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Abstract Heart failure (HF) is characterized as a limita-

tion to cardiac output that prevents the heart from supplying

tissues with adequate oxygen and predisposes individuals to

pulmonary edema. Impaired cardiac function is secondary

to either decreased contractility reducing ejection (systolic

failure), diminished ventricular compliance preventing

filling (diastolic failure), or both. To study HF etiology,

many different techniques have been developed to elicit this

condition in experimental animals, with varying degrees of

success. Among rats, surgically induced HF models are the

most prevalent, but they bear several shortcomings,

including high mortality rates and limited recapitulation of

the pathophysiology, etiology, and progression of human

HF. Alternatively, a number of non-invasive HF induction

methods avoid many of these pitfalls, and their merits in

technical simplicity, reliability, survivability, and compa-

rability to the pathophysiologic and pathogenic character-

istics of HF are reviewed herein. In particular, this review

focuses on the primary pathogenic mechanisms common to

genetic strains (spontaneously hypertensive and spontane-

ously hypertensive heart failure), pharmacological models

of toxic cardiomyopathy (doxorubicin and isoproterenol),

and dietary salt models, all of which have been shown to

induce left ventricular HF in the rat. Additional non-inva-

sive techniques that may potentially enable the develop-

ment of new HF models are also discussed.
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Abbreviations

ACE Angiotensin-converting enzyme

ANG II Angiotensin II

bAR Beta adrenergic receptor

CO Cardiac output

DM Diabetes mellitus

DOX Doxorubicin

dP/dtmax Peak rate of increase in LV pressure

dP/dtmin Peak rate of decrease in LV pressure

DOCA Deoxycorticosterone acetate

DS Dahl salt sensitive

E/A Ratio of early-to-late inflow velocities

EF Ejection fraction

ESV End-systolic volume

FS Fractional shortening
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HF Heart failure

HR Heart rate

i.v. Intravenous

ISO Isoproterenol

LAD Left anterior descending coronary artery

LV Left ventricular

LVP LV pressure

LVEDP LV end-diastolic pressure

LVESP LV end-systolic pressure

LVOT LV outflow tract

MAP Mean arterial pressure

MHC Myosin heavy chain

MI Myocardial infarction

PO Pressure overload

PTU Propylthiouracil

s.c. Subcutaneous

SD Sprauge Dawley

SERCA Sarcoplasmic reticulum Ca2? ATPase pump

SERCA2a SERCA type ‘‘2’’, isoform ‘a’

SH Spontaneously hypertensive

SHHF Spontaneously hypertensive heart failure

SHR Spontaneously hypertensive rat

SV Stroke volume

T3 Triiodothyronine

T4 Thyroxine

TAC Transverse aortic constriction

TNF-a Tumor necrosis factor-a
UPS Ubiquitin–proteasome system

VO Volume overload

Introduction

Heart failure is a global public health problem imposing

considerable disease and economic burdens on individuals

and societies. Cardiac disease in general leads to more

hospitalizations (4.4 million annually) and deaths (a third

of annual fatalities) in the United States than any other

single cause [1, 2]. Heart failure (HF) is the end-phase

syndrome of chronic cardiac disease that occurs when the

left ventricle becomes too weak to provide adequate tissue

perfusion [3, 4]. According to the U.S. Centers for Disease

Control, HF specifically causes more hospitalizations

(1.1 million annually) than any single type of cardiac dis-

ease [1]. Roughly 6 million Americans live with HF, and

hospital discharges for HF, including deaths, nearly tripled

from 1979 to 2005 [3, 5]. Because HF is difficult for

practitioners to define, and its symptomology is excep-

tionally variable [4], currently reported morbidity and

mortality rates may grossly underestimate the impact of HF

due to the difficulty of classifying the disease [6].

The staggering health and economic burdens imposed

by HF (60,000 deaths and $37 billion annually in the

United States [5]) demand an improved understanding of

how potential therapies and toxins may specifically affect

this syndrome. Investigations into the mechanisms of

exacerbation and treatment of HF are often limited by

the inability of animal models to reliably mimic the

pathogenesis of human HF. Several left ventricular HF

models have been developed in rats using surgical, phar-

macological, dietary, and genetic manipulations, all with

notable shortcomings and advantages. In this review, sev-

eral of the surgically induced models are described briefly,

but primarily as counterpoints to the main emphasis on

non-invasively induced models. In order to focus on a few

major non-invasive models and expose lesser known

emerging models, this review omits several models

reviewed previously, including those induced by myocar-

ditis, alcohol, streptozotocin, and hyperhomocysteinemia,

as well as models of right ventricular heart failure

(cor pulmonale) [7].

In particular, the merits of genetic strains (spontane-

ously hypertensive and spontaneously hypertensive heart

failure), pharmacological models of toxic cardiomyopathy

(doxorubicin and isoproterenol), and dietary salt models in

the rat are described in detail. Additionally, less well-

established non-invasive techniques that may enable the

development of new HF models are also described.

Pathogenesis

The pathogenesis of left ventricular HF has been reviewed

extensively [8–11]. Briefly, the hallmark of HF is the

heart’s inability to provide adequate tissue perfusion [4].

This state of cardiac insufficiency usually results after an

initial ‘‘index event’’ (e.g., acute myocardial infarct,

gradual onset of systemic hypertension, myocardial

inflammation, valvular insufficiency, a genetic mutation,

coronary heart disease, diabetes mellitus, and/or cardio-

myopathy) alters ventricular wall stress at end-diastole

(preload) and/or at ejection (afterload), eventually impair-

ing cardiac output [10]. The decline in cardiac function

activates the release of neurohormones (e.g., catechola-

mines, angiotensin II, or endothelin) and cytokines,

increasing water retention and cardiac workload in an

effort to preserve blood pressure and kidney perfusion [10].

If persistent, the neurohormonal response may sequentially

elicit the myocardial fetal gene program, cardiomyocyte

hypertrophy, structural remodeling of the heart, cardiac

dilatation, cardiac insufficiency, and circulatory congestion

(Fig. 1) [3, 8, 10–12]. As well, the type of index event

often dictates the course and features of HF pathogenesis.

For instance, aortic regurgitation and ventricular septal
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defect stimulate water retention to increase blood volume

(hypervolemia), augmenting stroke volume through

increased preload, ultimately inducing ventricular volume

overload and cardiac dilatation but typically not ventricular

wall thickening. Conversely, unlike physiologic hypertro-

phy, the innocuous and temporary consequence of physical

exertion, prolonged pathologic cardiac hypertrophy is an

adaptation to increased afterload that is characterized by

several features of cardiac remodeling, including increased

cardiomyocyte size, protein synthesis, and sarcomere

number and organization [10–12]. With cardiomyocyte

hypertrophy, left ventricular (LV) volume usually decrea-

ses with the thickening of ventricular walls; however,

chamber dilatation can suppress these two gross features

despite severe cardiomyocyte hypertrophy [13]. Ulti-

mately, decompensation ensues when LV dilatation

(indicated by increased chamber volume, and the thinning,

weakening, and fibrosis of the LV wall) and neurohor-

monal compensatory mechanisms fail to maintain suffi-

cient cardiac output for the body’s needs [8, 11, 14]. At or

near decompensation, the myocardium becomes ATP

deficient due to impaired ATP generation. Consequently,

metabolic function often shifts from fatty acid oxidation

to glucose utilization within the myocardium of rodent

HF models; however, fatty acid uptake remains

unchanged within the failing human heart [15]. Notably,

other important pathophysiological differences in HF

progression exist between rodent models and humans,

including a shift from a-myosin heavy chain (MHC) pro-

tein expression to bMHC in the rodent myocardium and the

opposite response in humans. Although congestion (sys-

temic or pulmonary) is not required for HF, it frequently

occurs along with dyspnea (labored breathing) at rest or

upon mild physical exertion. Other HF symptoms can

include lethargy, dizziness, angina pectoris, weight loss

and/or gain, swelling of the limbs, syncope (fainting), and

cyanosis. The modes of fatality in HF include sudden death

(usually from arrhythmia), congestion (especially pul-

monary), pump failure, insufficient perfusion of the heart

(ischemia and infarction), and inadequate cardiac output

[16].

Functional, Structural, and Hemodynamic Indicators

Although this review focuses especially on non-invasive

HF models, it must be noted that confirming HF in even

these models often requires invasive techniques such as

implantable telemetry or ventricular catheterization to

obtain arterial and cardiac pressures as well as ECG

measurements. Conversely, echocardiography provides a

non-invasive means for confirming HF. Heart failure is

typically verified by changes in cardiac performance,

dimension, and pressure. When the heart’s compensatory

Fig. 1 Development and progression of decompensated left ventric-

ular hypertrophy. Compensated left ventricular hypertrophy manifests

as a decrease in chamber volume and an increase in LV wall thickness

characterized by cardiomyocyte growth in response to hemodynamic

stress and/or myocardial injury. Neurohormonal and cytokine

activation induces development of LV hypertrophy, often with

enhancements in LV contractile performance maintaining cardiac

output despite decreased chamber volume. Cardiomyocyte death

provokes transition to cardiomyopathic dilation and wall thinning,

corresponding with decreased LV contractile performance. Along

with a host of molecular changes, these events are termed ‘decom-

pensation’ and usually confer a decline in cardiac output
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mechanisms fail and decompensation ensues, LV end-

diastolic volume and pressure both increase, while LV end-

systolic pressure (LVESP) and cardiomyocyte contractile

performance usually decline [10, 11, 17]. Elevated LV end-

diastolic pressure (LVEDP) impedes chamber filling and

reduces stroke volume (SV), thereby serving as a major

indicator of HF—particularly, diastolic failure [18–21].

Four-fifths of humans with HF symptoms have diastolic

failure, while less than half have systolic failure [5]. In

these instances, elevations in the mitral valve ratio of early-

to-late inflow velocities (E/A, an echocardiographic

parameter) parallels elevated LVEDP to indicate diastolic

dysfunction and failure [22]. Although susceptible to pre-

load and afterload conditions in general, the peak rate of

increase and decrease in LV pressure (LV dP/dtmax and

dP/dtmin) represents contractile and diastolic performance,

respectively [9]. Additionally, significant declines in frac-

tional shortening (FS) and ejection fraction (EF)—both

expressed in percentage values—indicate systolic dys-

function; progressive decreases are prognostic of decom-

pensation and death from HF [23]. For instance, in a large

human cohort study, every incremental 5% decrease in EF

below 45% corresponded with a 15% increase in risk of

death within 2 years [24]. EF is estimated from the dif-

ference in LV volume between systole and diastole (stroke

volume) as a fraction of diastolic volume. LV volumes

typically are calculated from ultrasound measurements of

LV dimension, using well-established geometric assump-

tions of LV shape. In healthy experimental animals, EF

typically ranges from 45% to 70%, depending on anes-

thesia, heart rate, and the procedures used [9]. Notably,

anesthetics differentially affect cardiac output and

hemodynamics as well. A comparison on the effects of iso-

flurane, urethane, sodium pentobarbital, and ketamine–

xylazine in mice demonstrated that—in ascending order and

with many significant differences between agents—all

depressed mean arterial pressure and cardiac output relative

to conscious mice [25].

Invasive Models of HF in the Rat

Models Requiring Thoracotomy

A discussion of the limitations and merits of surgical

models of heart failure is required to convey the relative

advantages of non-invasively induced models of heart

failure. Surgical induction of HF often requires opening the

thoracic cavity. One example of such a procedure is coro-

nary artery ligation, which causes myocardial ischemia and

subsequent necrosis that decreases the number of viable

cardiomyocytes, impairs electrical conduction, and results

in HF accompanied by structural remodeling of the lung by

2 weeks post-surgery [26–28]. Following a hypervolemic

response to decreased contractility and stroke volume,

elevated preload is primarily responsible for the progression

to HF in this model, which significantly and dramatically

impairs both systolic and diastolic function [19, 26–28]. In

one study, diastolic function was significantly impaired at

2 weeks post-surgery, but systolic function (dP/dtmax) was

enhanced—likely due to a neurohormonal augmentation of

contractility (Table 1) [28]. In another study, cardiac per-

formance data and gross clinical signs of HF indicated that

systolic and diastolic failure were achieved concomitantly

at 5 weeks post-surgery [19]. The authors used a threshold

LVEDP value to delineate ligated rats as either ‘‘non-fail-

ing’’ (LVEDP \ 15 mmHg) and ‘‘failing’’ (LVEDP C

15 mmHg). They demonstrated that when MI led to

LVEDP C 15 mmHg (62% of ligated rats), multiple indi-

cators of decompensated HF were evident, including pleural

effusion, ascites, tachypnea, increased diameters of the left

atrium and LV at end diastole, and reductions in weight

gain, heart rate, cardiac output (CO), fractional shortening,

and contractility (LV dP/dtmax) [19]. Nevertheless, the

average cardiac performance parameters for all ligated rats

(regardless of LVEDP) still differed dramatically from rats

with sham surgery. Survival was not reported in this study,

but other investigators demonstrated similar cardiac dys-

function at 9 weeks post-surgery with only 10% premature

mortality [29]. An additional study lacking cardiac perfor-

mance data achieved even lower mortality rates (\5%) by

specifically ligating the LAD 1–2 mm below the junction of

the pulmonary conus and the left atrial appendage [30].

Despite the low mortality rates reported previously, coro-

nary artery ligation in rats demands surgical expertise and

precision that, if lacking, can rapidly lead to premature

mortality of 30–62% [27, 30]. Furthermore, all coronary

artery ligation procedures require invasive and potentially

traumatic thoracotomy.

A second invasive model involves constrictive banding

or suturing of the thoracic aorta (often called ‘‘transverse

aortic constriction’’ [TAC] or aortic stenosis), which

induces myocardial ‘‘pressure overload’’ and leads to heart

failure after about 15–27 weeks, resulting in about 30%

premature mortality (Table 1) [31–36]. Initially, dramatic

increases in afterload cause hypertrophy and thickening of

the posterior wall and interventricular septum, as well as

increased neurohormones [37]. Aortic constriction impairs

cardiac performance in part by causing dysfunction of the

2a isoform of the sarcoplasmic reticulum Ca2? ATPase

pump (SERCA2a)—a pathology common to HF [33, 38–

40]. However, thoracic aortic stenosis, like coronary artery

ligation, can carry high mortality rates and typically

requires surgical opening of the thoracic cavity (sternot-

omy or thoracotomy), which may elicit chronic pain, local

and systemic inflammation, epicardial inflammatory cell
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infiltration, fibrous adhesions, and extensive thoracic

scarring, and may thus interfere with experimentation long

after surgery [39, 41, 42].

Invasive Models Not Requiring Thoracotomy

Importantly, del Monte and colleagues have developed a

less invasive technique of transverse aortic constriction that

circumvents thoracotomy via a suprasternal incision and

the cutting of a clavicle to access the aorta equally as

proximal to the heart as methods requiring a thoracotomy

[39, 43]. Only a limited number of studies have success-

fully applied the supraclavicular approach in rats to elicit

cardiac dilation and dysfunction comparable to the models

requiring thoracotomy or sternotomy (Table 1) [33, 39, 43,

44]. A similar technique requiring a suprasternal notch has

been developed for the mouse and is used much more

commonly [45, 46]. Abdominal aortic constriction provides

an additional alternative approach to stenotic-increased

afterload that is less demanding of surgical precision,

requires a less traumatic and invasive surgery (laparotomy

does not require mechanically assisted ventilation, pneu-

mothorax, or cutting of bone or cartilage), and eventually

leads to HF. At 4–5 weeks after this surgery, researchers

have observed significant evidence of cardiac hypertrophy

with marked increases in LV wall thicknesses but no sig-

nificant change in EF or FS [37, 47]. In contrast, Kobayashi

and colleagues witnessed significantly enhanced LV sys-

tolic function and pressure at this same time-point with no

impairment in diastolic pressure [48]. Importantly, these

values paralleled those of thoracic aortic constricted rats in

both time and magnitude, suggesting strong homology

between thoracic and abdominal aortic stenosis in the early

compensatory stages of HF progression. In another study,

Wistar rats were shown at 7 weeks post-surgery to have

strong indications of systolic failure, including significantly

decreased ejection fraction and sharply increased end-sys-

tolic volume (Table 1) [49]. Less dramatic effects were

observed at 8 weeks post-surgery in another study using

SD rats [37]. Others have noted that 8 weeks of abdominal

aortic constriction caused 15% mortality, increased systolic

pressure, and did not alter LV dP/dtmax relative to control

[50, 51]. Declines in FS, marked myocardial fibrosis, and

pulmonary edema have been demonstrated at 20 weeks

post-surgery in 44% of the rats surviving abdominal aortic

constriction; however, survival rate was not reported [52].

At 24 weeks post-surgery, investigators in another study

observed significantly increased LVEDP and depressed

systolic and diastolic performance with no significant

pulmonary edema, but survival data were not reported [53].

Others observed that 28 weeks of abdominal aortic banding

failed to induce significant pulmonary congestion or ascites

[37].T
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Pressure overload, resulting from chronically elevated

afterload, causes concentric hypertrophy, with thickening

of the posterior and septal walls through addition of sar-

comeres in parallel [37]. Because 75% of HF cases in the

United States have antecedent hypertension [3], the pres-

sure overload-induced model of aortic constriction simu-

lates the most common natural pathogenesis to HF;

nevertheless, it remains limited by premature mortality, a

6- to 7-month delay for HF onset, difficult surgical pro-

cedures, and complications from invasive surgeries.

Additional surgical models of heart failure in the rat that

do not require thoracotomy and pericardiectomy include

rapid ventricular pacing, aortocaval shunt (sometimes

termed ‘fistula’), arteriovenous fistula, and induction of

mitral valve regurgitation [54]. In contrast to pressure

overload, rat models of volume overload hypertrophy

simulate the cardiac effects of anemia, heart block, atrial or

ventricular septal defects, mitral or aortic valve regurgita-

tion, or other congenital diseases that lead to dramatic

elevations in preload. Volume overload causes eccentric

hypertrophy (myocyte elongation by series replication of

sarcomeres), with LV dilatation [37]. Aortocaval shunt (or

fistula) has been used in rats to induce volume overload. A

syringe needle (often 18-gauge) is used to create a puncture

that links the aorta and vena cava, leading to the death of

roughly 10% of male rats at surgery, 25% by 8 weeks, a

highly variable fraction (13–60%) by 16 weeks, and up to

80% by 21 weeks post-surgery [37, 55–58]. At least two

groups have demonstrated that at 4–8 weeks after shunt

surgery, LVEDP elevates significantly and peaks at

16-24 weeks post-surgery [53, 55]. In contrast, others have

noted peak LVEDP elevations at 3 weeks, with lesser

elevations at 5 and 8 weeks [59]. A handful of studies have

noted pulmonary edema, lethargy, pitted edema, pleural

effusion, and/or ascites in a large portion of rats after

anywhere from 0–32 weeks of shunt surgery [37, 53, 55,

56, 59]. Despite the effective induction of HF in rats via

aortocaval shunt, the variable timing of both HF onset and

subsequent death limits the utility of this model [37, 56].

Arteriovenous fistula is similar to aortacaval shunt, but

instead of a puncture between the vena cava and the aorta,

the fistula is made in the wall between the carotid artery

and jugular vein [54]; however, this application has also

been mostly limited to large animals such as dogs, goats,

and sheep. Rapid ventricular pacing via chronic electrode

stimulation of the LV for 4–6 weeks increases heart rate

to elicit HF by ‘‘cardiac overdrive’’ with minimal pre-

mature mortality [60–63]. Although this model facilitates

the study of the sequential progression of HF over several

weeks, it fails to induce myocardial ischemia and hyper-

trophy, and animals tend to recover from treatment with a

reversal of the induced dilated cardiomyopathy [64, 65].

Moreover, the model has been limited to larger animals

such as dogs, sheep, and rabbits and is thus likely not

suited for rats.

Surgical models bear several advantages, such as dra-

matically impaired cardiac function (particularly for TAC

and coronary ligation) through the simulation or induction

of key stimuli of HF progression (i.e., hypertension-induced

increases in afterload, myocardial infarction–induced

increases in preload). Ultimately, however, surgical models

of HF present several challenges to laboratory research,

including long-term complications from highly invasive

surgeries, difficult surgeries requiring expertise, high pre-

mature mortality, ethical concerns, and variable timing in HF

onset within treatment groups.

Non-Invasive Models of HF in the Rat

Genetic Models

Selectively bred and genetically engineered rodent models

of HF often replicate the natural etiologies of and pro-

gression to HF while avoiding potentially confounding

surgical procedures and toxic treatments. Several geneti-

cally engineered mouse strains have been developed that

closely mimic specific aspects of HF, often through altered

protein expression [66–68]. Among rats, however, geneti-

cally engineered HF models have scarcely been researched

[69, 70], while selectively bred HF-prone rat strains have

been extensively investigated and incorporated into toxi-

cologic and therapeutic HF research. Chief among these are

the spontaneously hypertensive (SH) and spontaneously

hypertensive heart failure (SHHF) rat strains, which mimic

several key aspects of human HF pathogenesis while pre-

senting fewer challenges to research than invasive models.

Derived from the inbreeding of hypertensive Wistar

Kyoto rats, SH rats (SHRs) are predisposed to systemic

hypertension, concentric hypertrophy, and thus afterload-

driven HF. At 11 and 27 weeks of age, unrestrained

unanesthetized male SHRs have a 24-h mean arterial

pressure (MAP) of 135 and 150 mmHg, respectively, in

contrast to 100 and 105 mmHg for the normal WKY at

these two ages [71–73]. At 18–24 months of age, 57% of

male SHRs have been shown to progress from hyperten-

sion-induced compensated hypertrophy to decompensated

HF, with 13% surviving without HF and 30% dying or

euthanized due to non-cardiac reasons (e.g., stroke, tumor,

or debilitation) [74]. Several features common to human

HF emerge during the SHR’s transition to decompensated

HF, including marked increases in myocardial non-cross-

linked collagen, fibronectin mRNA, LV necrosis, LV

fibrosis, and bMHC protein expression, as well as the

complete loss of aMHC [75, 76]. The transition to

decompensation corresponds with tachypnea and shallow
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rapid breathing as well as profoundly decreased EF, heart

rate, and LVESP, and increased LVEDP, end-diastolic and

end-systolic volumes relative to age-matched non-failing

SHRs (Table 2) [74]. Within 1 week of onset of labored

breathing and large drops in echocardiographic measures,

most of these rats have pericardial/pleural effusions, atrial

thrombi, and right ventricular hypertrophy [74, 75]. In one

study, systolic failure was less demonstrable in male SHRs

than diastolic failure. At 20 months of age, these rats

lacked declines in FS or EF despite a doubling of E/A ratio,

27% fibrosis, pleural or pericardial effusions, and thick-

ening of the posterior wall and interventricular septum

relative to 12-month-old SHRs [77].

The SHHF/Mcc-facp strain originates from the seventh

backcross of the normal SHR with ‘‘Koletsky obese’’ rats

(inbred from the hypertensive offspring of a SD/SH cross

[78, 79]). SHHF rats possess characteristics similar to the

SHR, except 100% eventually acquire dilated cardiomy-

opathy and HF preceded by Type II diabetes mellitus and

consequent diabetic nephropathy accentuated in obese and

male rats [79, 80]. The SHHF’s additional pathology is

attributed to a nonsense mutation, fa, which encodes a

premature stop codon in the leptin receptor [80, 81].

‘‘Lean’’ and ‘‘obese’’ SHHF rats differ in disease severity

and progression primarily by their responsiveness to

leptin—a hormone released upon eating that inhibits

appetite, provokes a sense of satiation, stimulates the

sympathetic nervous system, and increases energy

expenditure in a receptor-dependent manner [82]. The

autosomal recessive corpulence trait (cp) manifests as

obesity in rats homozygous for the fa mutation (facp/facp),

while homozygous wild-type (?/?) or heterozygous

(?/facp) SHHFs are lean [81, 83, 84]. Among lean males,

heterozygotes develop congestive HF and die sooner than

the homozygous wild types [83, 85]. Heterozygosity

confers mild hyperleptinemia and insulin resistance, with

marked effects in homozygous mutant (facp/facp) rats [83,

86]. Notably, leptin administration has been shown to

induce eccentric dilatation of the left ventricle [87], while

leptin receptor polymorphisms and circulating leptin

associate with human HF [88]. In contrast to 10- to

12-month-old SHRs with concentric hypertrophy, age-

matched lean male SHHF rats develop eccentric hyper-

trophy and lack ventricular wall thickening [89].

Although leptin stimulates sympathetic nerve activity and

may increase arterial pressure, leptin-induced sympathetic

excitation is absent in the obese phenotype of another rat

strain (Zucker) homozygous for the same mutated leptin

receptor gene [82]. Thus, heart failure in the SHHF is not

entirely a result of hypertension-induced increases in

afterload and may result partly from preload-driven vol-

ume overload. Unanesthetized, unrestrained lean male

SHHF rats have hypertension exceeding the SHR (24-h

MAP: 161 mmHg at 10 weeks and 145 mmHg at

15 weeks) [90, 91], while several studies suggest that

unanesthetized, unrestrained obese male SHHFs have less

severe hypertension (MAP: 119 mmHg at 18–26 weeks,

133 mmHg at 40 weeks, and 127 mmHg at 54 weeks)

[92, 93]. Some studies have reported higher systolic

pressure in the obese relative to the lean; however,

pressure measurements in these studies use anesthesia or

restraint (e.g., tail-cuff), which may differentially affect

the two phenotypes [81, 83, 85].

SHHFs express LV hypertrophy at 3 months regardless

of gender or obesity. Decompensated HF with gross

symptoms occurs at 10–13 months in obese males [85, 92,

94], 15 months in obese females [95], 18 months in lean

males [96–100], and 24 months in lean females [85, 98,

101, 102]. The overt signs of decompensated HF found in

the SHHF often include subcutaneous edema, tachypnea

and shallow rapid breathing, cold tails, cyanosis, lethargy,

piloerection, pulmonary edema, pleural effusion, ascites,

cardiomegaly, left and right atrial dilatation, and hepato-

megaly [85]. Death typically occurs at 18 months in obese

females [103] and 19 months in lean males [86, 96] as HF

severity increases with decompensation. Although HF

onset is more rapid in obese SHHFs, lean males compare

well to the hypertrophic qualities of obese SHHFs and also

compare closely to human HF pathogenesis [81]. In 18- to

20-month-old lean male SHHFs, a reduction in aMHC and

b-adrenergic receptor (bAR) density as well as increases in

ventilatory rate ([200 breaths/min), bMHC, circulating

TNF-a, IL-6, natriuretic peptides, and leptin suggests a

profound comparability between HF pathogenesis in SHHF

rats and humans [86, 96, 97, 104]. Furthermore, excep-

tional homology has been demonstrated between lean and

obese male SHHFs in increases in neurohormonal, apop-

totic, fibrotic, inflammatory, metabolic, hypertrophic, and

structural gene expression at 10 months relative to

4 months of age [81]. Thus, the pathogenesis of HF in lean

and obese males is strikingly similar with exception to rate

of progression.

Among SHHFs, the lean male has been the most thor-

oughly studied for cardiac dysfunction. Yet, timing of

systolic and diastolic dysfunction has been inconsistent

between several of these studies (Table 2) [85, 96, 97]. The

variability in observations may stem from different anes-

thetics used during physiologic measurements; however,

similar variability has not been observed in studies using

other models and different anesthetics. Female SHHFs

differ from males in timing to progression and gross signs

of HF. A few studies have noted the absence of several

common HF traits in 24-month-old lean female SHHFs

[98, 101] despite marked declines in LV systolic and dia-

stolic performance and significant cardiomegaly [98, 102]

(Table 2).
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In addition to the SHR and SHHF, normotensive male

Fischer 344 (F344) rats at 25-29 months acquire the

symptoms, myocardial histopathology, and cardiac dys-

function inherent to HF [105, 106]. Notably, investigators

observed 50% mortality among F344 rats between 24 and

26 months of age [105]. The F344 strain is best suited as a

model of aging-related HF independent of hypertension.

Given that 75% of HF cases have antecedent hypertension

[3], the etiology of HF in the normotensive F344 strain may

render it less pathophysiologically relevant to the human

condition than the SH and SHHF strains. Furthermore, the

F344’s duration to HF onset is highly variable and pro-

longed relative to the SHHF and SH strains. Nevertheless,

with improved health care management of hypertension in

society, age-related HF that is independent of hypertension

may increase in prevalence and thus become more relevant.

Additional strains with potential as HF models exist,

including the Zucker diabetic fatty (ZDF) rat, which

acquires diabetes- and obesity-associated decrements in

cardiac function; nevertheless, some common traits of HF,

including hypertension and decreased SERCA2a, are not

seen in this strain [107].

The utility of the SHR and SHHF strains extends beyond

their abilities to mimic the etiology of cardiac failure in

humans. These strains have minimal premature mortality

and, along with other strain-based models, lack the major

side effects common to surgical, pharmacologic, or dietary

HF models. Moreover, the steady progression to HF in all

three aforementioned strains (1–2.25 years in SHR, SHHF,

and F344 rats) enables long-term therapeutic treatments

or chronic toxic exposures that are more comparable to

human conditions. Yet, in contrast with many other mod-

els, the relatively slow progression to HF and often variable

time to HF onset in these strains demands extensive time,

husbandry, and resources. Finally, the incorporation of

other methods of inducing hypertrophy or HF in the SH,

SHHF, and F344 strains may expedite their otherwise slow

progression to HF at the risk of compromising their path-

ophysiologic relevance.

Pharmacological Models

Models of pharmacologically induced cardiomyopathy and

ensuing HF often involve simpler, easier, and less trau-

matic methods than surgically invasive models of HF.

Doxorubicin (DOX) and isoproterenol (ISO; either acute or

subchronic) have been shown to significantly impair car-

diac function in rats to the point of HF. Other agents with

promise for yielding models of HF through chronic or

subchronic administration include propylthiouracil, angio-

tensin II, and TNF-a.

Doxorubicin. Doxorubicin (DOX; adriamycin) is an

anthracycline antibiotic and antineoplastic agent used in

cancer chemotherapy that has been shown to induce free

radical formation and extensive lipid peroxidation leading

to myocardial inflammation, morphological disorganiza-

tion of myofibrils, necrosis, apoptosis, interstitial fibrosis,

and cardiac dilatation and failure that is both progressive

and irreversible [54, 64, 108–115]. Assisted by the enzyme

NADPH cytochrome P450 reductase, the redox cycling of

the quinone structure of DOX and semiquinone generates

electrons that interact with molecular oxygen to produce

reactive oxygen species (ROS) [110, 116]. Free radicals are

also generated non-enzymatically when DOX reacts with

either iron or nitric oxide [110]. Although DOX elicits

cardiotoxicity primarily through oxidative stress, especially

in mitochondria [111], it causes additional cardiac injury

by inducing proteolysis through activation of matrix

metalloproteinases [110] as well as hyperactivation of the

ubiquitin–proteasome system (UPS) [117, 118]. Despite

that UPS hyperactivation and oxidative stress promote

hypertrophy, evidence that DOX elicits hypertrophy

remains scarce [119]. Instead, DNA lesions in cardio-

myocytes, cardiomyocyte apoptosis, intracellular Ca2?

overload via SERCA2a dysfunction, depletion of endoge-

nous antioxidants, and disruption of mitochondrial struc-

ture and bioenergetic metabolism are all believed to

contribute to DOX-induced HF [110, 115, 120].

The severity of DOX-induced HF in both patients and

experimental animals is highly dependent upon the cumu-

lative dose [110]. In humans, the likelihood of developing

HF with bolus intravenous DOX delivered once every

3 weeks was 3% after a cumulative dose of 430 mg/m2,

7% after 575 mg/m2, and 21% after 728 mg/m2, equivalent

to 12, 16, and 20.25 mg/kg cumulative doses in the rat,

respectively [121, 122]. In experimental models, serial

daily or weekly doses of DOX may elicit HF in a more

gradual and survivable manner despite similar decrements

in systolic function relative to a single bolus dose [123].

Liu and colleagues administered 3.3 mg/kg DOX per week

intravenously to SD rats for 4 weeks to cause major

declines in LV systolic and diastolic performance and 14%

mortality at completion of the regimen (Table 3) [113].

Among the DOX-treated rats that survived the 4-wk regi-

men, half of them died over the following 4 weeks.

Slightly lower doses may have dramatically improved

survival; no deaths were observed following this same

regimen at a dose of 3 mg/kg/week DOX, i.v. [124].

Intraperitoneal injection of 2.5 mg/kg DOX six times over

2 weeks in Wistar rats resulted in 100% survival 2 weeks

afterward accompanied by significant declines in FS,

dP/dtmax, and LV end-systolic pressure as well as increases

in LVEDP and LV end-diastolic and end-systolic diameters

relative to the control group [125]. At 3 weeks after

completion of this same regimen in 8-week-old SD rats,

investigators noted 25% mortality, marked accumulation of
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ascites, and marked declines in FS and heart weight [126].

A 5-week tail vein administration of 3 mg/kg/week DOX

in SD rats achieved similar reductions in FS as well as

significant ventricular wall thinning 4 weeks after dosing,

but survival was not reported [127]. Therefore, at specific

doses, DOX can elicit systolic failure more effectively than

the aforementioned surgical procedures while minimizing

premature mortality.

Despite evidence that serial administration can be less

lethal yet achieve substantially greater decrements in FS

than a bolus injection at an equal cumulative dose, at least

one study has provided contradictory evidence. Serial

administration of DOX (1 mg/kg DOX for 10 days) caused

greater mortality than a 10 mg/kg bolus injection (40 vs.

20%) and took longer (32 vs. 14 days post-treatment) to

reduce FS by 15% [123]. Serial injection impaired FS the

greatest at 67 days post-treatment (-25%), but this effect

resulted in 70% mortality. Ultimately, the utility of bolus

vs. serial DOX administration, as well as other HF models,

depends on the goals of the study (e.g., short vs. long

monitoring period, level of systolic dysfunction, and sur-

vival rate).

The pathophysiologic relevance of the DOX model to

human HF is limited because it results in HF primarily

through eliciting systolic dysfunction and subsequent pre-

load-driven volume overload while only mildly impairing

diastolic function. Furthermore, the frequent occurrence of

ascites and the scarcity of pulmonary edema in the DOX-

HF model indicate that, relative to the left ventricle, the

right ventricle is disproportionately impaired. Finally,

DOX can have major gastrointestinal, renal, hepatic, and

bone marrow toxicities that may be unsuitable for a model

of heart failure [64, 112, 128].

Isoproterenol (also, isoprenaline or isuprel). Isoprote-

renol is a synthetic catecholamine and non-selective bAR

agonist formerly prescribed as a bronchodilator for asth-

matics as well as a treatment for cardiac arrest, heart block,

and bronchospasm. By stimulating the b1AR, ISO increa-

ses chronotropy (heart rate), inotropy (contractile force),

dromotropy (electrical conduction rate of the atrio-ven-

tricular node), and lusitropy (cardiac relaxation), while it

causes vasodilation and bronchodilation through b2AR

stimulation [129]. As such, ISO bears competing short-

term effects on cardiac afterload (increasing it as a positive

inotrope but decreasing it as a vasodilator and positive

lusitrope), while it decreases preload via tachycardia-

impaired diastole and reduced central venous pressure—

the latter a natural adaptation to increased contractility.

As evidenced by the profound success of beta-blockers

in HF treatment, bAR stimulation by catecholamines is

crucial to HF pathogenesis [130]. Regulating cardiac

function, myocyte growth, and apoptosis, bARs are seven

transmembrane-spanning receptors coupled intracellularly

with guanine-nucleotide-binding regulatory proteins (G

proteins). The heart has three bAR subtypes (b1-3), among

which b1 and b2ARs have the most prominent effects on

cardiac function. The binding of the endogenous cate-

cholamines norepinephrine and epinephrine to bARs

enables G proteins to stimulate adenylyl cyclase, which

opens L-type Ca2? channels, enabling Ca2? to bind to

ryanodine receptors, thereby triggering the release of stored

Ca2? from the sarcoplasmic reticulum into the contractile

apparatus to provoke cardiomyocyte contraction while

increasing the synthesis of cyclic AMP, PKA, and—with

b2AR-activation only—MAPK [55, 130]. The consequent

elevation in cyclic AMP increases transport of myocardial

Ca2? into the cytosol—enhancing myocardial filament

contractility—and activates sarcoplasmic reticulum cal-

cium-dependent ATPases (SERCA), thereby increasing

Ca2? efflux and myofilament relaxation. In addition to

enhancing contractility, bAR stimulation by catechola-

mines expedites chronotropic depolarization of the sinoa-

trial node, thereby increasing heart rate, cardiac output, and

workload [9, 131]. In this manner, long-term elevations in

catecholamines can deplete high-energy phosphate stores

as well as SERCA [132]. Elevated myocardial Ca2? may

also increase arrhythmias and risk for sudden cardiac death

[9, 133]. Likewise, increased plasma catecholamine levels

occur in response to overload hypertrophy [132] and

myocardial infarction [134] while correlating with the

likelihood of sudden death in HF patients [135] and pro-

moting HF pathogenesis. Acute catecholamine elevations

are the putative cause of Takotsubo stress cardiomyopathy,

characterized by cyclic AMP-mediated Ca2? overload,

decreased myocyte viability, contraction band necrosis,

angina, and gross myocardial ballooning [136, 137].

Meanwhile, chronic b1AR stimulation (from elevated

norepinephrine) advances cardiac remodeling via cardio-

myocyte hypertrophy, necrosis, apoptosis, and fibrosis, and

further impairs cardiac performance through depletion of

bARs—especially b1ARs—attendant to increased bAR

kinases [130, 138–141].

ISO has been used extensively to induce toxic cardio-

myopathy and HF. Although ISO administration increases

contractility through Ca2? accumulation in myocytes, Ca2?

accumulation inevitably reduces the heart’s ability to relax

and stretch, thereby inhibiting ventricular filling and stroke

volume and increasing preload [133]. ISO has been shown

in several studies to cause tachycardia, hypotension, Ca2?

overload, free radical generation, coronary vasospasm,

high-energy phosphate exhaustion, and impaired myocar-

dial glucose metabolization in the short term, as well as

decreased SERCA expression, ryanodine receptor PKA

hyperphosphorylation, and bAR down-regulation and

uncoupling in the long term that lead to a progression from

myocardial hypoxia to ischemia, inflammation, necrosis,
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apoptosis, and fibrosis accompanied by HF-like symptoms

[90, 134, 142–149]. Ultimately, these alterations in the

myocardium decrease contractility and heart rate while

increasing water and Na? retention, thereby decreasing

afterload while increasing preload. In contrast to the DOX-

HF model, the predominance of pulmonary edema and

scarcity of ascites suggest that ISO-induced decrements in

cardiac function occur primarily in the left ventricle.

Traditionally, the model of ISO-induced HF has incor-

porated acute administration (i.e. subcutaneous or intra-

peritoneal injections) of high bolus doses to achieve

cardiac necrosis and associated declines in cardiac func-

tion. Zhang and colleagues subcutaneously injected male

SD rats twice with 340 mg/kg ISO. Four months later,

heart failure was strongly indicated by pulmonary con-

gestion, edema, anorexia, and depressed dP/dtmax [150].

This dose also significantly reduced responsiveness of the

L-type Ca2? receptor, for which declines in function and

expression are known to impair contractility in human HF

[151]. Unfortunately, high mortality (*50% after 48 h)

[150] and hepatic and renal necrosis (at ISO

doses C 200 mg/kg) [152] may limit the utility of this

model of HF.

Lower ISO doses can yield more stable models of HF

while more closely approximating catecholamine eleva-

tions common to HF pathogenesis. For example, a single

150 mg/kg sc injection in male SD rats impaired systolic

function at 1 week post-injection [153], while in female SD

rats, it led to 25% mortality and caused significant LV

diastolic dysfunction and hypertrophy after 2 weeks that

persisted after 4 months [152, 154]. Other studies with

similar dose regimens show variations in survival, cardio-

toxicity, symptomatology, and strain dependence (e.g., pre-

existing hypertension appears to enhance the cardiotoxicity

of ISO administration). Importantly, chronic and sub-

chronic administration of very low doses of ISO may mimic

natural HF pathogenesis more accurately than large acute

doses because they can elicit necrosis and fibrotic cardio-

myopathy through free radical-induced extracellular matrix

biosynthesis [150, 155–157]. SD rats injected with

0.04–0.1 mg/kg/day ISO for 3–7 months had very limited

sudden cardiac death and several strong similarities to a

subgroup of aortic banded rats showing overt signs of HF:

impaired myocardial collagen cross-linking, LV chamber

dilatation, an equivalent reduction in FS, and impaired LV

developed pressure–volume relations [52] as well as

marked apoptosis and b1 and b2AR inotropic downregula-

tion [158]. Moreover, long-term exposure of cardiomyo-

cytes to beta agonists leads to functional ‘‘uncoupling’’ of

bARs and adenylate cyclase [159], characteristic of human

HF. Nevertheless, the stress inflicted on rats by daily han-

dling and injections over several weeks and the protracted

length of such regimens limit this model’s utility.

Alternatively, osmotic pumps provide a convenient

means to circumvent these issues while maintaining levels

more comparable to endogenous neurohormones. A host of

cardiac alterations consistent with the pathogenesis of heart

failure have been revealed following continuous ISO

infusion with subcutaneously implanted osmotic pumps

[76, 90, 132, 139, 142, 144, 146, 157, 160–167]. Infusion

of 2.4 mg/kg/day ISO in Wistar rats caused less than 5%

mortality while it altered gene expression in a strikingly

similar magnitude and time-course as aortic constriction

through day 8 of infusion; however, most of these changes

reverted after 26 days of infusion [132]. Although the

myocardial challenge presented by long-term ISO infusion

may mimic the neurohormonal pathogenesis of HF and

enables substantial reductions in premature mortality rel-

ative to other HF models, only a small handful of rat

studies have examined the effects of long-term ISO infu-

sion on in vivo cardiac function [76, 164, 167]. ISO infu-

sion over 3–7 days in Wistar rats caused significant

declines in LV dP/dtmax [164], CO [167], and SV [167], but

did not change LVESP [164, 167] or EF [167] (Table 3)—

consistent with a decrease in contractility and a hypertro-

phy-induced decrease in chamber volume. Nevertheless,

even several hours after treatment cessation, temporary

myocardial adaptations to ISO (e.g., hypertrophy) may

transiently mask underlying cardiac pathophysiology. For

instance, LVESP remained unchanged and LV volume was

decreased at 2 h after a 7-day infusion in one of these

models, but it decreased 2 days post-infusion when LV

volume rebounded to normal [167]. Prolonged infusion

may bear more dramatic and persistent effects; 6-16 weeks

of ISO significantly reduced EF and FS and markedly

increased LV systolic diameter, indicative of systolic fail-

ure accompanied by cardiac hypertrophy [167]. Infusion of

0.02 mg/kg/day ISO for 5 months caused no fatalities and

induced a phenotype in 12-month-old SH rats that com-

pared closely to the LV dilatation, fibrosis, and systolic and

diastolic dysfunction seen in untreated 22-month-old SH

rats in decompensated HF [76]. While these extended low-

dose periods may appear prohibitively long to some

researchers, the induction of HF with pathophysiologically

relevant levels of circulating catecholamines may render a

model with exceptional comparability to human HF path-

ogenesis and low premature mortality.

Angiotensin II (ANG II). In both human HF and animal

models of HF, pro-hypertrophic factors typically induce a

progression from hypertrophy to dilated cardiomyopathy

and subsequent HF. By prolonging stimuli of concentric

cardiac hypertrophy, investigators may render new models

of HF if they can induce sufficient fibrosis, apoptosis, and/

or autophagy in the myocardium. ANG II infusion is one

well-established induction method for cardiac hypertrophy

that bears promise for yielding a new HF model. A major
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component of the renin-aldosterone-angiotensin system

(RAAS), ANG II originates from angiotensin I via its

converting enzyme (ACE). ANG II causes vasoconstriction

and sodium retention (leading to afterload-dependent

pressure overload and preloaded volume overload,

respectively) as well as myocardial inflammation, oxidative

stress, and fibrosis [168]. As evidenced by the benefits of

ACE inhibitors in humans with HF and of angiotensin

receptor blockade in a hypertensive rat HF model, ANG II

is known to play a key pathogenic role in HF [169]. Several

investigators have administered exogenous ANG II to

rodents by osmotic pump to induce hypertrophic cardio-

myopathy, but very few have examined the effects of long-

term ANG II administration on cardiac function [67, 161,

168, 170–172]. Freund and colleagues elicited significant

cardiac hypertrophy in mice via infusion of ANG II

(2.0 mg/kg/day for 14 days) [171]. Despite perivascular

infiltration of inflammatory cells and increased LV wall

thickness, echocardiographic and histological analysis

indicated no cardiac dilatation, myocyte apoptosis, or

declines in cardiac function [171]. Notably, this regimen

risks vascular complications; a lower infusion rate of ANG

II (1.44 mg/kg/day) for 4 weeks has been shown to induce

aortic aneurysm in 63% and aortic rupture in 25% of

apolipoprotein E-deficient mice [173]. Infusion of lower

concentrations (0.29 mg/kg/day) in mice for 8 weeks did

not significantly change cardiac function or dimension

despite causing cardiac fibrosis [170]. While work on

models of Ang II-induced HF has thus far yielded limited

results, a modified regimen that focuses on prolonged Ang

II exposure at higher concentrations may elicit a more

pronounced fibrosis and eventually lead to dilated cardio-

myopathy and/or HF symptomatology.

Propylthiouracil (PTU). Although hypertrophic models

such as that achieved by ANG II may hold promise for

future models of HF, cardiac dysfunction and HF can occur

independent of hypertrophy in less common cases [174].

Hypothyroidism is a common condition affecting 10% of

women and 6% of men[65 that in some cases can lead to

dilated cardiomyopathy and HF without hypertrophy [175].

Hypothyroidism occurs when the thyroid fails to secrete

sufficient levels of the thyroid hormones thyroxine (T4)

and/or triiodothyronine (T3), and often manifests clinically

as developmental retardation in children (cretinism) and

depressed mental and physical activity in adults (myx-

edema) [176]. Experimental induction of hypothyroidism

by thyroidectomy has been shown to decrease cardiac

output, blood volume, LVESP, heart rate, aortic pressure,

and LV dP/dtmin—a measure of cardiac relaxation [177].

Hypothyroidism induces cardiac unloading (decreasing

both afterload and preload), which if sustained can lead to

cardiac atrophy and dilatation [178]. PTU is an antithyroid

medication prescribed for hyperthyroidism that blocks T3

synthesis and has been shown to induce hypothyroidism in

rats with similar effects on cardiac output as thyroidectomy

[178–180]. Like the HF seen in other models, PTU treat-

ment represses SERCA and the more efficient alpha iso-

form of myosin heavy chain (MHC) while dramatically

increasing expression of bMHC in the rat heart [68, 75,

181]. Tang and associates demonstrated in female SD rats

that 0.025% PTU in drinking water for 6 weeks and 1 year

was associated with dramatic loss of myocardial arterioles,

major declines in FS, EF, LVESP, and body weight, but no

changes in LVEDP (Table 3) [178]. Another study exam-

ined the effects of this same dose of PTU for 6 months in

female SHHFs to determine if hypothyroidism could

accelerate the progression to heart disease in the context of

hypertensive hypertrophy [180]. The treatment elicited

traits similar to those seen in SD rats, including cardiac

dilatation, unchanged LVEDP, and decreased FS, EF, and

LV dP/dtmax; however, in contrast to SD rats, myocardial

arteriolar number was not affected by PTU in SHHF rats.

Ultimately, PTU hypothyroidism parallels HF pathogenesis

by impairing myocardial blood flow while inducing car-

diomyocyte atrophy and cardiac dilatation with series

addition of sarcomeres, but it differs from common HF

etiologies by failing to cause hypertrophy and diastolic

dysfunction [178].

Tumor Necrosis Factor-a (TNF-a) is elevated in HF

and believed to play a major role in HF pathogenesis and

mortality [10, 182]. By impairing contractility, decreasing

stroke volume, and causing LV dilatation [183], one

would predict that TNF-a promotes increased preload and

a progression to HF consistent with volume overload.

Although evidence of TNF-a-induced HF is scarce in rats,

studies of TNF-a overexpression in mice provide further

evidence of the promise for a rat model of TNF-a-induced

HF. Specifically, in genetically modified mice over-

expressing cardiac TNF-a, declines in FS have been

observed along with increased cardiomyocyte apoptosis,

mislocalization of desmin and intercalated disc proteins,

and desmin aggregation [184]. TNF-a administration has

been shown to impair rat cardiomyocyte bAR respon-

siveness to catecholamines [185] while causing coronary

vasoconstriction in canine hearts and severe intracellular

and mitochondrial oxidative stress in the rat myocardium,

significantly impairing systolic and diastolic function by

hindering energy utilization for excitation–contraction

coupling [186] (Table 3). In SD rats, subchronic infusion

of 3.6 mg/kg/day of TNF-a (sufficient to maintain levels

comparable to HF patients) for 15 days caused fibrillar

collagen deterioration, cardiomyocyte hypertrophy, car-

diac dilatation, and impaired FS without contraction band

necrosis or fibrosis) [187]. Further characterization of this

HF model may enhance its utility in therapeutic and

toxicological studies.
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Dietary Salt Models

Salt Alone. Consumption of dietary salt stimulates water

retention and, potentially, hypertension, increasing both

afterload and preload. A high salt diet increases sympa-

thetic activity and circulating norepinephrine in humans

with salt-sensitive hypertension while having the opposite

effect on normal individuals [188]. Similarly, administra-

tion of 1% NaCl in drinking water for 4 weeks substan-

tially increases mean arterial pressure, noradrenaline (in

urine, plasma, and the myocardium), adrenaline, sympa-

thetic activity, and vasopressin in the SHR but not the

WKY rat [189–191]. Studies have indicated that the

administration of a high salt diet (salt loading) is a feasible

and simple means of inducing heart failure in SH [192,

193], SHHF [194], and Dahl salt-sensitive (DS) rats [195].

The combination of increased afterload from salt-sensitive

hypertension and increased preload from hypervolemia is

critical to the development of HF in salt-fed rats. An 8%

NaCl diet fed to 2-month-old SH and WKY rats for

8 weeks elicits marked ventricular fibrosis [192, 193, 196]

and hypervolemia [196]. In one such study, 13% fatality

occurred in SHRs, as well as signs of congestive HF

(labored breathing and lethargy with decreased FS and a

59% increase in right ventricular mass) among a third of

the surviving SHRs [192]. Unexpectedly, cardiac output

and SV declined only in the non-congestive SHRs, while

congestive SHRs had cardiac dilatation and systolic

hypotension. In a separate study, this regimen affected

neither contractile function nor LVEDP, but it impaired the

rate of diastolic relaxation for both ventricles and caused

premature mortality in SHRs with lesser effects in WKY

rats [193].

The effects of dietary salt on the SHHF strain are not as

well characterized. Mediated by leptin resistance and

increased renal endothelin production, salt sensitivity has

been confirmed in obese—but not lean—SHHF males by

the dramatic exacerbation of hypertension and cardiac

hypertrophy from a 7-day 8% NaCl diet [83]. Notably, one

study demonstrated that salt enhances cardiac hypertrophy

in obese SHHFs independent of hypertension and endo-

thelin, potentially by decreasing nitric oxide production

[197]. Despite the obese SHHF’s salt sensitivity, reports of

salt-accelerated HF in the SHHF strain are scarce and

limited to the lean phenotype [194]. Although no cardiac

function data were provided, one laboratory has reported

eliciting HF in 6-week-old lean male SHHF rats fed an 8%

NaCl diet for 5 months. Similar to aortic banding of SHHF

rats, salt significantly increased pro-apoptotic signaling in

SHHF cardiomyocytes [194].

Salt loading in the DS strain has been shown to rapidly

elicit HF with a swift progression from decompensation

to death (with 8% salt diet, death \ 2 weeks after

decompensation) [195, 198]. Collectively, two studies have

shown that 6-week-old DS rats fed an 8% NaCl diet

develop cardiac hypertrophy after 5–6 weeks, transition to

systolic failure on the 9th week, have full-blown dilatation

and decompensated HF with 60-70% mortality by the 11th

week, and have 100% mortality by the 13th week of salt

diet (Table 4) [198, 199]. Unfortunately, the effects of this

regimen on cardiac function are not entirely consistent. In

another study, the same regimen unexpectedly increased

FS, LV thickness, systolic blood pressure, and molecular

markers of cardiac hypertrophy while causing high fatality

(56%) by the 12th week of salt diet [195]. Thus, the DS and

SH strains are both variable in timing and physiologic

manifestation of salt-induced HF. Survivability may be

improved by either a lower salt dose over a longer period of

time or removal of the elevated salt diet prior to anticipated

decompensation.

Salt with Other Agents. While salt loading often

enhances cardiac fibrosis, acute injections of ISO typically

elicit infarct-like cardiac necrosis. Therefore, the combi-

nation of these two treatments may more readily mimic the

HF pathogenesis found among survivors of myocardial

infarction. To date, only one publication appears to have

addressed the effects of concomitant chronic salt load-

ing and ISO treatment. Treatment with salt (1% NaCl

in drinking water for 2 weeks) did not exacerbate

ISO-induced LV hypertrophy in male Wistar rats [166];

nevertheless, data on cardiac function after ISO salt

co-treatment are scarce. Other methods may enhance the

pathologic effects of salt while simulating the human diet.

Co-treatment of SHRs with 1% NaCl and 5% sucrose in

water induced hypertension, tachycardia, renal excretion of

noradrenaline, and responsiveness to pressor substances

exceeding either treatment alone [190]; however, the

effects of this regimen on cardiac pathology were not

examined. Overall, the potential of such combination

treatments to induce HF remains largely unexplored.

Conversely, the co-treatment of rats with salt and deoxy-

corticosterone acetate (DOCA) is an emerging model of

HF. DOCA increases salt retention and thus enables salt-

induced hypertension in non-salt-sensitive strains. The

combination of DOCA with salt after surgical unilateral

nephrectomy has been shown in rats to significantly impair

LV diastole and, in some cases, LV systole. In one study,

1% NaCl in water combined with bi-weekly 15 mg/kg

DOCA injections for 5 weeks impaired diastolic function

(Table 4) [200]. In SD rats, 1% NaCl drinking water and

100 mg/kg/week DOCA (by subcutaneous injection) for

6 weeks significantly impaired both systolic and diastolic

function [201]. Similar to human HF, these changes were

accompanied by increased plasma markers of cardiac

remodeling, including matrix metalloproteinase-2, tissue

inhibitor of metalloproteinase-1, and osteopontin. Despite
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these findings, there remain only a few rat studies dem-

onstrating reduced cardiac function following DOCA and

salt administration. Moreover, this model typically requires

invasive surgery for the removal of a single kidney. Ulti-

mately, the limited literature covering the effects of

DOCA ? salt on cardiac function, survival, and gross HF

signs limit the reliability of this model for HF studies.

Conclusions: The Application of Rat Models of

Non-invasively Induced HF

As noted, most of the previously described models of

non-invasively induced HF have shown exceptional

comparability to more invasive models. Furthermore, they

often involve routine techniques that require less expertise

while reducing the physical stress and premature mortality

commonly inflicted on animals through surgical tech-

niques. Finally, many of these models have been used to

bolster evidence toward the benefits of therapies and/or

the susceptibilities to toxins in humans with cardiac

failure. For instance, aged SHHF rats and salt-loaded DS

rats have been used to demonstrate that exercise enhances

survival and reduces adverse symptoms in HF [86, 194,

195]. Additionally, the aged SHHF has been used to show

the benefits of inhibition of matrix metalloproteinase and

blockade of the A1 receptor [84, 94]. Meanwhile, the

model of PTU-induced hypothyroidism has been com-

pared with surgical models of HF to demonstrate mech-

anisms of micro-RNA function in cardiac remodeling

[68]. DOX and ISO have each been used to demonstrate

the cardioprotective effects of a number of antioxidants

[124, 125, 147, 202]. The DOX model has also been used

to show improved survival and cardiac function with

administration of a neuregulin-1/erbB-activating agent

[113]. Also, an endothelin receptor antagonist has been

shown capable of reversing ISO-induced HF [203]. Col-

lectively, animal models have enabled deep mechanistic

insight into the multifactorial condition of HF. A majority

of the non-invasive methods described herein enable

faster turnaround of simpler and more efficient HF models

while remaining pathophysiologically relevant to human

HF.
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