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Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract (GI) with a high incidence 
rate globally, and IBD patients are often accompanied by zinc deficiency. This review aims to summarize the potential 
therapeutic value of zinc supplementation in IBD clinical patients and animal models. Zinc supplementation can relieve 
the severity of IBD especially in patients with zinc deficiency. The clinical severity of IBD were mainly evaluated through 
some scoring methods involving clinical performance, endoscopic observation, blood biochemistry, and pathologic biopsy. 
Through conducting animal experiments, it has been found that zinc plays an important role in alleviating clinical symptoms 
and improving pathological lesions. In both clinical observation and animal experiment of IBD, the therapeutic mechanisms 
of zinc interventions have been found to be related to immunomodulation, intestinal epithelial repair, and gut microbiota’s 
balance. Furthermore, the antioxidant activity of zinc was clarified in animal experiment. Appropriate zinc supplementation 
is beneficial for IBD therapy, and the present evidence highlights that alleviating zinc-deficient status can effectively improve 
the severity of clinical symptoms in IBD patients and animal models.
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Introduction

Inflammatory bowel disease (IBD) is a chronic and life-
threatening inflammatory disease of the gastrointestinal 
tract [1, 2] with increasingly prevalent especially in newly 
industrialized countries [3, 4]. Ulcerative colitis (UC) and 
Crohn’s disease (CD) represent the two main types of IBD 
[5, 6], which result from multiple factors including abnormal 

gut microbiota, immune response disorders, environmental 
disturbance, and genetic susceptibility [7, 8]. IBD, as the 
paradigm of auto-immune disease, is often firstly initiated 
by poorly understood dietary factors and then in turn pre-
sents an imbalanced internal gut environment, a first local 
innate, and then, chronic latent systemic immune response 
in patients [9]. This complex and individualized disease 
procedure involves variable environmental factors and 
damages multiple tissues [9], so the diagnosis, monitoring, 
and treatment of this disease has many challenges. At pre-
sent, the treatment for IBD is mainly through controlling 
disease progression and treating specific complications by 
using immune-suppressants, monoclonal antibodies, and 
nutritional manipulation [10–13]. Considering nutritional 
factors, trace elements, especially zinc and selenium, have 
attracted much attention in IBD study [7]. As one of the 
most importance essential trace element, zinc participates 
in the formation of about 3000 proteins, which involve DNA 
synthesis [14], gene expression [15], anti-inflammatory, 
antioxidant, and wound healing [14, 15]. Due to its impor-
tant biological function, zinc deficiency is associated with 
some clinical disorders such as dermatitis, loss of appetite, 
impaired wound healing, increased blood ammonia, and 
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hypogonadism, and zinc excessive have toxic effects [16]. 
Multiple intestinal diseases are associated with zinc levels 
in the body, including IBD, irritable bowel syndrome (IBS), 
and colorectal cancer (CRC) [17].

Zinc deficiency is common in patients with CD and UC 
[18–20] and is associated with an increased risk of sub-
sequent hospitalizations, surgeries, and adverse disease-
specific outcomes [21, 22]. It seems that monitoring and 
maintaining normal levels of zinc in IBD patients are neces-
sary [23] based on its ability to keep immune balance, redox 
balance, and maintain normal proliferation and structure of 
cell [18, 24–30]. And clinical symptoms often are relieved 
after zinc supplementing with different zinc sources in IBD 
patients. Animal experiments are suitable for studying inter-
vention effects and related mechanisms. In this review, we 
describe the relationship of zinc and IBD in clinical practice 
and give a summary on zinc’s therapeutic efficacy in animal 
models.

Clinical Studies Related to Zinc and IBD

According to the epidemiological analysis carried out by 
the affiliated hospitals or institutions, the IBD patients often 
suffer from zinc deficiency. The prevalence of disease and 
the association between zinc exposure and outcomes were 
evaluated in IBD populations [31]. The results indicated 
that IBD patients often suffer from zinc deficiency (serum 
zinc content < 70 μg/dL [32]) companied by the decrease 
of other trace elements including selenium (Se), magne-
sium (Mn), and copper (Cu) [19, 21, 32–35]. Exposure to 
plumbum (Pb), arson (As), Cu, and ferrum (Fe) in drinking 
water would induce the deterioration of IBD [33]. Fortu-
nately, the zinc-deficiency-related adverse effects could be 
improved by zinc addition [21, 36]. Follow-up survey found 
that dietary zinc levels were negatively associated with the 
prevalence of IBD [37]. In addition, nickel (Ni) concentra-
tions in the intestinal biopsies [33] and exposure periods 
to fluorine (F) [38] were also negative related to the risk of 
IBD. The above-mentioned studies indicate that zinc defi-
ciency is associated with the high incidence of IBD, and zinc 
supplementation has a protective effect on IBD.

In some clinical trials, zinc and placebo have been used 
to observe the therapeutic effects on IBD. In these studies, 
the patients suffered from UC or CD were between 18 and 
69 years old, and the zinc sources were variation, in which 
zinc gluconate was mainly used [39–41]; meanwhile, zinc 
sulfate [42], zinc acetate hydrate [43], zinc-rich foods [44], 
and zinc carnosine [45] were also applied (listed in Table 1). 
Except that zinc-carnosine chelate compound was treated by 
enema with a suspension, all other zinc sources were orally 
taken in tablets or capsules with a dose of 30–35 mg/day for 
30–60 days.

The therapeutic effects of zinc supplementation on IBD 
could be determined through clinical examination, histo-
pathological score, and biochemical examination [45–50]. 
The clinical severity of IBD were mainly evaluated through 
some scoring methods including the Mayo score, Ulcera-
tive Colitis Endoscopic Severity Index (UCEIS) score, 
Matts endoscopic score, and the Clinical Activity Index 
(CAI) (listed in Table 2). The clinic performances of IBD 
patients include apparent bleeding, erosion, and ulcers 
observed under endoscopy, as well as pathological changes 
such as crypt expansion, mucosal layer detachment, goblet 
cell depletion, glandular reduction, and inflammatory cell 
infiltration in the biopsy intestinal tissue [45]. These situa-
tions became relived by zinc supplementation, which have 
been confirmed by Matts endoscopic score and Geboes his-
topathological score (GHS), Matts endoscopic score, and 
GHS et al. [40, 44, 45]. In addition, some studies showed 
that zinc supplementation could obviously increase the con-
centration of plasma and erythrocyte zinc in UC and CD 
patients [35, 39, 41].

The protective mechanisms of zinc on IBD have been 
preliminarily explored in clinical study, which mainly 
involve the immunomodulation, intestinal epithelial repair, 
and microbiota’s balance. In terms of the immunomodu-
lation, some research suggests that zinc plays an impor-
tant role in maintenance of balanced intestinal mucosal 
immune, which mainly involved the regulation of T cells. 
It has been found that zinc deficiency can lead to an imbal-
ance of T cell subsets and promote inflammatory reactions, 
which can then exacerbate the pathological severity of IBD 
[51–53]. Increased Th17 cells and decreased Tregs were 
observed in IBD patients [54–56], while physiological zinc 

Table 1  Zinc sources and their 
associated therapeutic potentials

Zinc sources Therapeutic potentials Reference

Zinc gluconate Increase plasma zinc; reduce cytokines and the Mayo score [39–41]
Zinc sulfate Resolve permeability alterations in CD patients; improve intesti-

nal barrier function
[42]

Zinc acetate hydrate Improve zinc deficiency and disease activity in IBD [43]
Zinc-rich foods Induce clinical remission in UC patients [44]
Zinc–carnosine Accelerate mucosal healing in UC [45]



Zinc and Inflammatory Bowel Disease: From Clinical Study to Animal Experiment  

supplementation could ameliorate human IBD through 
inhibiting Th17-induced cytokines [57] or increasing the 
number of Tregs [58]. Other researches focused on the 
changes of some frequently used immune parameters, which 
is not closely related to certain immune cells. Significantly 
elevated fecal calprotectin and serum CRP were determined 
in IBD patients with zinc deficiency [19, 34]. However, zinc 
supplementation could increase serum interleukin 10 (IL-10) 
[39], decrease interleukin 2 (IL-2) [40], and tumor necrosis 
factor-alpha (TNF-α) [39]. There are almost no clinical tri-
als systematically studying the effects of zinc on intestinal 
epithelial barrier. There is only one paper which demon-
strated that zinc supplementation could significantly reduce 
the intestinal permeability by lactulose/mannitol ratio (L/M) 
test [59]. The composition of gut microbiota in IBD patients 
is distinct from that of healthy individuals, and disruption of 
the microbiota’s balance can lead to inflammation and intes-
tinal damage [60]. Furtherly, gut microbiota-based therapeu-
tic approaches might be used for the treatment of IBD [61]. 
However, it is a need to be explored whether zinc is involved 
in regulating intestinal flora in IBD patients.

Taken together, adequate zinc supplementation can help 
alleviate the clinical symptoms of IBD patients to some 
extent. However, it is worth noting that excessive zinc intake 

will cause obvious toxic symptoms (nausea, vomiting, epi-
gastric pain, lethargy, and fatigue) [62] and impair immune 
response [63]. Although present published researches never 
used toxic doses to treat IBD, the toxicity of excessive zinc 
remains a high concern (Fig. 1).

Animal Experiments Related to Zinc and IBD

Although the relationship between appropriate zinc intake 
and remission of IBD severity has been determined based 
on clinical studies, the relevant mechanisms are still blurry. 
Animal experiment, as the most rigorous research method 
under controlled conditions, is suitable for studying inter-
vention effects and mechanisms [64]. In the animal experi-
ment focusing on the relationship of zinc levels and IBD, 
tablets, capsules, or dietary therapies are mostly used. In 
recent years, zinc nanoparticles (NPs) have been brought 
into focus due to its faster and better performance com-
pared to traditional zinc sources [65, 66]. NPs possess 
higher physical activity and chemical neutrality, and their 
bioavailability can be enhanced because of the increased 
surface area of respective minerals [67]. Researchers have 
developed several nanomedicines to specifically treat IBD, 

Table 2  Scoring methods evaluating the severity of clinical symptoms and pathological changes

Item Scoring method Parameters and scores Reference

Mayo score Mayo Stool frequency (0–3)
Rectal bleeding (0–3)
Findings of flexible proctosigmoidoscopy (0–3)
Physician’s global assessment (0–3)
Score range: 0–12 point

[46]

Endoscopic score UCEIS Vascular pattern (1–3)
Bleeding (1–4)
Erosions and ulcers (1–4)
Score range: 3–10 point

[47]

Matts Mild granularity of the mucosa, with mild contact bleeding (1)
Marked granularity and oedema of the mucosa (2)
Contact bleeding, and spontaneous bleeding (3)
Severe ulceration of mucosa with hemorrhage (4)
Score range: 1–4 point

[48, 49]

Clinical Activity Index CAI No of stools weekly (0–3)
Blood in stools (based on weekly average) (0–4)
Investigator’s global assessment of symptomatic state (0–3)
Abdominal pain/cramps (0–3)
Temperature due to colitis (′C) (0–3)
Extraintestinal manifestations (3–9)
Laboratory findings (1–4)
Score range: 3–29 point

[45]

Histopathological score GHS Structural (architectural change) (0–3)
Chronic inflammatory infiltrate (0–3)
Lamina propria neutrophils and eosinophils (0–6)
Neutrophils in epithelium (0–3)
Crypt destruction (0–3)
Erosion or ulceration (0–4)
Score range: 0–22 point

[50]
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and the therapeutic mechanisms of zinc NPs are similar to 
traditional zinc, which include eliminating reactive oxy-
gen species (ROS), inhibiting inflammation, repairing the 
mucosal barrier, and eradicating pathogens [68–73]. In this 
review, we focus on the effects of zinc on the clinical results, 
inflammatory response, intestinal barrier, and gut microbiota 
in IBD animals, rather than the intervention differences of 
different zinc sources.

Clinical Evaluation and Pathological Observation

Similar to human clinical examinations, clinical detections 
in experimental IBD animals include clinical observation, 
disease activity index (DAI), colonoscopy, and serum zinc 
content detection. In animals suffered from colitis, food 
intake and body weight were obviously reduced [74–77], 
and DAI was significantly increased [74, 78]. Interest-
ingly, zinc supplementation could significantly increase 

the average daily gain, feed intake [79–81], body weight 
[77, 82, 83], and serum zinc concentration [30] and mark-
edly reduce DAI scores in IBD animals [75, 83].

Pathological examination includes gross and histo-
pathological observation on colon. Colitis animals had 
shortened colon [74, 78, 84] and increased wet weight 
[76, 85]. The intestinal mucosa showed congestion, 
edema, thickening, and obvious ulcers formation [76, 
86]. Intriguingly, zinc supplementation could increase 
the colon length [65], mitigate the colonic injury, and 
decrease the macroscopic colon mucosa damage index 
(CMDI) [75]. Microscopically, the loss of mucosal epi-
thelia and crypts and infiltration of inflammatory cells 
were observed in colon [87], while zinc supplementation 
is able to restore the damaged histological structure [83], 
increase the thickness and width of intestinal mucosa 
[88], and increase the ratio of jejunal mucosal villus 
height to crypt depth [79].

Fig. 1  The left part marked light blue shows that IBD patients suf-
fer from deficiency of some trace elements including zinc, Mn, Se, 
and Cu, and exposure to Pb, As, Cu, and Fe in drinking water would 
induce the deterioration of IBD. IBD patients often have high hos-

pitalization rate and surgical risk. The right part indicates that the 
serum zinc, erythrocyte zinc, serum IL 10, and Tregs are increased, 
and the scores of Mayo, UCEIS, CAI, and Matts, and the contents of 
Th17, MT1G, and IL-2 are decreased
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These results indicate that zinc supplementation can 
alleviate the severity of colitis showing as improving the 
clinical, anatomical, and histological status of experimental 
animals.

Zinc and Intestinal Barrier

Intestinal barrier, which is consisted of mucous layer, epi-
thelial tight junction, immune cells, and intestinal flora, 
is important for protecting body from damages caused by 
virus, pathogen, and toxins. Zinc plays a pivotal role in 
modulating the secretion of mucus, the structure of tight 
junction, and the balance of intestinal flora.

The mucous layer is made from lamina propria and epi-
thelial, including differentiated cells and undifferentiated 
cells. Differentiated cells include absorption epithelial, gob-
let cells, and Pan’s cell [89, 90]. Mucus secreted by goblet 
cells which cover overall inner surface of gut-intestine tract 
(GIT) is a physical barrier to protect from chemical, physi-
cal injuries and pathogens [91]. It has been reported that 
goblet cells became decreased in experimental colitis, while 
goblet cells and secreted mucus were increased with the zinc 
supplementation [75, 85, 92–94]. Regulation of goblet cell 
function may be related to Zinc Transporter (ZnT) [95]. Zinc 
Transporter 7(ZnT7) is responsible for the accumulation 
of zinc in the Golgi apparatus of cells [96, 97] and mucus 
secretion of goblet cells. If ZnT7 is knocked out, C57BL/6 
mice become zinc deficiency [95].

Tight junction (TJ) is composed of cytoplasmic attach-
ment proteins including occludin, claudins, and scaffold 
protein, which plays pivotal physiological roles in prevent-
ing abnormal immune function caused by intestine flora 
and active inflammation cause by bacteria and excessively 
infiltrated antigen in the mucous [98]. In IBD, colonic per-
meability is increased, which has been determined by the 
increasing of the flux of isothiocyanate glucan fluorescein 
isothiocyanate-dextran 4  kDa (FD4), the decreasing of 
colonic transepithelial electrical resistance (TEER), and 
ratio of lactose to mannitol [80, 81, 99]. The mechanisms 
of high colonic permeability are related to the reduced 
expression of tight junction proteins, including occludin 
and claudin-3 [100]. When dietary zinc was supplemented, 
increased colonic permeability was suppressed because of 
the increased expression of claudin-1, occludin, and tight 
junction protein 1(ZO-1) [80, 81, 99, 101].

It was well known that the most gut microbiota growing 
in the mucus layer serves as the first line of defense against 
harmful microbial invasion. In colitis models, the diversity 
and stability of gut microbiota are disturbed, showing as 
an increase in actinobacteria and decrease of bacteroidetes 
and facultative anaerobic bacteria [102, 103]. Zinc sup-
plementation could increase the stability and diversity of 
the microbiota [88] and decrease pH values for maintaining 

acid–base balance of intestinal contents [93]. In addition, 
the internal balance of zinc affects the interaction between 
intestinal microbiota and mucosal immune function [18].

Zinc and Intestinal Mucosal Immunity

In terms of non-specific immunity, the functions of poly-
morphonuclear leukocytes, macrophages, and dendritic cells 
(DCs) in IBD model animals are all inhibited. In the body 
with zinc deficiency, the function of polymorphonuclear 
leucocytes (PMN) is impaired, showing decreased activity, 
phagocytosis, and decreased host defense [104–106]. Neu-
trophil infiltration is a common feature in the pathogenesis 
of IBD [105, 107, 108]. In IBD, mucosal myeloperoxidase 
(MPO) activity, mucosal prostaglandin  E2  (PGE2), and Leu-
kotriene  B4  (LTB4) levels were significantly increased, all of 
which were improved after supplementing with zinc [109]. 
It has been reported that DCs in the inflamed colonic lamina 
propria were increased in number with colitis development 
[110, 111]. However, little is known about the effect of zinc 
levels on macrophages and DCs in IBD, which need to be 
further researched. It seems that researchers have overlooked 
the study of zinc intervention on the specific immune func-
tion of IBD animals, although many studies found that zinc 
deficiency or IBD decreased the production of thymulin and 
induced the decrease and subset-unbalance of T cells [51, 
58, 86, 112, 113].

Furthermore, there are many studies about the relation-
ship between zinc deficiency and cytokine network in IBD 
animal models. Zinc deficiency in IBD promotes inflamma-
tory reactions through increasing the secretion of IL-1β and 
TNF-α [65, 66, 114]. After zinc supplementation, it can sig-
nificantly increase the levels of Foxp3, IL-10, and TGF-1β, 
reduce IL-8,IL-1 β, TNF-α, prostaglandin-endoperoxide 
synthase 2 (Cox-2) levels in intestinal tissue [65, 66, 83, 
115]. As for related mechanism, there are a few studies on 
signaling pathways and zinc finger proteins. Zinc enriched 
diet fed to piglets decreased colonic toll-like receptor 4 
(TLR4) expression and reduces nuclear factor-kappa B (NF-
κB) signaling and autophagy, which reduced colonic inflam-
mation [116]. Zinc finger protein A20, induced by TNF-α, 
is an anti-inflammatory protein that regulates the activation 
of transcription factor NF-κB [117]. Mice with specific 
A20 deficiency will spontaneously developed lymphocytic 
dependent colitis and serum negative ankylosing arthritis 
[112], and zinc supplementation can promote upregulation 
of A20 mRNA and finally lead to the decreased expression 
of TNF-α, IL-1β, and IL-8 [118–120]. Meredith et al. found 
that the zinc finger transcription factor zDC (also known as 
Zbtb46 or Btbd4) is a negative regulatory factor that inhibits 
the activation of classical DCs [121], which proved a clue for 
further researching the relationship between zinc and DCs.
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Zinc and Antioxidant

Zinc participates in antioxidant activity by inhibiting oxi-
dase activity, promoting antioxidant activity, inducing 
metallothionein (MT) gene expression, and competing 
with copper and iron ions.

Zinc is an inhibitor of nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase, which acts as an elec-
tron donor and catalyzes the generation of oxygen  (O2) 
and generates superoxide  (O2

−). Zinc is also a cofactor of 

superoxide dismutase (SOD), which catalyzes the dismuta-
tion of  O2 to  H2O2 [119, 122, 123]. During the pathogen-
esis of IBD, it has been found that reactive oxygen species 
(ROS) and malondialdehyde (MDA) levels were signifi-
cantly increased, while glutathione (GSH) levels were 
significantly decreased [65, 66]. Interestingly, supplemen-
tary of zinc alone or in combination with other drugs can 
reduce MDA and nitric oxide (NO) levels and significantly 
increase SOD and GSH levels, indicating that zinc has anti-
oxidant effects on experimental colitis [75, 124].

Fig. 2  Overview diagram of research on IBD animal model. The pre-
sent studies involve clinical and pathological changes, and its mecha-
nisms are about intestinal barrier, immune function, and antioxidant. 

Blue arrow: downregulation. Orange arrow: upregulation. Red dotted 
arrow: ROS combine with MT

Table 3  The therapeutic mechanisms of zinc in IBD animal models

Direction Relevant results Reference

Intestinal barrier Decrease the macroscopic CMDI score; restore the damaged mucosal structure; increase the thick-
ness and width of intestinal mucosa; increase goblet cells and secreted mucus; increase expression 
of claudin-1, occludin, and tight junction protein 1

[75, 79, 81, 83, 88, 99]

Immunity Reduce mucosal MPO activity, PGE2, and LTB4 levels; increase anti-inflammatory cytokines in 
intestinal tissue

[66, 83, 109, 115]

Antioxidant Reduce MDA and NO levels; increase SOD and GSH levels; reduce MT gene expression; antagonize 
copper and iron ions

[75, 120, 124]

Microbiota Increase the Lactobacillus and Bifidobacterium; decrease the Enterobacter, Enterococcus, and S. 
aureus

[65]
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MT is a small molecule protein containing homocyst-
eine [125], which is an effective electrophilic scavenger 
and anti-oxidant [126]. MT can capture various ROS, 
including  O2

−,  H2O2,  OH−, and NO [127]. MT can regu-
late zinc homeostasis by binding with 20% intracellular 
zinc [125]. Under oxidative stress conditions, micronu-
trients are released from their complexes with MT and 
redistributed within cells to exert antioxidant effects [120]. 
The expression of endogenous MTs can be stimulated by 
moderate dietary zinc supplementation. By transcriptom-
ics analysis, it was demonstrated that high-dose dietary 
zinc can induce the expression of MT-encoding genes in 
the colon of healthy mice and has a significant protective 
effect on colitis in mice [128]. Using wild-type (MT + / +) 
and MT-null (MT − / −) mice as the research object, zinc 
treatment suppressed DSS-induced colitis particularly 
in MT + / + mice [92]. In the DSS-induced mouse colitis 
model, MTs exert a protective effect on colonic mucosal 
inflammation through their anti-inflammatory effect on 
macrophages, while MT deficiency can exacerbate the 
disease [87].

In addition,  Fe2+ and  Cu2+ can catalyze  H2O2 to generate 
 OH−, while  Zn2+ can replace these redox active metals and 
reduces  OH− generation through competing with  Fe2+ and 
 Cu2+ ions and binding to cell membranes and proteins [119, 
122]. It is worth noting that zinc supplementation is help-
ful for the recovery of IBD, but its dosage should be well 
controlled, as excessive zinc can lead to side effects which is 
related to the antagonized levels of Cu and Fe [129].

The overview of the relationship between zinc and IBD 
animals is shown in the Fig. 2, and the therapeutic mecha-
nisms are listed in Table 3.

Conclusion

In this review, substantial evidence highlights the signifi-
cant role of zinc interventions in mitigating the progres-
sion of IBD in clinical patients and animal models. Zinc 
plays an important role in maintaining intestinal homeo-
stasis including modulating mucosal barrier integrity and 
immune response and maintaining the balance of redox 
state and gut microbiota.

Intestinal immune dysfunction is one of the important 
mechanisms of IBD, but there is limited research on the 
immune related mechanisms when studying the effect of 
zinc levels on IBD. In clinical study, zinc supplementation 
has been found to mainly regulate T cell subsets. However, 
in the researches of animal models, changes in polymor-
phonuclear leukocytes are of greater concern. Hence, the 
identification of disease-specific alterations in the mucosal 
immune function is of utmost importance to further study 
the immune-related mechanisms. Consequently, it is 

imperative to conduct further trials in order to determine 
appropriate zinc dosage for providing a certain positive 
outcome of using zinc supplementation as adjunctive 
therapy for IBD.

Zinc NPs are widely used as an animal feed additive 
because zinc NPs have higher bioavailability and can 
effectively improve animal growth performance compared 
to traditional zinc sources [130, 131]. Meanwhile, NPs 
have unique physicochemical properties such as target-
ing to the site of inflammation and altering the pharma-
cokinetics of other drugs [132]. Therefore, zinc NPs have 
the prospect of being used in clinical practice in IBD, so 
designing new NPs and clarifying its effects are worthy of 
further vigorous exploration.
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