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Abstract
Honey bees are commonly exposed to a broad spectrum of xenobiotics, including heavy metals. Heavy metal toxicity is 
of concern in the context of global pollinator declines, especially since honey bees seem to be particularly susceptible to 
xenobiotics in general. Here we summarize current knowledge on the interplay between cadmium, one of the most toxic and 
mobile elements in the environment, and honey bees, the primary managed pollinator species worldwide. Overall, cadmium 
pollution has been shown to be ubiquitous, affecting industrial, urban and rural areas alike. Uptake of this heavy metal by 
plants serves as the primary route of exposure for bees (through pollen and nectar). Reported cadmium toxicity consists of 
lethal and sublethal effects (reduced development and growth) in both adult and larval stages, as well as various molecular 
responses related to detoxification and cellular antioxidant defence systems. Other effects of cadmium in honey bees include 
the disruption of synaptic signalling, calcium metabolism and muscle function.
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Introduction

The honey bee (Apis mellifera L., 1758) is an economically 
significant domestic insect valued for numerous products 
including honey, beeswax, pollen, propolis and royal jelly 
[1]. Additionally, the ecosystem services provided by these 
animals in terms of pollination of wild plants and agricul-
tural crops are arguably even more important [2, 3]. Bees 
contribute through these services to the preservation of 
plant biodiversity and consequently all associated organ-
isms higher up in the food chain. Likewise, pollinators play 
a key role in agricultural sustainability and food security in 
a modern climate [4–6]. However, a decrease in economic 
gain, stability of pollination and bee populations has been 
described across the Western world [4, 7]. In the last dec-
ades, wild and domestic pollinators have been experienc-
ing severe declines, raising considerable concern within the 
scientific community, as well as in the rural sector (agricul-
ture and beekeeping) [6, 8–15]. Although the multitude of 

interacting factors behind these losses are far from being 
fully understood, bee declines have been coupled with the 
increasing effects of pests and diseases (e.g. the ectoparasitic 
mite Varroa destructor), pesticide use, climate change, feed 
shortage (melliferous plants),and the intensification of agri-
cultural practices causing habitat and forage biodiversity loss 
[9, 11, 16, 17]. In this complex background, environmental 
contamination, including heavy metal pollution, is believed 
to have significant consequences for bee health, contributing 
to these declines [3, 15, 18, 19].

Since the late nineteenth century, increasing anthropo-
logical activities related to industrial, agricultural and urban 
outputs have caused a steep increase in environmental heavy 
metal burdens around the globe. This, in combination with 
the fact that heavy metals do not decompose, has led these 
contaminants to commonly be found in the atmosphere, soil 
and water, as well as in numerous organisms after entering 
biological cycles [18, 20–22]. In general, honey bees are 
exposed to mineral elements through food and water, and 
this is no different for heavy metals [15]. Accumulation of 
heavy metals has previously been shown in plants, including 
in nectar and pollen, the main feed recourses gathered by 
honey bees [22–28].Other routes of contamination for bees 
include the inhalation of contaminated airborne particles and 

 *	 Maria Grazia Cappai 
	 mgcappai@uniss.it

1	 Institute of Animal Productions of the Department 
of Veterinary Medicine, University of Sassari, Via Vienna 2, 
07100 Sassari, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s12011-024-04118-3&domain=pdf
http://orcid.org/0000-0001-8863-9834


	 S. Knoll, M. G. Cappai 

adhesion to their hairy exterior from soil, plants and atmos-
pheric deposition [29–31].

Though metals like copper (Cu), zinc (Zn) and selenium 
(Se) are crucial trace elements for insect metabolism, other 
elements like cadmium (Cd), lead (Pb), mercury (Hg) and 
arsenic (As) have no known physiological function within 
the insect body [15, 31]. The latter are believed to be toxic 
even at low concentrations. Overall, toxic heavy metals 
interfere with biological processes through interaction with 
macromolecules and/or replacing/affecting the function of 
essential elements in other ways [15, 18, 32, 33]. In insects, 
heavy metals have been reported to cause cellular structural 
and genetic damage among others, potentially disrupting 
cell functionality and causing apoptosis and mutations. Fur-
thermore, negative effects on insect survival, development, 
growth and reproduction have been pointed out [22].

While the specific adverse effects of various heavy metals 
on pollinators are still largely unknown [19], recent efforts 
have been undertaken to define the effects of toxic metals 
on honey bee development and survival, including from a 
physiological and biochemical point of view [18, 23, 34–41]. 
Furthermore, heavy metals in bees and their products, as 
well as the interplay with environmental contamination, 
have received considerable attention [5, 42–54]. Lastly, the 
potential role of honey bees and their products as bioindica-
tors for toxic metal pollution has been highlighted [14, 15, 
29, 30, 39, 45, 55–66].

In light of this, this review outlines the interrelation 
between honey bees and Cd, one of the most toxic and 
mobile elements in the environment [35, 67], based on the 
most relevant scientific literature. This review means to cen-
tralize the current knowledge in a comprehensive manner 
in the hope of instigating further research and management 
efforts in mitigating heavy-metal-related pollinator declines. 
A summarizing figure of the main Cd emission sources, con-
tamination routes for bees and the effects of this heavy metal 
on honey bees is shown in Fig. 1.

Cadmium (Cd)

Cadmium is a highly toxic metal harmful to humans’, ani-
mals’ and plants’ health [68, 69]. Cadmium is naturally pre-
sent in soil, the lithosphere and sedimentary rock [70] and 
is often found together with zinc, lead and copper ores [68]. 
Natural dispersion of Cd results from airborne soil particles, 
forest fires, volcanic activity, soil erosion and the abrasion 
of rocks [67, 69, 70]. Annual natural emission is reported at 
1300–41,000 tons [67] and the global soil concentration of 
this heavy metal is estimated at 0.07–1.1 mg kg−1 in natural 
ecosystems [71]. The concentration of this toxicant in differ-
ent matrices, as well as based on geographical location and/
or soil type, can be found in the current scientific literature 
[22, 67, 68, 71].

Fig. 1   The main Cd emission sources, contamination routes for bees and the effects of cadmium on honey bees
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Elevated presence of Cd in the environment is mainly 
accredited to anthropogenic sources linked to a wide range 
of human activities [69, 72]. Specifically, mining, smelt-
ing and refining of various metals, fossil fuel combustion, 
cement production, the use of phosphate fertilizers and 
municipal and sewage sludge incineration are common 
sources of Cd pollution. Additionally, the use of Cd in elec-
tronic devices, batteries and solar panels has led to the leach-
ing of this toxicant from landfill sites into the environment. 
Lastly, industrial use of Cd as a corrosive reagent, stabilizer 
in PVC products and in colour pigments generates a contin-
ued source of Cd contamination [35, 67, 69–73].

Due to its specific chemical characteristics, Cd and its 
compounds are easily dispersed through water, polluting 
rivers and natural bodies of water located in the vicinity of 
emission sources [69, 70]. Airborne Cd can be dispersed 
over short and long distances and is deposited ubiquitously, 
including with rainwater [67, 69, 70]. Soil contamination 
results from the deposition of airborne particles, dispersion 
through water and the large variety of natural and anthropo-
genic Cd sources discussed above [69, 72]. As a result, Cd 
pollution is widespread around mining, urban, agricultural 
and industrial areas [69, 74] and can even affect seemingly 
“unpolluted” environments [15, 66]. Finally, given the bio-
accumulative properties of Cd in both plants and animals 
(with an approximate half-life of 25–30 years), this pollutant 
is commonly found in a wide range of organisms including 
mushrooms, rice, wheat, vegetables, crustaceans, molluscs 
and honey bees [15, 68–70, 75–77].

Cd Exposure of Bees

Bees are exposed to Cd mostly through contaminated plants 
[15, 22]. Pollen and nectar, the main feed resources collected 
by honey bees, have been shown to be contaminated with Cd 
[39, 42, 61, 78–80] and bees not to avoid contaminated feed 
recourses as they most likely cannot discriminate between 
metal-contaminated and non-contaminated plants [19, 74]. 
Furthermore, a dose-dependent relationship between the 
Cd content of bees and the concentration of this contami-
nant in their feed has been found [35]. Besides this, bees 
are exposed to Cd through inhalation and deposition of air-
borne particles [22, 35, 40, 45, 46, 50, 60]. Recent research 
comparing bee whole-body Cd concentrations with that in 
their haemolymph revealed significant differences (lower 
haemolymph concentrations) which could be accredited to 
the accumulation of Cd-contaminated dust particles on the 
bee’s hairy exterior surface [15]. External Cd in turn could 
be ingested by bees during grooming [22]. Alternatively, 
Sadowska et al. [49] report the contribution of externally 
adhered Cd to the whole-body content of this metal in bees 
to be negligible.

As Cd pollution pressure differs according to spatial 
and temporal variations, honey bee exposure trends are 
complex and highly dependent on their immediate envi-
ronment [15, 22, 42, 43, 45, 46, 49, 50, 60, 61]. First of all, 
variations in Cd pollution pressure for bees might result 
from the availability of different plant resources for forag-
ing [20–22, 78]. Indeed, Cd contents will vary substan-
tially between plant species as well as between cultivars 
and genotypes of the same species [68]. This being said, 
limited information is currently available on the metal con-
centrations in the pollen and especially nectar of different 
plants [22].

Next, Cd contamination will vary based on the general 
location of apiaries, likely related to the influence of both 
natural and anthropogenic emission sources. In this regard, 
significant Cd burdens have been found in honey bees in 
industrial, urban, agricultural and rural areas around the 
globe [15, 39, 42, 43, 45, 46, 50, 53, 60, 62, 64, 68]. A recent 
survey analysing the Cd content of bees from various areas 
in Serbia revealed bees residing in the vicinity of industrial 
zones to be exposed to significantly higher Cd pollution as 
compared to those from urban or rural areas [15], as previ-
ously reported [20, 22, 48, 50]. In Sardinia, bees located near 
a mining area were more affected by this contaminant [44]. 
In Italy, Poland and Turkey, Cd contamination was greater 
in urban than in rural areas [29, 49, 53, 64, 66]. Substantial 
Cd contamination in bees from agricultural zones [15, 22, 
42, 43, 45, 60, 62] and seemingly unpolluted rural areas 
[15, 62, 64, 66] has been reported as well which, in certain 
cases, was even higher as compared to industrial zones [15, 
20, 60, 64].

Significant temporal variations in Cd contamination of 
bees have been highlighted within the same study area [15, 
42–44, 60]. Such variations are hypothesised to be the result 
of seasonal changes in dominant Cd dispersion pathways. 
For example, airborne Cd might represent a major contami-
nation route during winter as climatic conditions promote 
atmospheric particle deposition [15]. Additionally, increased 
airborne Cd could be related to the elevated combustion of 
fossil fuels at those times [15]. Supporting this hypothesis, 
toxicant monitoring of deposited airborne particles by [15] 
revealed substantially higher Cd contents in winter, espe-
cially near industrial areas. Alternatively, seasonal variations 
in Cd exposure might be correlated to the state of activity of 
honey bees in general [15]. Overall, non-essential element 
concentrations in bees have been shown to be higher dur-
ing spring and summer [15, 20, 44, 60] when bees are most 
active and thus have maximal contact with toxicants.

Lastly, significant differences in Cd pressure on a smaller 
time scale have been pointed out as well [45, 64]. van der 
Steen et al. [45] found significant variations in the Cd con-
tents of bees from the same location over a 3-month period 
and argued that in highly populated and developed countries, 
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fluctuations in anthropogenic Cd emission serve as the main 
factor influencing Cd pollution pressure for honey bees.

Effects of Cd on Honey Bees

Cadmium‑Related Mortality and Altered 
Development

Current knowledge on the impacts of Cd on honey bee sur-
vival is still limited [23, 35, 81]. Nevertheless, lethal and 
sublethal effects of Cd exposure on larval and adult honey 
bees have been shown, even at ecologically relevant concen-
trations [35]. Specifically, reduced development and growth 
and increased mortality have been pointed out [23, 35, 81].

Cronn [81] first studied the lethal effects of Cd on adult 
bees and determined this toxicant to be moderate to highly 
toxic for honey bees. In a series of experimental trials, die-
tary supplementation of Cd to young nurse bees revealed 
a significant increase in mortality occurring as early as 
24 h after initiation of the experiment. Median lethal doses 
(LD50) for oral intake of two Cd salts over various lengths 
of exposure (for CdCl2, 3.51 µg Cd/bee for 48 h, 2.80 µg Cd/
bee for 96 h; for CdSO4, 2.34 µg Cd/bee for 48 h, 1.44 µg 
Cd/bee for 96 h) were reported [81]. Analogous results 
were published by Di et al. [35] where Cd consumption by 
honey bee foragers (dissolved in 50% sucrose solution) led 
to increased mortality both over time and with increasing 
dose. Furthermore, mortality was shown to increase more 
rapidly with increasing Cd treatment and a lethal concen-
tration (LC50) of Cd of 78 mg L−1 was reported [35]. Other 
research efforts focussing on the physiological responses of 
honey bees to Cd revealed no lethal effects on adult individu-
als for supplementation ranging between 0.001 and 0.1 mg 
L−1 over a period of 2–10 days [18, 28, 31, 36].

Di et al. [35] reported the results of acute and chronic 
Cd toxicity tests on honey bee larvae through dosing of an 
artificial diet (53% W/W commercial freshly frozen royal 
jelly, 6% glucose, 6% fructose, 1% yeast extract, and 34% 
ultrapure water), showing substantial variation as compared 
to foragers. In this regard, authors revealed sublethal effects 
on larval development in addition to a dose-dependent 
increase in mortality [35]. Negative effects on larval growth 
and development were characterised by significantly lower 
pupal weight for animals treated with 3.16 mg L−1 of Cd and 
reduced growth rates starting from 1.05 mg L−1 onwards. 
A significant difference in mortality was seen starting from 
day 4 after initiation of the experiment. For the highest Cd-
doses (9.47–28.41 mg L−1), mortality of 100% was shown 
after less than 1 week and some treatment groups never even 
reached the pupal stage. These results highlight the particu-
larly high toxicity of Cd for honey bee larvae with a LC50 of 
0.275 mg L−1 [35]. These values correspond to realistic Cd 

burdens for honey bees, suggesting larval survival to poten-
tially be affected by Cd pollution under field conditions [35].

Besides these effects at the individual level, it should be 
considered that increased adult and brood mortality as well 
as altered development will likely have negative impacts on 
whole colony health [25, 35, 37]. However, colony-level 
impact studies of heavy metals, including Cd, are lacking. 
To the best of our knowledge, only one research investigated 
the effects of Cd on whole bee hives and revealed oral sup-
plementation of environmentally realistic concentrations 
(through sugar syrup and pollen patties) for 60 days to have 
an effect on larval honey bee stages in particular [28]. Spe-
cifically, Cd treatment reduced pupal survival significantly, 
indicating high brood mortality to be a real threat to colonies 
commonly exposed to Cd. Although no difference in total 
worker weight was recorded, authors argue prolonged Cd 
exposure (exceeding 60 days) could reduce overall worker 
populations over time [28]. Earlier research reporting fewer 
adult bees and reduced productivity in hives located near 
heavy metal–contaminated industrial areas supports this 
hypothesis [82].

Molecular Response to Cd Toxicity

Studies investigating the molecular responses of honey bees 
to Cd are relatively more copious. Overall, efforts have been 
made to identify the effects of this pollutant on detoxification 
and cellular antioxidant defence systems in particular [18, 
28, 34, 36–39, 82, 83]. These effects are discussed together 
in the next paragraphs as both systems share various key 
aspects. Other molecular effects of Cd in honey bees include 
the disruption of synaptic signalling, calcium metabolism 
and muscle function.

Metallothionein

Metallothioneins (MTs) are a superfamily of metal-binding 
proteins present in all eukaryotes which play crucial roles in 
metal homeostasis and detoxification. These molecules are 
central for increasing metal tolerance, reducing toxic metal 
burdens, and are known to protect organisms against the 
toxic effects of metals, especially Cd [84, 85]. In fact, the 
initial description of MTs was as Cd‐binding proteins in the 
kidneys of horses [86].

Experimental research [81] first uncovered Cd-bind-
ing proteins identified as MTs in honey bees. This author 
reported a close to linear rise in MTs with increasing Cd 
supplementation and time, and honey bee mortality seemed 
to increase slower as compared to MT accumulation, indicat-
ing a protective function [81]. Production of such proteins 
was also reported in bees from Cd-contaminated areas, sug-
gesting environmental Cd exposure to induce MT [34, 81].
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The Apis mellifera metallothionein gene(AmMT) was 
only recently identified, characterised and sequenced and 
was found to code for a single protein [38]. Purać et al. 
[38] went on to test the Cd detoxification capacity of this 
protein through overexpression of recombinant AmMT in 
Escherichia coli revealing this to cause increased metal 
tolerance. Further laboratory and field experiments with 
honey bee workers showed a dose‐dependent relationship 
between Cd contamination and AmMT expression [38]. This 
was expected as Purać et al. [38] identified a metal-induced 
transcription factor promotion region flanking the honey bee 
MT gene, as previously found in other animals, including 
insects [87]. An increase in MT expression resulting from 
Cd exposure has also been reported in Musca domestica, 
Folsomia candida and Orchesella cincta [88–90]. Research 
efforts [38, 81] have provided the cornerstone for our under-
standing of metal homeostasis and regulation in honey bees 
and the potential role of MTs in metal detoxification and 
tolerance of Cd.

Besides their role in metal homeostasis and detoxifica-
tion, MTs play an important function in cellular antioxidant 
defence systems. This is achieved firstly through the bind-
ing of metals preventing the production of free radicals and 
secondly by the direct scavenging of reactive oxygen species 
[84, 91]. Moreover, molecular signalling related to oxidative 
stress is known to induce MT expression as well [92, 93] and 
has been identified in honey bees [38]. Hence, Cd-induced 
MT expression in honey bees could (at least partly) be due 
to oxidative stress response.

Oxidative Stress

Heavy metals and their ions are known to cause oxidative 
stress by generating an increase in free radicals and highly 
reactive oxygen species [32]. Under normal circumstances, 
the cellular antioxidant defence system (superoxide dis-
mutase family; SOD, catalase; CAT, among others) neutral-
izes these threats, but in the presence of excess amounts of 
toxicants (like heavy metals), defences are depleted, lead-
ing to oxidative damage [94]. Specifically, Cd is known to 
impede cellular antioxidant defence systems through the 
inhibition, depletion and/or replacement of essential ele-
ments, indirectly leading to oxidative stress [95]. The effects 
of Cd exposure can consequently be quantified by measuring 
the levels and activity of various components of the antioxi-
dant defence mechanism, as well as the amount of oxidative 
damage in cells.

The effects of environmentally realistic Cd concentra-
tions on the cellular antioxidant defence system of honey 
bees were investigated [18]. Authors revealed the feeding 
of Cd-contaminated sucrose (0.01–0.1 mg L−1) to adult 
worker bees to cause upregulation of Cat, Sod1 and Sod2 
gene expressions, genes coding for the enzymes CAT and 

SOD respectively [96]. A linear dose-dependent increase in 
Cat and a non-linear dose-dependent increase in Sod gene 
expression was found [18], in correspondence with previ-
ous research in other invertebrates [97–99]. Upregulation of 
these genes shows an increased need to eliminate oxidizing 
radicals and thus oral Cd treatment to cause a heightened 
risk of oxidative stress in honey bees [18]. Additionally, an 
increased expression of antioxidant enzyme genes (includ-
ing Cat and Sod) was found in bees from areas contaminated 
with heavy metals, further suggesting this to be a protective 
adaptation to heavy metal–mediated oxidative stress, even 
though contamination by Cd specifically was not investi-
gated in these studies [5, 37].Lastly, no concrete evidence 
of increased oxidative damage was found by [18] after 48 h, 
though authors argue prolonged exposure to Cd might gener-
ate clearer results.

Follow-up research by [37] explored the effects of oral 
exposure of honey bees to Cd on another group of impor-
tant protective enzymes. There, authors revealed, in accord-
ance with comparable experiments in other arthropods [100, 
101], a dose-dependent increase in gene expression of three 
classes of glutathione S-transferase (GST: Delta;Gstd1, 
Sigma;Gsts1, microsomal;Gstmic1). These are multifunc-
tional enzymes that play crucial functions in the manage-
ment of oxidative stress, including glutathione peroxidise 
activity and the processing of endogenous reactive interme-
diates and oxidative metabolites [102, 103]. Analogous to 
their previous findings, a more profound effect on the gene 
level was observed in comparison with the enzyme activity 
(which was not altered for GST in response to Cd), indicat-
ing gene expression to be a more accurate reflection of the 
acute toxic effects of Cd [18, 37]. Again, as experimental 
conditions only lasted for 48 h, prolonged exposure to Cd 
could lead to distinct results.

Lastly, α-tocopherol and carotenoid levels (well-known 
dietary molecules in support of cell endogenous antioxidant 
defence systems) do not seem to be affected by Cd supple-
mentation in honey bees [28, 36].

Genetic Background

It is worth mentioning that honey bees have fewer genes cod-
ing for enzymes of cellular detoxification and antioxidative 
systems as compared to other insects [104]. For example, 
Apis mellifera holds approximately one-third of the genes for 
GST present in some other insect species [105]. Likewise, 
only one MT gene was found in honey bees [38], while at 
least two such genes have been identified in many inverte-
brates, with one coding for a specific Cd-binding MT [85]. 
Moreover, MT gene duplication in early research with fruit 
flies was found to double their MT production capacity lead-
ing to a heightened tolerance to metals, including Cd [81]. 
Consequently, Apis mellifera could be especially prone to 
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effects from intoxication by heavy metals and xenobiotics in 
general [34, 37, 83, 105]. Alternatively, it has been specu-
lated that other forms of defence against toxicants might be 
in place in honey bee colonies where caste structure, behav-
iour and the dilution of toxicants play a role [23, 105].

Neurotransmission

Previously mentioned experimental research [83] investi-
gated the effects of Cd on acetylcholinesterase (ACE) activ-
ity in honey bees as well and showed a reduced activity of 
this hydrolysing enzyme in response to 0.001 and 0.01 mg 
L−1of Cd. ACE is an enzyme responsible for the metaboli-
zation of the neurotransmitter acetylcholine (in both ver-
tebrates and invertebrates)following its release into cho-
linergic-type chemical synapses, including those found in 
neuromuscular junctions. The breakdown of acetylcholine 
leads to the termination of synaptic transmission and the 
inactivation of ACE effectively causes disruption of neuro-
transmission following synaptic acetylcholine accumulation 
and receptor hyperstimulation [106, 107]. In fact, commonly 
applied pesticides (e.g. organophosphorus and carbamate 
pesticides) specifically target and inhibit this enzyme, caus-
ing paralysis and consequentially death in insects [106, 108]. 
Cadmium is believed to inhibit ACE by directly binding to 
the enzyme, compromising its functionality either through 
loss of activity or deterioration [83–109].

Even though Cd is a known inhibitor of ACE, the effects 
of various metals on this enzyme have been shown to be spe-
cies-specific [83, 109–114]. Regarding Cd and honey bees 
specifically, results presented by Nikolić et al. [81] indicate 
a clear inhibitory function on whole-body enzyme activity. 
While the consequences of ACE inhibition on honey bee 
locomotion and mortality were not explored in the men-
tioned research, authors do make an interesting point sug-
gesting the effects of toxicants with a similar mode of action 
could be exacerbated due to additive toxicity caused by Cd. 
Consequently, environmental exposure of honey bees to sub-
lethal concentrations of pesticides with synergistic effects 
could prove lethal in combination with Cd contamination 
[81].

Effects of Cd on honey bee locomotion might result from 
the disturbance of alternative molecular mechanisms. For 
instance, Cd could affect ACE activity by interfering with 
calcium metabolism [113, 115, 116]. Moreover, Cd has been 
found to block voltage-dependent Ca channels in honey bee 
skeletal muscle fibres, resulting in modified action potential 
[117]. These transmembrane channels regulating the passage 
of positive calcium ions are key components of membrane 
depolarisation and inhibition of this mechanism can there-
fore result in impaired neuromuscular transmission, muscle 
contraction and locomotion [118, 119]. This could be espe-
cially true as calcium flow is of particular importance within 

the mechanisms of depolarisation and muscle contraction in 
insects (including honey bees) compared to sodium [117, 118]. 
Besides, as was discussed for ACE inhibitors, an analogous 
additive effect of Cd on ion channel–targeting pesticides can 
be hypothesised [118]. One recent finding by Li and co-work-
ers [120] linked the exposure to Cd and the depressed olfac-
tory ability of foragers. This effect could potentially impact the 
localization ability of feeding source and limit the ecological 
role of pollination by bees. The effect of carry-over into honey 
[121] plays as a gatherer of interest within the scientific com-
munity not only of the effects on bee physiology and patho-
physiology, playing as environmental sentinels of pollutions, 
but also for the role in the potential load of toxic elements into 
honey, as food for human consumption.

Conclusion

The complex nature of the interplay between honey bees and 
environmental Cd pollution is real. While significant efforts 
have been put toward defining spatial patterns of contamina-
tion, research regarding Cd contents of feed (pollen and espe-
cially nectar), being the chief mode of exposure for bees, is 
still lacking. Realistic Cd burdens appear to represent a serious 
threat to honey bees in terms of development and survival and 
larval stages to be especially susceptible to the toxic effects 
of Cd. Additionally, the genetic background pointed out in 
this review suggests honey bees to be particularly sensitive 
to xenobiotics in general, including heavy metals. However, 
there is a need to further evaluate the effects of Cd on both 
adult and larval stages under field conditions. A deepening 
of our understanding of metal homeostasis and the molecu-
lar responses of honey bees to Cd is needed as well. Lastly, 
significant synergetic adverse effects between Cd and other 
stressors (e.g. other heavy metals and pesticides) have been 
accounted. In the context of understanding global pollinator 
and honey bee declines, investigation into heavy metal toxicity 
deserves continuous attention.
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