most

by many substances in diesel exhaust particles (DEP),

including carbon black, hydrocarbons, aldehydes,
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quinones, benzo[a]pyrenes, polycyclic aromatic hydrocar-

bons (PAHs), and heavy metals, which levels parallel the

incidence of allergies, asthma, rhinitis, cardiovascular

disorders, as well as mutagenesis and carcinogenesis

[5–11].

Vasculature Effects

Epidemiology indicates that long-term exposure to ambient

PM2.5 adversely affects the health of those exposed [12].

PM2.5 from diesel vehicles is produced from several pro-

cesses: (a) It is directly emitted from the tailpipes of on-

road vehicles, (b) it is re-entrained from fugitive dust, and

(c) it is reacted to form PM2.5 with precursor emissions

chemicals such as sulfur dioxide, nitrogen oxides, volatile

organic compounds, and ammonia [13]. Items a and b are

typically known as primary emissions of PM2.5, for which

exposure both indoors and outdoors has been shown to

cause acute and chronic health effects [14]. Item c occurs

due to chemical reaction in the atmosphere [13]. Some gas

phase carbonyl compounds (aldehydes and ketones) are

also known to have adverse effects on human health; for

example, long-term exposure to high formaldehyde con-

centrations is known to increase the risk for asthma and

cancer [15, 16]. Chronic bronchitis, chronic obstructive

pulmonary disease (COPD), asthma, heart failure, and even

lung cancer can result, due to the carcinogenic or muta-

genic components in inhaled air [11]. Furthermore, for

people living in areas where air pollution levels are high,

long-term exposure correlates with higher levels of

atherosclerosis [17]. Chronic exposure to polluted air

indirectly places a tremendous burden on the health care

system and is a significant cause of morbidity and mortality

[18]. Short-term effects observed within 48 h after expo-

sure include acute eye and nose irritation, neurophysio-

logical symptoms, respiratory symptoms, headache, and

fatigue. Ambient particulates have also been correlated

with serious cardiovascular events, such as myocardial

infarctions or strokes [3, 19]. Short-term elevations of DEP

in the air at a concentration as low as 10 lg/m3 increase

mortality by 1 % [4]. Acute exposure to a concentration of

50 lg/m3 of DEP causes an average of 1.2 deaths per day

in a population of 1 million [4].

Heart and vascular consequences are frequently

observed after exposure to pollution [18]. There is a higher

incidence of ischemic heart disease in smokers who are

chronically exposed to diesel emissions [20]. Men who had

a previous myocardial infarction and who were exposed to

diesel exhaust during moderate exercise showed an

increase in ischemic and thrombotic effects [21]. Further-

more, upon exposure to high levels of traffic air for times

as short as 1 h, there is an increased risk of coronary

vasoconstriction and altered myocardial energetics [22].

Air pollutants reduce heart rate variability, cause ventric-

ular arrhythmia, and increase left-ventricular end-diastolic

pressure in animal models [23, 24]. At levels encountered

in an urban environment, inhalation of diesel exhaust

impaired two important and complementary aspects of

vascular function in humans: the regulation of vascular

tone, and endogenous fibrinolysis by increasing fibrinogen

and plasminogen activator inhibitor-1 [21, 25]. Blood is not

immune from the effects of air pollution. Two components

in polluted air, CO and NO2, reduced the prothrombin time

(PT) for clotting blood for 1218 healthy people from

Lombardy Region, Italy [26]. In addition, air pollutants

may significantly increase fibrinogen, factor VIII, and

platelet hyperactivity.

Oxidative Stress

Oxidative stress can be defined as the imbalance between

cellular oxidant species production and antioxidant capa-

bility [27]. Reactive oxygen species (ROS) can be gener-

ated under normal cellular condition or can be elicited in

response to exposure to environmental stress. Despite the

major composition of ROS produced in cell exposed to

DEP remaining unelucidated, these free radical species are

very transient and cytotoxic [18, 28–30].

Exposure to DEP induces the generation of free radi-

cals that lead to a state of cellular oxidative stress [31].

This has been shown to cause significant damage in both

cell cultures and animal models [32–36]. In vitro studies

demonstrate that DEP upregulate antioxidant enzymes in

various types of cells, including bronchial and pulmonary

epithelial cells [37, 38], macrophages, lymphocytes [39],

and endothelial cells [40]. DEP induce the generation of

H2O2 [41], a powerful oxidizer which can be converted

into hydroxyl radicals (.OH). In organisms, hydrogen

peroxide is naturally produced as a by-product of oxygen

metabolism; therefore, enzymes such as catalase catalyze

conversion of hydrogen peroxide to water and oxygen. In

fact, catalase is the most abundant enzyme in the human

body. DEP-induced ROS leads to NO production which

associated with human pulmonary artery endothelial cell

damage [40]. The major cause of cell damage may be

excess NO production that contributes to reduction of NO

bioavailability [42]. Endothelial nitric oxide synthase

plays a key role in modulating NO production and car-

diovascular homeostasis. Furthermore, the metabolites of

arachidonic acid, so-called epoxyeicosatrienoic acids

(EETs), enhance eNOS phosphorylation and upregulate

eNOS protein expression [43]. eNOS not only mediates

NO production but also is involved in the release of

prostacyclin, which regulates vasodilatation [44]. On the

other hand, DEP paralyze eNOS and cause dysfunction in

coronary arterioles [21, 44]. Therefore, exposure to DEP
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would result in higher risk of heart attack, coronary artery

disease, or hypertension in those with existing cardio-

vascular disease.

DEP have a carbonaceous core onto which the toxic

components of exhaust are absorbed. These chemicals

contain two main families of organic compounds: poly-

cyclic aromatic hydrocarbons (PAHs) and quinines, which

can be oxygenated to quinone derivatives that produce

ROS in the cells via redox cycling. PAHs desorbed from

DEP bind the cytosolic aryl hydrocarbon receptor and

induce phase I metabolization enzymes cytochrome P450

1A1 (CYP1A1) and cytochrome P450 1A2 (CYP1A2) in

the lung and heart [45–47]. This mechanism produces

electrophilic and reactive metabolites such as 1-nitropy-

rene (1-NP), 1,3-dinitropyrene (1,3-DNP), and 1,8-dini-

tropyrene (1,8-DNP). Such oxidative stress can induce

DNA damage [48]. Furthermore, in the lung, DEP-in-

duced chemical derivatization of quinones causes free

radicals and diminishes the antioxidant capacity of redox

cycling via the enzymes CYP reductase and NADPH

oxidase. Quinones are suspected to be responsible for the

production of superoxide anion (O2
-) and hydroxyl radi-

cals [10, 49]. This can occur as follows: Redox cycling

quinones undergo a one-electron reduction to form semi-

quinones [50], and then semi-quinones are recycled to the

original quinones with the formation of O2
-. The detox-

ification of quinones occurs by a two-electron reduction

initiated by the phase II reaction with NADPH-quinone

oxidoreductase-1 (NQO-1). Quinones are electrophiles

that are able to participate in ROS damage by inducing

covalent modification of proteins and DNA strands. Thus,

the modification of DEP organics results in DNA adducts

and DNA strand breakages, and can result in cell death

[36, 51, 52].

DEP exposure has been shown to generate an ROS

response that can overwhelm antioxidative proteins [40].

To maintain redox cycling equilibrium for cell survival, the

cells release antioxidants such as glutathione S-transferase

(GST), superoxide dismutase (SOD), NADPH-quinone

oxidoreductase-1 (NQO-1), and heme oxygenase-1 (HO-1).

These help neutralize the potent injuries ROS can cause.

For example, in response to a 24-h free radical stimulation,

endothelial cells upregulate heme oxygenase-1 (HO-1)

[53]. This is accomplished by cytoplasmic nuclear factor

erythroid 2-related factor 2 (Nrf2) translocating from the

cytoplasm to the nucleus, where it binds to the antioxidant

response element (ARE) that resides in the promoter

regions of antioxidant genes. This upregulates HO-1

mRNA levels via Nrf2/ARE enhancement of transcription

[54–56].

DEP also induce lipid peroxidation, as well as massive

protein oxidation and mitochondria superoxide production

[57, 58]. ROS are involved in a variety of cellular

processes, ranging from cell proliferation and carcinogen-

esis to cell death [27]. Previous studies showed that

excessive production of ROS causes irreversible damage to

lipids, DNA, and proteins, thus provoking cell death

through several modes, including autophagy and apoptosis

[59]. Furthermore, recent results have suggested that DEP

function by changing the levels of its effector, H2O2, which

triggers Nrf2 translocation from the cytoplasm to the

nucleus [56, 60]. Downstream heme oxygenase (HO)-1 is

then upregulated to facilitate antioxidative stress response

in the endothelium [61–64]. HO-1 also functions to induce

vascular permeability and contributes to the secretion of

vascular endothelial growth factor A (VEGF-A) [65].

VEGF-A, also called vascular permeability factor (VPF),

has been shown to induce vascular permeability [66, 67].

Upon exposure of in vitro capillary tube cells to DEP, the

VE-cadherin/VEGF receptor 2 (VEGF-R2) complex on the

cell membrane dissociates [56]. Partial internalization of

VE-cadherin and discontinuity of the cell–cell border are

also induced following these junctional alternation [56,

68]. Moreover, these events cause endothelial junctions to

become disrupted and may explain how VEGF-A initiates

vascular permeability following inhalation of DEP.

Pro-inflammatory

Many reports have suggested that DEP initiate an inflam-

matory response that ultimately causes injury. In vitro

studies have demonstrated that PM2.5 upregulates the

secretion of pro-inflammatory cytokines such as inter-

leukin-1b (IL-1b), interleukin-6 (IL-6), and tumor necrosis

factor-a (TNF-a) in macrophages, as well as epithelial and

endothelial cells [69–72]. Additionally, cultured bronchial

epithelial cells exposed to DEP also released interleukin-8

(IL-8) and granulocyte macrophage colony stimulating

factor (GM-CSF) in a time- and dose-dependent manner.

Both of these are known to be involved in allergic diseases

[38, 45].

It is important to realize that ROS and pro-inflammatory

responses go hand in hand. For example, in the blood-

stream, TNF-a has pro-oxidative properties and stimulates

generation of ROS in the cardiac muscle of patients with

heart failure [73]. In such patients, TNF-a enhances pla-

telet superoxide anion (O2
-) production [74]. Also, in

airway epithelial cells, the components of DEP adsorbed on

particles elicit inflammation through CYP reductase and

NADPH oxidase [75]. These activate cytokine secretion as

well as an oxidative stress response.

Inhalation of DEP for 24 h upregulates TNF-a and leads

to accumulation of large amounts of TNF-a in human

plasma [76]. This changes the expression of adhesion

molecules on endothelial cells, facilitating the transmigra-

tion of neutrophils and thereby leading to changes in
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vascular permeability [77]. Furthermore, there is a positive

correlation between vascular permeability and adherens

junction integrity [78]. Nwariaku et al. [79] found that

TNF-a-induced tyrosine phosphorylation of VE-cadherin,

which permits regulation of microvascular permeability,

increases the formation of intercellular gap formation. IL-6

has also been shown to be directly involved in increasing

monolayer endothelial permeability [80]. Maruo et al. [81]

suggested that IL-6 induces increased endothelial perme-

ability by rearranging VE-cadherin and altering the shape

of endothelial cells. This implies that the endothelial cell–

cell barrier may also be altered.

Vascular Permeability

Exposure to DEP is associated with adverse pulmonary

and cardiovascular health effect due to its composition

and particle size. DEP contribute to fine PM (PM2.5) and

ultrafine PM (diameters of 0.1 lm, i.e., 100 nm, or

smaller, or PM0.1) [82], both of which are capable of

entering the alveolar region. Reports have suggested that

inhaled ultrafine titanium dioxide particles were found on

the luminal side of airways and alveoli, in lung tissues

and cells, and within capillaries. The ultrafine particles

translocated into the bloodstream after inhalation by a

volunteer [83, 84]. Particle uptake in vitro into cells did

not occur by any of the expected endocytic processes, but

rather by diffusion or adhesive interactions. Study

demonstrated that the role of particles translocated into

circulation might be mediated by endothelial cell–cell

adherens junctions [82]. VE-cadherin is an endothelial-

specific cadherin of adherens junctions that regulates not

only vascular permeability, but also leukocyte transmi-

gration [85]. Disruption of VE-cadherin endothelial bar-

rier integrity has also been shown to alter vascular

permeability [86, 87]. The pulmonary endothelium acts as

a semipermeable barrier, and the integrity of the barrier is

necessary for efficient pulmonary function [88]. Further-

more, DEP induce oxidative stress in differential

endothelial cells [56]. Cells respond by transporting Nrf2

to the nucleus to facilitate transcription of genes to defend

against ROS. HO-1 is a defense enzyme induced by Nrf2,

which consequently secretes vascular permeability factor

VEGF-A to contribute to vasculature being permeable.

Recently, our unpublished results also reported that DEP-

induced intracellular ROS is able to release the pro-in-

flammatory cytokines TNF-a and IL-6, which might also

contribute to VEGF-A secretion and disrupt cell–cell

borders to increase vasculature permeability. Interestingly,

addition of ROS scavenger N-acetyl cysteine (NAC)

suppresses DEP-induced ROS efficiently and reduces

subsequent damages by increasing endogenous glutathione

[89].

Apoptosis

Epidemiological studies have suggested that exposure to

high concentration DEP might cause acute cardiovascular

symptomatic flares within even 48 h of exposure [58, 90].

The DEP-induced symptoms include myocardial infarction

and atherosclerosis. Studies indicated that induction of

apoptosis in endothelial cells, smooth muscle cells, and

immune cells has been involved in the formation of

atheromatous plaques [91]. Apoptosis is a type of cell death

characterized by cell shrinkage, membrane blebbing, and

chromatin condensation [92]. Apoptosis in cells has also

been implicated when mitochondrial functions are attenu-

ated or intracellular ATP is depleted [93]. It would link to

derangement of actin cytoskeleton [94, 95] and dephos-

phorylation of cell survival Akt signaling [96], which

potentially contribute to induction of myocardial ischemia

and infarction [97, 98].

Atherosclerosis can be regarded as an inflammatory

disorder which arises from accumulation of chemokines,

cytokines, growth factors, and lipoproteins; it gave birth to

vascular pathology [99]. On the other hand, the apoptosis

of endothelium is also triggered in atherosclerosis.

Denudation of the endothelial monolayer in aortic segment

is associated with endothelium apoptosis, which initiates

the migration of smooth muscle cells to the denuded seg-

ment. The smooth muscle cells proliferate and increase the

intimal mass of the denuded segment, but the subsequent

reendothelialization of the denuded segment replaces the

smooth muscle cells and intimal mass which initiate the

death of smooth muscle cells into the intima, further

damaging the vasculature and propagating plaque devel-

opment [100]. Atherosclerosis may also depend on

increased coagulation of apoptotic endothelial cells.

Apoptotic cells are procoagulant of the circulation system,

and the activated platelets are aggregated in areas rich in

apoptotic cells. Our recent studies showed that DEP induce

mitochondrial superoxide anion generation, which leads to

ATP depletion followed by depolarization of actin

cytoskeleton and prohibits PI3K/Akt activity and con-

tributes to endothelial apoptosis [58]. The performance is

accompanied by induction of the p53/Mdm2 feedback

regulation at 10 lg/mL DEP and produces 20 % cell

apoptosis. Nevertheless, a high dose of DEP (100 lg/mL)

augments tube cell apoptosis up to 70 %, but dysfunction

of p53 negative regulator, Mdm2.

Autophagy

There is growing interest in the role of autophagic flux in

maintaining normal vessel wall biology and a growing

suspicion that autophagic dysregulation may be a normal

mechanism through which vascular abnormalities and
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associated pathologies develop [101]. Autophagy is con-

sidered a protective process which proceeds cell survival

by recycling organelles and long-lived proteins during

nutrient deprivation, hypoxia, and infection [102]. Nev-

ertheless, autophagy may be a type of cell death under

certain circumstances [103]. Lysosomal coordination

regulates the late state of autophagic flux [104]. Some

nanoscale materials were identified with contribution of

lysosomal dysfunction, including multi-wall carbon nan-

otube (MWCNT) [105], glass wool [106], titanium diox-

ide (TiO2) [107], polystyrene [108], and zinc oxide [109].

Nanoparticles are usually sequestered within the lysoso-

mal compartment; therefore, the nanoparticles inhibit

lysosomal enzyme activity and cause biopersistence; the

above legions contribute to autophagy dysfunction and

cell death. Accordingly, DEP are nanoscale-like particles;

our unpublished research indicates that DEP are uptaken

and accumulated in the endothelial cells within 2 h

exposure and induce autophagy, while p62 was simulta-

neously accumulated in the cytoplasm for 8 h, suggesting

that autophagosome is not able to digest DEP and lead to

autophagy-independent endothelium apoptosis. On the

other hand, the upregulated expression of antioxidative

enzymes was observed at various time points as well,

suggesting that these undigested DEP cause oxidative

stress in the endothelial cytoplasm and sequentially lead

to endothelial apoptosis.

Conclusion

The mechanisms for DEP-induced endothelial dysfunction

that possibly result in atherosclerosis remain unknown.

One of the major mechanisms underlying the effects of

DEP is suggested to be oxidative stress. As shown in

Fig. 1, investigations have suggested that DEP induces the

generation of oxidative stress in the HUVEC tube cells.

Transcription factor Nrf2 is translocated to the cell nucleus

and activates transcription of the antioxidative enzyme

HO-1 and sequentially induces the release of vascular

permeability factor VEGF-A. Additionally, DEP-induced

intracellular ROS may cause the release of pro-inflamma-

tory TNF-a and IL-6, which may induce endothelial per-

meability as well by promoting VEGF-A secretion

independently of HO-1 activation. These effects cause the

adherens junction molecule, VE-cadherin, to become

redistributed from the membrane at cell–cell borders to the

cytoplasm in response to DEP, separating the plasma

membranes of adjacent cells. DEP translocate occasionally

in the endothelial cell cytoplasm and in the tube lumen.

Furthermore, acute DEP exposure stimulates ATP deple-

tion, followed by depolarization of their actin cytoskeleton,

which sequentially inhibits PI3K/Akt activity and induces

endothelial apoptosis. Nevertheless, while exposure to a

low dose of DEP actin triggers cytoskeleton depolarization,

reduces PI3K/Akt activity, and induces a p53/Mdm2

Cell junction leaky and
Vascular Permeability

DEP translocate into
bloodstream

Induction of 
Intracellular oxidative stress

Autophagy and Apoptosis

O2
¯

Chao et al. 2012 Tseng et al. 2015

Endothelial cells uptake DEP

Autophagosome

Lysosome

Cardiovascular pathologies

DEP in endothelium

Tseng et al. 2014
Wang et al, in manuscript

VEGF-A release Chao et al. 2011

Fig. 1 Mechanism of DEP contributes to cardiovascular pathologies.

Exposure of endothelial cells to DEP results in two potential

pathways to cardiovascular disorders. First, the DEP-induced intra-

cellular ROS production causes cell–cell junction leakage with

VEGF-A release and vascular permeability. Then, DEP translocate

into bloodstream and result in vasculature illness. Second, the DEP-

induced ROS trigger endothelial phagocytosis of the particles. The

ingested DEP will be embedded by lysosome and sequentially fused

with autophagosome, which results in autophagy. However, the DEP

is not able to be digested, and these autolysosome-embedded DEP

accumulate in the cytosol, leading to higher oxidative stress and the

eventual causation of apoptosis
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feedback loop, a high dose causes apoptosis by depleting

Mdm2. N-acetyl cysteine suppresses DEP-induced oxida-

tive stress efficiently and reduces subsequent damages by

increasing endogenous glutathione. Although autophagy is

considered a protective process which proceeds cell sur-

vival by recycling organelles and long-lived proteins dur-

ing nutrient deprivation, hypoxia, and infection, DEP are

sequestered within the lysosomal compartment and inhibit

lysosomal enzyme activity and contribute to autophagy

dysfunction and apoptosis. It might be the mechanism that

these undigested DEP cause oxidative stress in the

endothelial cytoplasm and sequentially lead to endothelial

apoptosis.

PM2.5-DEP threaten our daily life. It is important to

elucidate how DEP affect our bodies. The continued

expansion of the field of respiratory and cardiovascular

toxicology requires a thorough understanding of the

mechanism of DEP for appropriate safety assessment and

identification of exposure biomarkers. With increasing

research of respiratory toxicology, the comprehensive

mechanism of several respiratory toxicants has begun to

emerge. Researchers should be conscious that air pollution

like DEP can have deleterious effect on inflammatory,

apoptosis, and autophagy pathways, giving rise to respi-

ratory toxicity and lung pathology. Overall, expanding

knowledge of the implications and biological significance

of DEP-induced reactive oxidative stress, inflammatory

response, apoptosis, and autophagy pathways has tremen-

dous potential to aid in our understanding of respiratory

toxicology and design of suitable pharmaceutical therapy

and chemoprevention.
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