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Abstract
Common carp (Cyprinus carpio) is one of the most consumed fish in the world and can be exposed to various forms of 
pollution, such as potential toxic elements (PTEs). Several studies have been conducted on the concentration of PTEs in 
common carp fish. The aims of the current study were to meta-analyze the concentration of PTEs in common carp fish and 
estimate human health risks in consumers. A search was conducted in international databases, including Scopus, PubMed, 
Science Direct, Web of Science, and Embase to retrieve papers up to January 20, 2024. The non-carcinogenic risk due to 
PTEs in fish fillets was calculated via the target hazard quotient (THQ), and the carcinogenic risk due to iAs in fish fillets was 
calculated via cancer risk (CR). The highest concentrations of Cu, methyl-Hg, and Ni were observed in the fillets of common 
carp fish. The non-carcinogenic risk was lower than 1 in all countries; hence, consuming common carp fish does not pose a 
non-carcinogenic risk. Adult consumers in Iraq were exposed to an unacceptable carcinogenic due to iAs in common carp 
fish. Hence, it is recommended that plans be conducted to reduce the concentration of PTEs in common carp fish in Iraq.
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Introduction

Various environmental pollutants, followed by the food 
chain, have increased consumer health concern [1–5]. 
These contaminants include potentially toxic elements 
(PTEs), mycotoxins [6] in doughs [7], maize [8], yogurt [9], 
and pathogens in milk [10–12]. PTEs contamination is a 

worldwide issue and following with other variables disrupt-
ing the ecosystem and leading to serious health risks for 
organisms [13–16]. In the World Health Organization clas-
sification, low concentrations of essential elements such as 
copper (Cu), cobalt (Co), manganese (Mn), selenium (Se), 
and zinc (Zn) are necessary for the natural metabolism of 
organisms [17–20]. For example, zinc is involved in more 
than 300 enzymatic and hormonal activities [21] and has 
catalytic, structural, and regulatory roles [22]. At the same 
time, potentially toxic elements (PTEs) such as cadmium 
(Cd), inorganic arsenic (iAs), lead (Pb), and mercury (Hg) 
are biologically non-essential elements. PTEs interfere with 
normal biological functions and exhibit toxicity even at low 
concentrations [22–25]. The occurrence of PTEs in aquatic 
ecosystems can originate from anthropogenic activities, 
including industry, mining, agriculture, and transportation, 
or from natural sources, such as erosion, atmospheric pre-
cipitation, and geological weathering [26–28]. The subse-
quent presence of environmental pollutants such as Pb, Cd, 
Hg, and As in the aquatic food chain has become inevitable 
[29]. Unlike environmental organic pollutants, heavy metals 
are not degraded by chemical or biological processes and 
accumulate in ecosystems [30].
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Exposure to PTEs and other pollutants can have several 
adverse effects on human health, depending on the dose, 
duration of exposure, and the health status of the exposed 
people [31–35]. Human exposure to Pb can cause intestinal, 
nervous, hematological, and cardiovascular problems [36]. 
Cd can exhibit mutagenic, carcinogenic, and teratogenic 
effects, and it can cause kidney, liver, bone, and reproduc-
tive dysfunctions [37]. Hg can cause damage to the central 
nervous system (CNS), cardiovascular system, skin, lungs, 
liver, and kidney [38].

Fish at the top of the food web are bioindicators of metal 
contamination in aquatic ecosystems [39]. The amount of 
heavy metals uptake and accumulation in fish can be cor-
related with various physiological, ecological, physical, 
chemical, and biological conditions [40]. Abiotic and biotic 
factors, including acidity, temperature, hardness, size, life 
cycle, history, age, sex, habitat preferences, and feeding 
habits, can affect the accumulation of the metal in fish tis-
sues [41]. Notably, the levels of PTEs accumulation in fish 
organs and skin are generally higher than in fish muscle; 
however, muscles are the most commonly consumed parts 
by humans [42]. The Food and Drug Administration, World 
Health Organization, and Environmental Protection Agency 
warn about exceeding levels of heavy metals in some aquatic 
organisms. However, they also recognize the importance of 
omega-3 fatty acids (n-3 FAs), essential metals like sele-
nium, and fat-soluble vitamins found in fish [43–45].

The common carp (Cyprinus carpio) is one of the most 
common species of commercially farmed fish worldwide 
[46]. Studies have revealed that omnivorous fish species, 
such as common carp, may exhibit higher concentrations of 
heavy metals than carnivorous and benthivorous fish species 
[47, 48]. Majnoni et al. reported that high concentrations of 
PTEs (Hg et al.) in common carp from the Zarivar River 
(Iran) could be linked to wastewater discharge. This study 
suggests that the bioaccumulation and biomagnification of 
heavy metals in water may lead to increased levels of PTEs 
in aquatic organisms in the future [49].

The study by Pazooki et al. has shown acceptable Pb, 
Zn, and Cu levels in the muscle and skin of wild and cul-
tured common carp from the Southeastern Caspian Sea 
of Iran [50]. In Hosseini Alhashemi’s study, the levels 
of Cd, Cr, and Cu in the muscle of common Carpio from 
freshwater wetlands in Iran were found to be higher than 
in the muscle of other studied fish species such as Bar-
busgrypus, Barbus luteus, Barbussharpeyi, Liza abu, and 
Siluriustrisostegus [51]. Heshmati et al. found that the 
concentration of Pd, Cd, Hg, and Mn was higher in the 
wild C. carpio fish muscles from the Caspian Sea than in 
farmed carp samples. However, the estimated daily intake 
of all examined PTEs was acceptable [52]. Similarly, in 
Aryaee’s study, the concentrations of Cd, Fe, Cu, Pb, Co, 
Ni, Zn, and Cr in fish species from the Zabol Chahnimeh 

Reservoirs of Iran were below levels of concern for human 
consumption [53]. Several investigations have been per-
formed on the concentration of PTEs in common carp fish 
(Appendix 1). Therefore, the main aims of this study were 
to meta-analyze the concentration of PTEs in common 
carp fish based on the defined subgroups and to calculate 
the health risks (both non-carcinogenic and carcinogenic 
risks) for consumers.

Materials and Method

Search Strategy

We systematically searched according to preferred reporting 
items for systematic reviews and meta-analyses (PRISMA) 
protocol [54–56]. The two authors searched international 
databases, including Scopus, PubMed, Science Direct, Web 
of Science, and Embase, to find published papers up to Janu-
ary 20, 2024. The search syntaxes for finding papers were 
obtained using medical subject headings (MeSH) and pub-
lished papers. Syntaxes included “Toxic elements,” “Heavy 
metals,” “Potential toxic elements,” “Potential hazard ele-
ments,” “Elements,” “trace metals,” AND “fish” OR “marine 
foods,” OR “carp fish” OR “common carp” OR “Cyprinus 
carpio.” The titles and abstracts of retrieved papers were 
screened, and duplicate papers were excluded [56]. Subse-
quently, the full text of the papers was downloaded, and after 
reading the complete text, the required data was extracted. 
Disagreements between the authors in the selection or exclu-
sion of papers were resolved by the corresponding author, 
who made the final decision. Duplicate papers were removed 
and screened using EndNote software version 8.0.

Eligibility Criteria

Our inclusion criteria comprised studies that detected PTEs 
in common carp, with full-text available in English, employ-
ing valid methods of detection and presenting statistical 
data on PTE levels (such as mean, standard deviation, and/
or range). Review papers, letters to editors, thesis, books, 
conference proceedings, book chapters, and experimental 
or intervention studies were excluded. The country of study, 
sample size, statistical information on PTE concentrations 
(mean, standard deviation), and the method of detection 
were extracted.

Meta‑Analysis of Data

A meta-analysis of PTE levels in common carp fish fillets was 
conducted using the mean (μg/kg-ww) and standard error (SE). 
We employed I2 index and chi-square statistics to assess hetero-
geneity [57, 58]. If the I2 index statistic exceeded 50%, indicating 
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substantial heterogeneity, the random effects model (REM) was 
employed to calculate a pooled effect size. The meta-analysis of 
concentration in fillets of common carp fish was conducted using 
the Stata software (Version 17.0 College Station, TX, USA).

Health Risk Assessment

The daily intake of consumers was calculated by Eq. 1[15, 
59–61]:

In this equation, CDI is chronic daily intake (mg/kg-day); 
C, levels of PTEs in fillets of fish (μg/kg-ww); IR, ingestion 
rate (g/day); ED, exposure duration (year); EF, exposure fre-
quency (350 day/year); AT, mean lifetime (day) and BW, body 
weight for children and adults is 15 and 70 kg, respectively 
[62]. ED for children and adults equals 6 and 70 years, respec-
tively. AT for non-cancer risk is 2190 days and 25,550 days for 
children and adults, respectively, and AT for cancer risk equals 
25,550 days for both children and adults. The ingestion rate of 
common carp fish is shown in Appendix 2.

The non-cancer risk was estimated using the below equa-
tion [63]:

(1)CDI =
C × IR × ED × EF

BW × AT
× 10−3

(2)THQ =
CDI

RfD or TDI

In this equation, RfD and TDI are oral reference doses 
and tolerable daily intake [18]. RfD for Cd, Ni, Cu, and 
iAs and methyl-Hg equals 0.001, 0.011, 0.04, 0.0003, 
and 0.0001 mg/kg-d, respectively [64, 65]. TDI for Pb is 
0.0036 mg/kg-d [64, 65]. When the target hazard quotient 
(THQ) ≤ 1, the non-cancer risk is acceptable[63].

The cancer risk of iAs in carp fish was estimated by the 
below equation [66, 67]:

where CSF is the cancer slope factor, CSF for iAs is 1.5 
(mg/kg-d)−1 [65]. CR is classified as ignorable carcino-
genic risk: CR < 1.00E − 06; acceptable carcinogenic risk: 
1.00E − 06 ≤ CR < 1.00E − 04; and unacceptable carcino-
genic risk: CR ≥ 1.00E − 04 [68].

Results and Discussion

Method of Detection

Sixty-eight papers with 148 data reports were included in 
our study (Fig. 1). Monitoring the amount of PTEs in fish 
sample matrices is one of the most important research topics 
in health hazards [69]. Different research laboratories and 
regulatory agencies employ several analytical techniques for 
routinely observing, evaluating, and quantifying PTEs from 

(3)CR = CDI × CSF

Fig. 1   Process of selection of papers based on PRISMA
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water, air, soil, animal, plant, and food samples. Informa-
tion about the application range of different analytical tech-
niques may be essential for selecting the appropriate method, 
which, in turn, guides the sampling and sample preparation 
processes [70]. In the current study, the rank order of method 
of detection based on percentage use in detection was AAS 
(54%) > ICP-OES; ICP-AES, and ICP (25%) > ICP-MS 
(20%) > XRF (1%) (Fig. 2). Flame or graphite furnace AAS, 
ICP-OES, ICP-AES, and ICP are the common spectral tech-
niques utilized in the estimation of PTEs in investigated 
studies. On the other hand, a specific technique like XRF 
can effectively identify trace levels of metals. It was shown 
that metals were measured using XRF in only one study 
[71] (Appendix 1). ICP is commonly used for multi-element 
analysis at low detection limits, whereas AAS is preferred 
for analyzing specific elements at higher concentrations [72]. 
AAS is a widely used and quantitative technique for metal 
analysis that can identify approximately 70 metals [73]. It 
was found that more than 50% of articles utilized AAS as the 
detection method for various PTEs. Numerous nebulizers, 
such as a graphite furnace and flame, are applied in hydride 
and mercury cold vapor AAS techniques to identify PTEs 
[74]. Flame AAS is a suitable technique that can measure 
heavy metals at concentrations of part per million (ppm) lev-
els with appropriate accuracy [75]. It is a fast and relatively 
inexpensive procedure, completing the entire analysis within 
10–15 s per sample with high accuracy (repeatability) and 
negligible interferences [76].

Flame AAS is practical for finding PTEs from several 
sample matrices. Unfortunately, this technique suffers 
from poor sensitivity compared with graphite furnace AAS 
or ICP-MS. Hence, flame AAS is inappropriate for iden-
tifying arsenic (As) because of the insufficient maximum 
temperatures required for atomization [73, 76]. In contrast, 
as an atomization procedure, graphite furnace AAS can 

distinguish metals in both aqueous and solid samples with 
great precision at parts per billion (ppb) levels [77]. Graphite 
furnace AAS is comparable to flame AAS except for the 
atomization process. This technique includes warming at 
high temperatures in order to volatilize and atomize the sam-
ple [77]. The advantages of graphite furnace AAS include 
the requirement for smaller samples (20 μ) for analysis than 
flame AAS and lower detection limits. However, there are 
drawbacks to graphite furnace AAS, including the expense 
of the furnace, lower sample throughput, more troublesome 
operation, low precision, limited range of working, slow ana-
lytical processes, and matrix interferences [78]. Following 
AAS (54%), the following most commonly used techniques 
were ICP-OES; ICP-AES and ICP collectively accounted 
for 25% of identifications of heavy metals in common carp 
(Cyprinus carpio) fish in the literature review (Appendix 1).

ICP is the most sensitive and widely applied analytical 
method for detecting trace metals in various sample types. 
In the appendix, it was reported in only 1% of studies for 
heavy metal measurement.

ICP is the most sensitive and widely applied analytical 
method for detecting trace metals in various samples [73]. 
It was reported in 1% of studies for heavy metal measure-
ment (Appendix 1). ICP operates using a plasma where 
energy transfer to generate and preserve the ionized gas 
is carried out via electromagnetic induction [79]. Both 
ICP-OES and ICP-AES are similar analytical techniques 
used for heavy metal estimation. Approximately 24% of 
articles examined in the current study demonstrated how 
heavy metals can be measured using these techniques 
(Appendix 1).

Since its commercial introduction in the mid-1970s, 
ICP-OES has rapidly become broadly utilized and acknowl-
edged for numerous applications of metal determination in 
a wide assortment of samples [80]. Whereas AAS measures 
the quantity of light absorbed at a specific wavelength as 
elemental atoms enter an excited state, ICP-OES meas-
ures the light elements emit in a sample as they enter an 
ICP source [77]. Both techniques can detect trace metal 
concentrations in complex matrices with excellent pre-
cision and accuracy. However, ICP-OES offers several 
advantages over AAS. It can evaluate concentrations of 
multiple elements in a single sample with a single aspi-
ration. Therefore, this situation leads to significant speed 
over AAS when the goal is to quantify several elements in 
a sample[74]. Additionally, ICP-OES has a much broader 
analytical working range and operates without recalibra-
tion. It can measure samples varying in concentration from 
1 μg/L to 1 g/L without requiring recalibration, whereas 
AAS spans only three orders of magnitude, from 1 μg/L 
to 1 mg/L [77]. ICP-OES is particularly well-suited for 
detecting trace heavy metals, especially when all elements 
are consistently present at concentrations above ten ppb.Fig. 2   Number and percentage method of detection PTEs in carp fish



The Concentration of Potentially Toxic Elements in Common Carp (Cyprinus carpio) in Fish:…

However, for lower concentrations of metals, especially 
heavy elements like arsenic, ICP-MS is recommended due to 
its superior sensitivity based on the literature review, it was 
shown that ICP-Ms is reported for measuring heavy metals 
in 20% of articles [81]. In contrast, XRF was mentioned in 
only 1% of articles (Appendix 1). XRF is a fast, affordable, 
and non-destructive analytical method for detecting a variety 
of hazardous materials, capable of simultaneously identify-
ing up to 30 elements [71] through the interaction of X-ray 
radiation with atoms [82].

The ICP-OES technique offers superior sensitivity, 
broader elemental coverage, and lower detection limits than 
the XRF method. This condition makes ICP-OES an ideal 
technique for trace-level analysis of trace heavy metals. On 
the other hand, XRF is a versatile technique suited for quali-
tative and semi-quantitative analysis, especially when ana-
lyzing bulk samples with minimal preparation [83]. Overall, 
selecting a technique should consider factors such as detec-
tion limit, accuracy, sensitivity, expected concentration lev-
els of heavy metals, the number of elements, the frequency 
of sample observation, and the presence of interfering com-
ponents in sample matrices.

Concentration of PTEs in Fish

Fish is an exceptional source of high-quality protein, micro-
nutrients, vitamins, and n-3 fatty acids, in specific unique 
fatty acids such as eicosapentaenoic (EPA 20:5) and doco-
sahexaenoic (DHA 22:6) acid. The scientific report shows 
the association of fish consumption with various health ben-
efits [84]. However, fish can be a source of potentially toxic 
elements if exposed to contamination in water. The results 

indicate a significant disparity in heavy metal in common 
carp (Cyprinus carpio) fish and sampling areas.

The bioaccumulation of toxic trace elements in fish 
depends on non-biotic criteria such as water pH and the 
chemical form of the element. In contrast, some intrinsic 
factors of the fish, such as age and physiologic conditions, 
are vital in accumulating PTEs in the body of fish [85]. Sci-
entific reports on the levels of heavy metals in fish tissues 
are vital for human consumption. Significant differences 
have been observed worldwide in the levels of PTEs in fish, 
which may be attributed to this fish species’ metabolism and 
feeding patterns [86].

The rank order of PTEs in the fillet of common carp 
(Cyprinus carpio) based on pooled concentration was Cu 
(0.4550 mg/kg-ww) > MeHg (0.2000 mg/kg-ww) > Ni 
(0.1540 mg/kg-ww) > iAs (0.0260 mg/kg-ww) > Pb (0.0036 
mg/kg-ww) > Cd (0.0030 mg/kg-ww) (Tables 1, 2, 3, 4, 
5, and 6). Statistical comparisons revealed that metals in 
varying quantities could be attributed to the examined tis-
sues (gill, gut, liver, muscle, kidney, skin) in common carp 
(Cyprinus carpio). This suggests the physiological potential 
of different organs in the accumulating heavy metals [87]. In 
aquatic environments, the health status of fish and the differ-
ent organs of this animal serve as indicators of water pollu-
tion and quality [88]. The consumption of fish muscle is con-
sidered an important part of the routine metal contamination 
[89]. Different amounts of heavy metals are mentioned in 
fish tissue, which might result from their capacity to induce 
metal-binding proteins such as metallothioneins [90, 91].

The gill plays a main role in fish exposure at the interface 
and direct contact with the marine environment. This organ 
regulates metal ions and nitrogenous waste excretion [92]. 

Table 1   Meta-analysis concentration of iAs in filled of carp fish based on country (mg/kg-ww)

*Effect size: Pooled concentration of PTEs

Study Number study ES* Lower Upper Weight (%) Heterogeneity statistic Degrees of 
freedom

p value I2

Iraq 3 3.3420 0.0010 6.7730 5.69 64,246.54 2 0 100.00%
Iran 13 0.0010 0.0000 0.0010 28.79 11,662.05 12 0 99.90%
Pakistan 5 0.2930 0.1950 0.3910 0.94 531.61 4 0 99.20%
China 11 0.0720 0.0560 0.0890 9.30 433.76 10 0 97.70%
Mexico 2 0.0090 0.0010 0.0280 6.68 34.62 1 0 97.10%
Turkey 11 0.0510 0.0420 0.0600 20.39 1632.75 10 0 99.40%
Cyprus 1 0.4130 0.3420 0.4840 0.01 0 0 .%
Poland 1 0.0020 0.0020 0.0020 5.65 0 0 .%
South Korea 1 0.0130 0.0010 0.0290 0.20 0 0 .%
Serbia 4 0.0430 0.0250 0.0610 12.05 1224.35 3 0 99.80%
Montenegro 1 0.0300 0.0270 0.0330 2.83 0 0 .%
Bosnia and Herzegovina 1 0.2230 0.2120 0.2340 0.41 0 0 .%
Spain 3 0.0640 0.0130 0.1140 7.06 1236.21 2 0 99.80%
Overall 57 0.0260 0.0250 0.0270 100 3.10E + 06 56 0 100.00%
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Heavy metals have been detected in fish lungs, likely due to 
their thin epithelium and susceptibility to metal penetration 
[86]. In some reports, the liver was mentioned as the tissue 
with the highest concentration of heavy metals. The liver 
is an active central site for uptaking and storing the metals 
and their detoxification excretion [93, 94]. The high con-
centration of heavy metals mentioned in the liver of carp in 
a study in Serbia was attributed to the high level in the gut 
and transferred to the liver [90].

The concentration of elements in the gut is valuable 
because this part can indicate the levels of elements in sedi-
ment and natural food sources. The analysis of the gut of fish 
provides evidence of an accessible pool of elements and the 
potential for transfer through the gastrointestinal tissue and 
accumulation in different tissues [90]. The three countries 
with the highest concentration of iAs observed were Iraq 
(3.3420 mg/kg-ww), Cyprus (0.4130 mg/kg-ww), and Paki-
stan (0.2930 mg/kg-ww) (Table 1); Cd, in India and Pakistan 
(11.600 mg/kg-ww), the Philippines (1.670 mg/kg-ww), and 
Pakistan (1.131 mg/kg-ww) (Table 2); Pb, in Iraq (0.770 mg/
kg-ww), Turkey (0.754 mg/kg-ww), and Cyprus (0.362 mg/
kg-ww) (Table 3); Ni, in the Philippines (2.170 mg/kg-ww), 
Iraq (1.615 mg/kg-ww), and Cyprus (1.470 mg/kg-ww) 
(Table 4); MeHg, in Turkey (3.074 mg/kg-ww), Pakistan 

(0.455 mg/kg-ww), and Iraq (0.321 mg/kg-ww) (Table 5); 
and Cu, in Iraq (3.985 mg/kg-ww), Vietnam (3.499 mg/
kg-ww), and Spain (1.517 mg/kg-ww) (Table 6). Many 
influential factors contribute to differences in heavy metal 
levels in fish, including the bioavailable metal concentration 
in the abiotic components of their surroundings, their feed-
ing habits, ecological requirements, metabolism, age, and 
size of the fish in different countries [86, 95]. Each of these 
criteria can significantly impact the metals present in fish.

Health Risk Assessment

Non‑Carcinogenic Risk

Iraq, Cyprus, and South Korea were the three countries 
with the highest THQ of iAs (Fig. 3). However, excluding 
children in Iraq (THQ = 1.5E + 00), THQ for both adults 
and children in all countries was less than 1. Hence, the 
non-carcinogenic risk due to iAs is acceptable. For Cd, 
the countries with the highest THQ were the Philippines, 
Pakistan, and Iraq. Except for children in the Philippines 
(THQ = 1.0E + 00), THQ for both adults and children in all 
countries was less than 1. Hence, the non-carcinogenic risk 
due to Cd is acceptable (Fig. 4). Cyprus, Vietnam, and the 

Table 2   Meta-analysis concentration of Cd in filled of carp fish based on country (mg/kg-ww)

*Effect size: Pooled concentration of PTEs

Study Number study ES* Lower Upper Weight (%) Heterogeneity statistic Degrees of 
freedom

p value I2

Iraq 26 0.3120 0.2750 0.3480 0.23 9135.54 25 0 99.70%
Iran 18 0.0490 0.0450 0.0520 18.60 21,557.64 17 0 99.90%
Pakistan 13 1.1310 0.9100 1.3510 0.00 1322.85 12 0 99.10%
Algeria 1 0.0010 0.0001 0.0260 0.00 0 0 .%
China 13 0.0160 0.0080 0.0230 10.87 20,523.54 12 0 99.90%
Mexico 2 0.1130 0.0001 0.3300 0.12 106.58 1 0 99.10%
Philippines 1 1.6700 1.3520 1.9880 0.00 0 0 .%
Turkey 14 0.0130 0.0100 0.0160 18.72 6174.8 13 0 99.80%
Bulgaria 5 0.0200 0.0070 0.0330 0.73 958.23 4 0 99.60%
Cyprus 1 0.0120 0.0090 0.0150 0.04 0 0 .%
Poland 1 0.0001 0.0000 0.0002 6.85 0 0 .%
Vietnam 5 0.0220 0.0130 0.0300 0.22 123.07 4 0 96.70%
Tunisia 1 0.0200 0.0110 0.0290 0.01 0 0 .%
South Korea 1 0.0130 0.0080 0.0180 0.02 0 0 .%
Serbia 4 0.0040 0.0030 0.0060 14.64 260.93 3 0 98.90%
Montenegro 1 0.0120 0.0120 0.0120 4.25 0 0 .%
Ethiopia 1 0.0060 0.0040 0.0090 0.06 0 0 .%
Bosnia and Herzegovina 1 0.0120 0.0110 0.0130 1.06 0 0 .%
Spain 3 0.0001 0.0000 0.0000 20.62 210.27 2 0 99.00%
Australia 1 0.0010 0.0010 0.0010 2.97 0 0 .%
India and Pakistan 1 11.6000 8.7380 14.4620 0.00 0 0 .%
Overall 114 0.0030 0.0026 0.0030 100.00 94,144.73 113 0 99.90%
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Philippines are the three countries with the highest THQ of 
Pb. THQ for both adults and children in all countries was 
less than 1 value. Hence, the non-carcinogenic risk due to Pb 
is acceptable (Fig. 5). Turkey, South Korea, and China were 
the three countries with the highest THQ of MeHg. Except 
turkey (adult = 2.2E + 00 and children = 1.06E + 01) and 
South Korea (adult = 1.32E + 00 and children = 6.18E + 00). 
THQ for adults and children in all countries was less than 1; 

hence, the non-carcinogenic risk due to MeHg is acceptable 
(Fig. 6). The highest THQ for Ni was found in the Philip-
pines, Cyprus, and Iraq. However, the THQ for both adults 
and children in all countries was less than 1 value; hence, 
the non-carcinogenic risk due to Ni is acceptable (Fig. 7). 
Vietnam, Cyprus and Iraq were the three countries with the 
highest THQ of Cu. THQ for both adults and children in tall 
countries was less than 1 value. Hence, the non-carcinogenic 

Table 3   Meta-analysis concentration of Pb in filled of carp fish based on country (mg/kg-ww)

*Effect size: Pooled concentration of PTEs

Study Number study ES* Lower Upper Weight (%) Heterogeneity statistic Degrees of 
freedom

p value I2

Iraq 23 0.7700 0.6470 0.8940 0.81 23,259.31 22 0 99.90%
Iran 18 0.3530 0.3080 0.3980 11.93 9711.92 17 0 99.80%
Pakistan 27 0.0440 0.0400 0.0480 28.39 11,646.71 26 0 99.80%
Algeria 1 0.0200 0.0160 0.0250 0.05 0 0 .%
China 15 0.1200 0.1030 0.1370 0.79 1792.11 14 0 99.20%
Mexico 1 0.0190 0.0160 0.0220 0.13 0 0 .%
Philippines 1 0.3300 0.1730 0.4870 0.00 0 0 .%
Turkey 14 0.7540 0.7080 0.8000 15.95 71,496.77 13 0 100.00%
Bulgaria 1 0.2000 0.1770 0.2230 0.00 0 0 .%
Cyprus 1 0.3620 0.0001 0.8700 0.00 0 0 .%
Poland 1 0.0360 0.0290 0.0440 0.02 0 0 .%
Vietnam 5 0.3330 0.2410 0.4260 0.01 143.31 4 0 97.20%
Tunisia 1 0.0590 0.0440 0.0740 0.00 0 0 .%
South Korea 1 0.0100 0.0080 0.0120 0.29 0 0 .%
Serbia 2 0.0270 0.0001 0.0670 0.43 60.02 1 0 98.30%
Montenegro 1 0.1120 0.1060 0.1180 0.03 0 0 .%
Bosnia and Herzegovina 1 0.2480 0.2380 0.2580 0.01 0 0 .%
Spain 2 0.0001 0.0000 0.0003 29.24 0 1 1 0.00%
Australia 1 0.0003 0.0010 0.0004 11.91 0 0 .%
Overall 117 0.0036 0.0030 0.0039 100.00 160,000.00 116 0 99.90%

Table 4   Meta-analysis concentration of Ni in filled of carp fish based on country (mg/kg-ww)

*Effect size: Pooled concentration of PTEs

Study Number study ES* Lower Upper Weight (%) Heterogeneity statistic Degrees of 
freedom

pvalue I2

Iraq 8 1.615 1.185 2.046 6.6 1186.72 7 0 99.40%
Iran 8 0.035 0.019 0.052 36.72 461.1 7 0 98.50%
Pakistan 10 0.346 0.309 0.383 22.51 4538 9 0 99.80%
China 1 0.04 0.033 0.047 4.63 0 0 .%
Philippines 1 2.17 2.013 2.327 0.33 0 0 .%
Turkey 9 0.338 0.278 0.399 14 1874.26 8 0 99.60%
Bulgaria 1 0.08 0.069 0.091 4.44 0 0 .%
Cyprus 1 1.47 0.659 2.281 0.01 0 0 .%
Serbia 2 0.003 0.003 0.004 9.48 0.08 1 0.782 0.00%
Montenegro 1 0.152 0.081 0.223 1.29 0 0 .%
Overall 42 0.154 0.145 0.163 100 17,767.31 41 0 99.80%
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risk due to Cu is acceptable (Fig. 8). In a study conducted 
by Bagheri et al. in Iran on edible fishes of Gorgan Bay, 
Capsian Sea, the results of THQ value were less than one 
[89]. Similarly, in a study conducted on the farmed com-
mon carp (CYPRINUS CARPIO) in Poland, the THQ index 
for Cd, As, Pb, Cr, Ni, and Cu were less than 1, indicating 

the intake of a single metal does not pose health risk [96]. 
This situation demonstrated for provisional intakes and THQ 
estimated for a common carp. This means that the consump-
tion of any of the fish above did not appear to be potentially 
hazardous for the health of Tunisian consumers as they were 
far below threshold values [97]. Furthermore, in different 

Table 5   Meta-analysis concentration of MeHg in filled of carp fish based on country (mg/kg-ww)

*Effect size: Pooled concentration of PTEs

Study Number study ES* Lower Upper Weight (%) Heterogeneity statistic Degrees of 
freedom

p value I2

Iraq 1 0.3210 0.2770 0.3650 0.88 0 0 .%
Iran 9 0.0440 0.0300 0.0580 29.06 28,248.47 8 0 100.00%
Pakistan 5 0.4550 0.3810 0.5290 9.72 692.09 4 0 99.40%
China 9 0.0700 0.0550 0.0840 19.34 172.8 8 0 95.40%
Mexico 1 0.0010 0.0000 0.0020 3.47 0 0 .%
Turkey 8 3.0740 1.0860 5.0610 8.97 2.10E + 05 7 0 100.00%
Poland 1 0.0010 0.0000 0.0010 3.48 0 0 .%
Tunisia 1 0.0340 0.0100 0.0580 1.88 0 0 .%
South Korea 1 0.2460 0.1570 0.3350 0.27 0 0 .%
Serbia 4 0.0150 0.0130 0.0180 12.16 1179.95 3 0 99.70%
Montenegro 1 0.1120 0.0960 0.1280 2.5 0 0 .%
Bosnia and Herzegovina 1 0.1000 0.0970 0.1030 3.44 0 0 .%
Spain 1 0.0190 0.0160 0.0210 3.44 0 0 .%
Australia 1 0.0110 0.0100 0.0420 1.4 0 0 0.8
Overall 44 0.2000 0.1950 0.2050 100 2.70E + 05 43 0 100.00%

Table 6   Meta-analysis concentration of Cu in filled of carp fish based on country (mg/kg-ww)

*Effect size: Pooled concentration of PTEs

Study Number study ES* Lower Upper Weight (%) Heterogeneity statistic Degrees of 
freedom

p value I2

Iraq 10 3.985 3.363 4.607 9.19 110,000 9 0 100.00%
Iran 13 0.980 0.855 1.104 13.34 10,601.26 12 0 99.90%
Pakistan 21 0.184 0.167 0.201 33.12 24,172.6 20 0 99.90%
Algeria 1 0.034 0.030 0.037 2.37 0 0 .%
China 11 0.396 0.356 0.436 13.58 6912.58 10 0 99.90%
Mexico 2 1.271 0.001 3.246 1.46 416.85 1 0 99.80%
Philippines 1 0.330 0.173 0.487 0.43 0 0 .%
Turkey 10 0.006 0.001 0.011 5.4 4334.69 9 0 99.80%
Bulgaria 5 0.462 0.298 0.625 7.89 408.88 4 0 99.00%
Cyprus 1 1.500 0.608 2.392 0.02 0 0 0.8
Poland 1 0.035 0.031 0.039 2.37 0 0 0.8
Vietnam 5 3.499 2.002 4.996 1.25 384.37 4 0 99.00%
Serbia 2 0.111 0.106 0.115 4.71 1.18 1 0.278 15.20%
Montenegro 1 0.580 0.486 0.674 0.9 0 0 0.8
Spain 2 1.517 1.264 1.771 0.67 3.51 1 0.061 71.50%
Australia 1 0.221 0.196 0.246 2.12 0 0 .%
Kosovo 1 0.647 0.573 0.721 1.19 0 0 .%
Overall 88 0.455 0.444 0.467 100.00 470,000 87 0 100.00%
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studies in China, THQ of heavy metals was lower than 1 
in examined common carp fish [98, 99]. Totally, based on 
the results of the current meta-analysis, THQ was less than 
1 for all examined heavy metals (iAs, Cd, Pb, MeHg, Cu, 

and Ni), revealing no serious non-carcinogenic risk for each 
heavy metal, and it does not have a side effect on consumers. 
However, continuing exposure to more than one pollutant 
can synergistically affect consumers.

Fig. 3   THQ due to ingestion carp fish content of iAs in adults and children

Fig. 4   THQ due to ingestion 
carp fish content of Cd in adults 
and children
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Carcinogenic Risk

Iraq, Cyprus, and South Korea were the countries with 
the highest CR of iAs. Except for adult consumers in Iraq, 
the cancer risk in the other countries was ignorable and/or 

acceptable due to iAs (Fig. 9). It has been reported that both 
forms of As (organic and inorganic: Total As) are present in 
fish [100]. The latter form (iAs) is the most toxic to humans. 
Based on the current examination, CR for adults and children 
due to consumption of common carp was not considerable.

Fig. 5   THQ due to ingestion 
carp fish content of Pb in adults 
and children

Fig. 6   THQ due to ingestion 
carp fish content of MeHg b in 
adults and children
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Fig. 7   THQ due to ingestion carp fish content of Ni in adults and children

Fig. 8   THQ due to ingestion carp fish content of Cu in adults and children
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Conclusion

The highest concentrations of Cu, methyl-Hg, and Ni 
were observed in the fillet of common carp fish. There-
fore, effective monitoring of sources emitting these 
elements should receive more attention. Additionally, 
the concentration of PTEs in the fillet of common carp 
fish was higher in Iraq, India, Pakistan, the Philippines, 
and Turkey than in other countries. However, the non-
carcinogenic risk was less than 1 value for both adult 
and child consumers in all countries; hence, the con-
sumption of common carp fish cannot have a non-car-
cinogenic risk for consumers. Adult consumers in Iraq 
were exposed to an unacceptable carcinogenic due to 
iAs in common carp fish. Therefore, it is recommended 
that plans be implemented to reduce the concentration 
of PTEs in common carp fish in Iraq. Therefore, the 
control of iAs in water and food resources of common 
carp should be given more attention.
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