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Abstract Exposure to polychlorinated biphenyls (PCBs)

can activate inflammatory responses in vascular endothelial

cells. Activation of peroxisome proliferator-activated

receptors (PPARs) by nutrients or synthetic agonists has

been shown to block pro-inflammatory responses both in

vitro and in vivo. Here we demonstrate that activation of

PPARa by synthetic agonists can reduce 3,304,40-tetra-

chlorobiphenyl (PCB77)-induced endothelial cell

activation. Primary vascular endothelial cells were pre-

treated with the PPARa ligands fenofibrate or WY14643

followed by exposure to PCB77. PPARa activation pro-

tected endothelial cells against PCB77-induced expression

of the pro-inflammatory proteins vascular cell adhesion

molecule-1 (VCAM-1), cycloxygenase-2 (COX-2), and

PCB77-induced expression and activity of the aryl hydro-

carbon receptor (AHR) responsive cytochrome P450 1A1

(CYP1A1). Furthermore, basal AHR expression was

downregulated by fenofibrate and WY14643. We also

investigated the possible interactions between PCBs, and

basal PPAR activity and protein expression. Treatment

with PCB77 significantly reduced basal mRNA expression

of PPARa and the PPAR responsive gene CYP4A1, as well

as PPARa protein expression. Also, PCB77 exposure

caused a significant decrease in basal PPAR-dependent

reporter gene expression in MCF-7 cells. Overall, these

findings suggest that PPARa agonists can reduce PCB77

induction of endothelial cell activation by inhibition of the

AHR pathway, and that coplanar PCB induced pro-

inflammatory effects could be mediated, in part, by inhi-

bition of PPARa expression and function.
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Introduction

There is substantial evidence from epidemiological studies

that cardiovascular diseases are linked to environmental

exposure to halogenated aromatic hydrocarbons (HAHs),

such as dioxins and polychlorinated biphenyls (PCBs). For

example, there was a significant increase in mortality from

cardiovascular diseases among Swedish capacitor manu-

facturing workers exposed to PCBs for at least 5 years [1],

and elevated plasma lipids and atherosclerotic plaques have

been observed among dioxin exposed workers from the

former Czechoslovakia [2]. A higher incidence of cardio-

vascular diseases, specifically chronic ischemic heart

disease and chronic rheumatic heart disease, was detected

in studies on the dioxin-exposed population of Seveso,

Italy, after an industrial accident in 1976 [3, 4]. Further-

more, a recent study reported increased hospitalization

rates for coronary heart disease in populations residing near

areas contaminated with persistent organic pollutants [5].
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Atherosclerotic lesions are thought to be initiated by

vascular endothelial cell activation [6]. Since the endo-

thelium is in immediate contact with the blood, endothelial

cells are particularly susceptible to the effect of pro-

inflammatory agents, such as cytokines and environmental

contaminants present in the bloodstream [7]. We have

previously reported that coplanar PCBs such as PCB77 can

activate the aryl hydrocarbon receptor (AHR), the pro-

inflammatory transcription factor nuclear factor kappa B

(NF-jB), increase oxidative stress, and induce expression

of adhesion molecules and cytokines such as vascular cell

adhesion molecule-1 (VCAM-1) and interleukin-6 (IL-6) in

vascular endothelial cells [8, 9]. Increased expression of

adhesion molecules and cytokines play a critical role in

endothelial cell activation and vascular disease [10, 11].

Furthermore, cell culture studies using U937 macrophages

have shown that exposure to dioxin, can increase the

expression of matrix degrading metalloproteinases, cyclo-

oxygenase-2 (COX-2), and interleukin 1b, and promote

foam cell formation [12]. The expression of adhesion

molecules and cytokines further enhances the inflammation

by recruiting monocytes, and facilitating their binding to

and migration through the endothelium. This loss of the

endothelial barrier function can increase the accumulation

of foam cells in the subendothelial space, subsequently

leading to the formation of fatty streaks and advanced

atherosclerosis [7, 13]. Studies with both in vivo and in

vitro models have shown that many of the pro-inflamma-

tory effects induced by coplanar PCBs are dependent on

AHR function [14, 15]. In contrast to dioxin or dioxin-like

compound-induced toxicity through abnormal or prolonged

AHR activation [16, 17], it has been proposed that inter-

vention using nutritional or pharmaceutical AHR inhibitors

could potentially reduce toxicity caused by xenobiotic

AHR ligands [18].

The peroxisome proliferator-activated receptors

(PPARs) are ligand-activated transcription factors that

form part of the nuclear receptor superfamily [19]. There

are three genes that belong to the PPAR family: PPARa,

PPARc, and PPARb/d. Upon activation, PPARs control

gene expression by forming a heterodimer with the reti-

noid · receptor that can recognize specific DNA sequences

known as PPAR response elements (PPREs) [20]. PPARa
expression is localized in tissues with a high metabolic rate

(e.g., liver, kidney, and skeletal muscle), and in various cell

types in the vascular wall such as smooth muscle cells,

endothelial cells, and monocytes/macrophages [21].

Nutritional and pharmaceutical PPARa agonists have been

shown to be protective against atherosclerosis by down-

regulating underlying pro-inflammatory signaling

pathways [22, 23]. PPARa has been shown to negatively

interfere with NF-jB, and activator protein-1 (AP-1) sig-

naling pathways [24], and can therefore prevent the

induction of inflammatory genes such as adhesion mole-

cules and cytokines controlled by these transcription

factors. Indeed, clinical and experimental evidence sug-

gests that PPARa activation decreases the incidence of

cardiovascular diseases [21, 23].

The objective of the current study was to determine

interactions between the PPARa and AHR pathways in the

vascular endothelium. We hypothesized that PPARa ago-

nists can block PCB77 activation of pro-inflammatory

responses in endothelial cells and that PCBs could alter

basal PPARa function. Our results suggest that PPARa can

interfere with PCB77 activation of the AHR pathway, and

that PCBs can reduce function and expression of PPARa.

Since PPARa plays a critical role in inflammation, the

negative PCB effects on PPARa expression and function

may increase susceptibility to other kinds of pro-inflam-

matory stimuli in exposed individuals.

Materials and Methods

Cell Culture and Experimental Media

Endothelial cells were isolated from porcine pulmonary

arteries, as described earlier [25]. Arteries obtained during

routine slaughter were donated from the College of

Agriculture, University of Kentucky. Endothelial cells

from passages 5–10 were used in the current experiments.

MCF-7 cells, stably transfected with a luciferase gene

driven by a triple repeat of the PPAR response element

(PPRE), were utilized for selected experiments. Cells

were subcultured in medium 199 (endothelial cells) and

DMEM (MCF-7 cells) containing 10% (v/v) fetal bovine

serum (FBS, HyClone Laboratories, Logan, UT, USA)

using standard techniques.

The experimental media contained 1% (v/v) FBS. PCB

77 (0.001–3.4 lM) and PPARa agonists (10–20 lM) were

added from stock solutions prepared in dimethyl sulfoxide

(DMSO; Sigma, St. Louis, MO, USA). The PPARa ago-

nists’ fenofibrate and WY14643 were purchased from

Sigma (St. Louis, MO, USA) and Cayman Chemical (Ann

Arbor, MI, USA), respectively. These two different ago-

nists were used to verify that the observed effects were

PPARa specific. PCB77 was kindly provided by Dr. Larry

W. Robertson, University of Iowa. PCB77 was used at a

concentration, which was previously shown to promote

endothelial cell activation, and is based on previously

reported serum concentrations occurring after acute expo-

sure [8, 9, 26]. All treatment groups contained an equal

amount of DMSO. The final DMSO concentration in the

media never exceeded 0.05% (v/v) in all treatment groups.

Cells were treated with PPARa agonists and with PCBs for

6–18 h.
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CYP1A1 Activity: Ethoxyresorufin-o-Deethylase

(EROD)

Cellular cytochrome P450 1A1 (CYP1A1) activity or eth-

oxyresorufin-o-deethylase (EROD) activity was measured

in 48 well plates (Costar, Corning Incorporated, NY, USA)

using 7-ethoxyresorufin (Sigma, St. Louis, MO, USA) as a

CYP1A1 substrate, as described previously [14, 27].

Briefly, cells were rinsed with phosphate buffered serum

(PBS; 37�C) followed by the addition of 7-ethoxyresorufin

(2 lM final concentration). The reaction was measured

using a Cytofluor 4000 (PE Biosystems, Foster City, CA,

USA) containing excitation and emission filters for 530 and

590 nm, respectively.

Measurement of VCAM-1, COX-2, CYP1A1, AHR,

b-actin, and PPARa protein expression

Total cellular protein was extracted, as described previ-

ously [8]. Cell monolayers were scraped and washed in

cold PBS, pelleted, and incubated in 110 ll of lysis buffer

containing 20 mM Tris, 150 mM NaCl, 1 mM EDTA,

0.5 mM dithiothreitol, 0.5 mM phenylmethanesulfonyl

fluoride (PMSF), 1 lg/ml leupeptin, 1 lg/ml pepstatin,

0.1% nonidet P-40, and 0.5% Triton X-100. Protein

extracts were electrophoresed on 12% SDS–polyacryl-

amide gels transferred to nitrocellulose membranes.

Proteins were probed with commercial rabbit and goat

antibodies for VCAM-1, COX-2, CYP1A1, AHR (goat

polyclonal IgG isotype, Santa Cruz Biotechnology, Santa

Cruz, CA, USA), PPARa (rabbit polyclonal IgG isotype,

Cayman Chemical, Ann Arbor, MI, USA), and b-actin

(rabbit polyclonal IgG, Sigma, St. Louis, MO, USA). b-

actin was used as a loading control for normalizing

expression of proteins of interest. Antibodies were diluted

1:1,000 or 1:3,000 in blocking buffer. Blots were devel-

oped with an Image Station 2000R (KODAK Molecular

Imaging Systems, New Haven, CT, USA) using ECL (GE

Healthcare, Piscataway, NJ, USA) for chemiluminescent

detection.

PPARa and CYP4A1 mRNA Expression Real Time

Polymerase Chain Reaction (PCR)

RNA was extracted using TRIzol reagent (Invitrogen,

Carlsbad, CA, USA) according to the manufacturer’s

directions. Specific primers for porcine CYP4A1, PPARa,

and b-actin mRNAs were designed using Primer Express

3.0 software (Applied Biosystems, Foster City, CA, USA).

The following primers were employed; CYP4A1 forward:

50 GGA ATC ATC CTC TCG CTC TTCA 30, reverse: 50

GCA GAA CCC GGT GCA AAC 30, PPARa forward: 50

TCG CCA TGC TGT CCT CTG T 30, reverse: 50 AAG

GGT TTC CTC AGG CTC TTG 30, b-actin forward: 50

TCA TCA CCA TCG GCA ACG 30, reverse: 50 TTC CTG

ATG TCC ACG TCG 30. Real time PCR was conducted

with the 7300 Real Time PCR System (Applied Biosys-

tems) and using Sybr Green (Applied Biosystems) to

measure gene expression according to manufacturer

instructions. The CYP4A1 and PPARa expression data

obtained for individual samples were normalized to the

corresponding b-actin expression.

PPAR Reporter Gene Studies

Since primary endothelial cells are difficult to transfect

with high efficiency, a well-established model, previously

used to study PPAR function, was used to study PPAR-

dependent reporter gene expression [28]. The human breast

cancer epithelial cell line MCF-7 was transfected with

pGL3 vector (Promega, Madison, WI, USA) containing a

triple repeat of PPRE in the promoter region driving

luciferase gene expression and a HSV-TK-driven renilla.

Transfected cells were selected using G418. Cells were

plated in 48 well plates and exposed to PCBs 6 h prior to

cell lysis. Cell lysis and reporter gene assay was performed

using the dual reporter assay kit (Promega, Madison, WI,

USA). Values were expressed as a luciferase/renilla ratio.

Statistical Analysis

All experiments were performed in triplicate. Comparisons

between treatments were made by one-way or two-way

ANOVA. Post-hoc comparisons of the means were made

by Tukey tests. Statistical probability of P \ 0.05 was

considered significant. All statistical analyses were per-

formed with Sigmastat (Systat Software, San Jose, CA,

USA).

Results

PPARa Agonists Downregulate the PCB77-Induced

Expression of the Pro-inflammatory Proteins COX-2

and VCAM-1

Previous studies have demonstrated that exposure to

coplanar PCBs and halogenated aromatic hydrocarbons

(HAHs) can lead to increased expression of pro-inflam-

matory genes associated with endothelial activation and

atherosclerosis [8, 12]. To determine if PPARa can block

PCB77-induced expression of the pro-inflammatory
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proteins COX-2 and VCAM-1, porcine endothelial cells

were pretreated with fenofibrate (FF) followed by exposure

to PCB77, and total cellular proteins were extracted, fol-

lowed by immunoblots. PCB77 significantly induced COX-

2 protein expression, but pretreatment with FF significantly

blocked this effect (Fig. 1). To determine if PPARa acti-

vation can interfere with PCB77 induction of VCAM-1,

endothelial cells were pretreated with FF or WY14643

followed by exposure to PCB77. PCB77 significantly

induced VCAM-1 protein expression, which was partially

blocked by pretreatment with FF or WY14643 (Fig. 2a and

b). Basal COX-2 and VCAM-1 protein expression was not

altered by treatment with either PPAR ligand.

PPARa Agonists Block PCB77 Induction of CYP1A1

and Reduce Basal AHR Protein Expression

The majority of the pro-inflammatory effects of coplanar

HAHs and PCBs are associated with activation of the

AHR pathway [15, 29]. To determine if PPARa can alter

AHR pathway activation, protein expression and activity

of the AHR responsive microsomal enzyme cytochrome

P450 1A1 (CYP1A1) was measured in endothelial cells

pretreated with PPARa ligands followed by PCB77

exposure. CYP1A1 is a monooxygenase enzyme that is

highly inducible by AHR ligands such as coplanar PCBs

[27, 30]. Endothelial cell pretreatment with FF resulted in

a significant reduction in PCB77-induced CYP1A1

activity (Fig. 3a). Furthermore, treatment with WY14643

significantly reduced CYP1A1 protein induction by

PCB77 (Fig. 3b). To determine if PPARa activation

affected AHR protein expression, endothelial cells were

treated with FF prior to measurement of AHR expression

by immunoblots. Treatment with FF resulted in a signif-

icant reduction of AHR protein expression (Fig. 4a),

which was confirmed using the PPARa ligand WY14643

(Fig. 4b). These results suggest that PPARa activation

disrupts the AHR pathway in endothelial cells by reduc-

ing AHR protein expression.
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Fig. 1 Expression of COX-2 protein after pretreatment with the

PPARa ligand fenofibrate (FF; 1 or 10 lM) followed by exposure to

PCB77 (3.4 lM). Cell cultures were pretreated with FF for 8 h

followed by exposure to vehicle (DMSO), or PCB77 for 18 h

followed by immunoblots. COX-2 densitometry values were normal-

ized to b-actin signal. Blots represent one of the three replicates. Bars

represent % of control values ± SEM (n = 3); *Statistically signifi-

cant difference (P \ 0.05) relative to the control group
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Fig. 2 (a and b): Expression of VCAM-1 protein after pretreatment

with the PPARa ligands fenofibrate (FF) or WY14643 (WY) at a final

concentration of 10 and 20 lM, respectively, followed by exposure to

PCB77 (3.4 lM). Cell cultures were pretreated with FF (a) or WY (b)

for 8 h followed by exposure to vehicle (DMSO), or PCB77 for 18 h

followed by immunoblots. VCAM-1 densitometry values were

normalized to b-actin signal. Blots represent one of the three

replicates. Bars represent % of control values ± SEM (n = 3);

*Statistically significant difference (P \ 0.05) relative to the control

group
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PCBs Decrease PPAR Transcriptional Function,

Responsive Gene Expression, and Protein Expression

It has been previously shown that PPARa expression and

activity are attenuated during inflammation [31, 32]. To

determine if PCB77 exposure can affect basal PPARa
function in endothelial cells, mRNA expression of PPARa
and the PPAR responsive gene CYP4A1 were measured

after treating cells with increasing concentrations of

PCB77. Treatment with PCB77 significantly reduced

PPARa and CYP4A1 mRNA expression at the lowest

concentration used in these experiments (1 nM) (Fig. 5).

We then measured the effects of PCB77 on PPARa protein

expression. Treatment with PCB77 led to a dose-dependent

decrease in PPARa protein expression (Fig. 6). To deter-

mine if PCB77 can affect PPAR transcriptional function, a

PPAR responsive element driven reporter gene (luciferase)

was used in MCF-7 cells. Treatment with PCB77 signifi-

cantly reduced reporter gene expression (Fig. 7). These

results suggest that PCB77 treatment reduced PPARa
expression and transcriptional activity.

Discussion

The results from this study demonstrate that PPARa acti-

vation can protect endothelial cells from PCB-induced

damage by decreasing expression of AHR protein and

subsequent inhibition of the AHR pathway, and that
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Fig. 3 (a and b): CYP1A1 activity (a) and protein expression (b)

after pretreatment with the PPARa ligands fenofibrate (FF) or WY

14643 (WY) at a final concentration of 10 and 20 lM, respectively,

followed by exposure to PCB77 (3.4 lM). Cell cultures were

pretreated with FF (a) or WY (b) for 8 h followed by exposure to

vehicle (DMSO), or PCB77 for 18 h followed by EROD assay or

immunoblots. CYP1A1 densitometry values were normalized to b-

actin signal. Blots represent one of the three replicates. Bars represent

CYP1A1 activity or protein expression (% of control values) ± SEM

(n = 3); * and ** represent statistically significant difference

(P \ 0.05) from vehicle and PCB treated cells, respectively
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immunoblots. AHR densitometry values were normalized to b-actin

signal. Blots represent one of the three replicates. Bars represent % of

control values ± SEM (n = 3); *Statistically significant difference

(P \ 0.05) relative to the control group
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coplanar PCBs can negatively affect PPAR function, and

decrease PPARa mRNA and protein expression. It has

been shown, in both cell culture and whole animal models

that many of the pro-inflammatory and cardiotoxic effects

of coplanar HAHs, including PCBs, are mediated by the

AHR pathway [29], and the downstream activation of pro-

inflammatory signaling cascades [15]. The results from the

experiments described above suggest that activation of

PPARa blocked PCB77 induction of the responsive pro-

inflammatory proteins COX-2 and VCAM-1. Both of these

proteins play an important role in endothelial cell activa-

tion and the pathogenesis of atherosclerosis. Induced COX-

2 activity leads to increased production of prostaglandins,

and reactive oxygen species [33, 34], while VCAM-1 is a

cell surface receptor recognized by immune cells (mono-

cytes and T lymphocytes) that promotes cell migration to

the site of vascular injury [7]. These two proteins have

been previously shown to be induced by HAHs [9, 12], and

their upregulation is dependent on the presence of a func-

tional AHR [9, 35].

The results from this study suggest that PPARa activa-

tion can significantly reduce PCB77 effects by reducing

AHR protein expression and the induction of AHR-regu-

lated gene expression. It has been previously shown that

PPARa activation can block pro-inflammatory signaling

pathways by various mechanisms, which include inhibition

of transcription factors AP-1 and NF-jB. This inhibition

occurs through various mechanisms: direct interaction with

these proteins [36], inducing expression of the NF-jB

inhibitory protein IjBa [37], reducing basal expression of

the pro-inflammatory transcription factors NF-jB and

CAAT enhancer binding protein b (C/EBP-b) [38], and the

IL-6 receptor complex IL-6R/gp80 and gp130 [39]. Our

results are supportive of previous studies showing that

PPARa activation can alter induction of AHR responsive

genes, and reduce AHR expression in rat liver and HepG2

cells [40]. Specifically, we demonstrated in endothelial

cells that PPARa activation could significantly reduce
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basal AHR expression, and CYP1A1 induction by PCB77.

A recent study using rat liver epithelial cells showed that

decreased AHR expression by siRNA targeted gene

silencing can reduce CYP1A1 induction by the AHR

ligands benzo-a-pyrene and benzo-b-fluoranthene [41].

However, studies using Caco-2 cells, a colorectal carci-

noma cell line, suggest that PPARa activation can

potentiate AHR expression and CYP1A1 induction [42].

Overall, these data suggest that the outcome of PPARa and

AHR pathway interactions are tissue and cell type specific.

In the current study, we focused on PPARa. Both

PPARs a and c are expressed in the vasculature, including

the endothelium, and there is evidence that treatment with

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can suppress

PPARc expression [43, 44]. Our data suggest that PCBs

can decrease both PPARs a and c basal protein expression

[45]. Various mechanisms triggered by coplanar PCB

exposure could be associated with downregulating

expression and function of PPARs a and c. Previous studies

have demonstrated that during adipogenesis, TCDD can

cause suppression of PPARc expression through activation

of MEK/ERK dependent mechanisms [43], and that these

effects could be blocked by AHR inhibitors [46].

Another possible mechanism, by which PCBs decrease

basal PPARa expression and function, is by promoting

oxidative stress and the activation of pro-inflammatory

signaling cascades. PPARa has been shown to be reduced

by age-dependent and diet-induced oxidative stress, as well

as exposure to pro-inflammatory cytokines [47–49]. Others

and we have shown previously that exposure to coplanar

PCBs such as PCB77 and PCB126 can activate NF-jB,

induce pro-inflammatory cytokine production and oxida-

tive stress [8, 9, 15]. Finally, PPARa downregulation by

PCB77 could be due to AHR interference with transcrip-

tion factors that regulate PPARa expression. It has been

shown that the PPARa gene promoter contains multiple

binding sites for Sp1 [50, 51], and AHR activation can

affect Sp1 function to either promote or repress gene

expression [52, 53].

The inhibitory effects of PCB exposure on the basal

expression and function of the anti-inflammatory PPARa
could increase susceptibility to other types of pro-inflam-

matory stimuli. Various PPAR knockout models have

shown that genetic elimination of PPAR a or c expression

is associated with increased susceptibility to pro-inflam-

matory agents [54, 55]. Dioxins and coplanar PCBs have

been shown to increase expression of genes associated with

systemic inflammation and atherosclerosis [9, 12, 15].

These effects, coupled with a decrease in expression of

protective PPARs, may increase the potential for PCB

toxicity in the vascular endothelium.

Both cell culture and whole animal studies have previ-

ously shown that treatment with PPARa ligands can

significantly reduce inflammation and atherosclerosis [24,

56]. The data presented in the current study show that

PCBs can decrease basal expression and function of

PPARa. Furthermore, our data demonstrate that PPARa
agonists can inhibit PCB-mediated endothelial cell acti-

vation by downregulating AHR expression and function.

These observations present a novel mechanism, by which

endothelial cell activation and inflammation induced by

chlorinated AHR ligands can be attenuated by PPAR

agonists.
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