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Abstract
Tannic acid (TA) is a metal chelating polyphenol that plays a crucial role in metal detoxification, but its modulatory role 
in co-exposure of these heavy metals’ exposure needs to be explored. Cadmium (Cd) and nickel (Ni) are inorganic hazard-
ous chemicals in the environment. Humans are prone to be exposed to the co-exposure of Cd and Ni, but the toxicological 
interactions of these metals are poorly defined. Present study was undertaken to study the preventive role of TA in Cd–Ni 
co-exposure-evoked hepato-renal toxicity in BALB/c mice. In the current investigation, increased oxidative stress in metal 
intoxicated groups was confirmed by elevated peroxidation of the lipids and significant lowering of endogenous antioxidant 
enzymes. Altered hepato-renal serum markers, DNA fragmentation, and histological alterations were also detected in the 
metal-treated groups. Present study revealed that Cd is a stronger toxicant than Ni and when co-exposure was administered, 
additive, sub-additive, and detrimental effects were observed. Prophylactic treatment with TA significantly reinstated the lev-
els of lipid peroxidation (LPO), non-enzymatic, and enzymatic antioxidants. Moreover, it also restored the serum biomarker 
levels, DNA damage, and histoarchitecture of the given tissues. TA due to its metal chelating and anti-oxidative properties 
exhibited cyto- and genoprotective potential against Cd–Ni co-exposure-induced hepatic and renal injury.

Keywords DNA damage · Heavy metals · Oxidative stress · Genotoxicity

Introduction

Heavy metals are defined as naturally occurring elements 
that have a high atomic weight and a density at least five 
times higher than that of water [1]. While few heavy met-
als are essential for biological processes in trace amounts, 
their excessive exposure can lead to adverse health effects 
in humans. Humans are exposed to these metals through 
anthropogenic activities and occupational exposure and can 
bioaccumulate via air, water, and soil [2–5]. The exposure of 
heavy metals extends their critical concerns to the environ-
ment owing to their complex nature that often involves co-
exposure of these metals [6]. Their concurrent presence can 
lead to unpredictable and potential supra-additive, additive, 

or sub-additive effects on human health, which may exacer-
bate the adverse outcomes associated with individual metal 
exposures [5, 7].

Understanding the toxicity of co-exposure to Cd and Ni 
is crucial due to their widespread environmental presence. 
Cadmium (Cd) is an industrial and environmental pollutant, 
which is poorly excreted due to its long biological half-life of 
10–35 years [8]. The main routes of its exposure are tobacco 
smoking, drinking contaminated water, metal plating, bat-
teries, and air pollution silently wreaking havoc on human 
health [9]. Likewise, nickel (Ni) is a well-known essential 
trace element, but at the same time is hazardous due to its 
wide use in electroplating, alloy production, jewelry, stain-
less steel, and electrical batteries [10]. Electrical and elec-
tronic waste (e-waste), which is the largest source of Ni–Cd 
contamination, poses a tremendous threat and concern to 
human health [11]. According to the Global E-waste Moni-
tor, ~ 53.6 million metrics tons (mMt) of e-waste were pro-
duced in 2019 globally, and Asia was the largest generator 
of e-waste in 2019 (24.9 mMt) [12].
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Both Ni and Cd can bioaccumulate in different organs 
and tissues of the body causing hepatorenal dysfunction, 
carcinogenicity, neurotoxicity, reproductive toxicity, and 
developmental and gastrointestinal abnormalities [9, 10, 
13]. These observed toxicities are most plausibly caused 
by heavy metal-induced oxidative stress and imbalance of 
pro- and anti-oxidant system [8, 10]. Therefore, examina-
tion of toxicant interaction is important to understand co-
exposure-mediated complex mechanisms underlying their 
toxicity. Moreover, the hepato-renal system, necessary for 
the metabolism and excretion of xenobiotics, necessitates the 
examination of co-exposure in this system [14].

To date, no effective approach exists to counteract the 
adverse consequences of individual or co-exposure of heavy 
metals, making it essential to uncover the potential of nutra-
ceuticals in this field [13, 15]. Plant-based polyphenols, 
flavonoids, and alkaloids exhibit antioxidant potential due 
to their hydrogen-donating and metal-chelating properties 
[16–18]. Tannic acid (TA) is a polyphenolic plant com-
pound, typically found in tea, wood barks, walnut, berries, 
and Chinese galls with excellent free radical scavenging, 
antioxidant, metal-chelating, and quenching properties [19]. 
The antioxidant property of TA is attributed to its hydroxyl 
groups, which allow them to act as reducing agent, hydro-
gen donor, and quencher of singlet oxygen making it a suit-
able candidate to be explored against metal toxicity [20]. 
Thus, we hypothesized that TA could be a potent therapeutic 
agent against Cd–Ni co-exposure-induced biochemical and 
histological alterations and genotoxicity in hepato-renal tis-
sues. Therefore, this research was aimed to investigate the 
antioxidant and cyto/genoprotective effects of TA against 
hepato-renal toxicity induced by individual and co-exposure 
of cadmium and nickel in BALB/c mice.

Materials and Methods

Chemicals

Cadmium sulfate  (CdSO4, CAT #7790–84-3) with 98% 
purity was obtained from Loba Chemie, Mumbai and nickel 
chloride  (NiCl2, CAT #7791–20-0) with 98% purity was pur-
chased from Central drug house (P) Ltd., New Delhi. The 
tannic acid (TA, CAT #151013) of analytical research grade 
was used for the present study was supplied by Thomas 
baker (Chemicals) Pvt. Ltd., Mumbai. All other chemicals of 
analytical grade specifications were obtained from Himedia 
Ltd., SRL, CDH, and Merck.

Experimental Animals

Forty-eight adult female BALB/c mice of 2–3 months age 
weighing ~ 25–40 g were procured from the central animal 

house of Panjab University, Chandigarh (approval num-
ber PU/45/99/CPCSEA/IAEC/2015/678). Animals were 
housed under a standard controlled temperature of 25 ± 3 °C, 
12 h light–dark cycle, and fed a standard rodent pellet diet 
(Ashirwad Industries, Punjab, Hindustan Lever, India; Cat 
#23,099,010) and water ad libitum. All the animals were 
acclimatized for 7 days prior to experimentation and used 
as per the “Guide for the Care and Use of Experimental 
Animals” approved by the Institutional Animal Ethics Com-
mittee, Panjab University.

Effective Dose Selection and Experimental Design

Cadmium was administered intraperitoneally (i.p.) with 
0.7 mg/kg b.wt. (low dose) which is 1/10th of  LD50 in 
mice models for 30 days [21]. To obtain the toxicologically 
effective nickel dose,  LD50 of the nickel chloride was cal-
culated by employing probit analysis, which came out to 
be 22.98 mg/kg b.wt. Based on that observation, the sub-
chronic dose of 7.06 mg/kg b.wt. of Ni (1/3rd of  LD50) was 
given intraperitoneally for 30 days to induce observable 
toxicity in mice. Pre-treatment of 100 mg/kg b.wt. of tannic 
acid was given through gavage for 15 days, and this dose was 
selected from the data available in the literature [20]. The 
oral route was chosen to mimic the commonly used mode of 
administration of TA to humans.

The adult mice were randomly divided into the follow-
ing eight groups following acclimatization for 1 week. One 
control group and seven experimental groups comprised six 
mice in each group (Table 1).

All mice were euthanized 24 h after the last exposure, and 
liver and kidney tissues from experimental animals were col-
lected for biochemical analysis and histopathological stud-
ies. Bone marrow from the femur bone of mice was flushed 
and collected for the micronuclei assay, and the comet assay 
was performed on the blood lymphocytes.

Oxidative Stress Biomarkers

Homogenates (10%) of liver and kidney tissues were pre-
pared in 50 mM Tris–HCl buffer (pH 7.4, 4 °C) using the 
homogenizer. The homogenates and further the supernatants 
obtained were then used for spectrophotometric determina-
tion of lipid peroxidation (LPO), reduced glutathione (GSH), 
total protein concentration by method of Lowry et al. (1951) 
with slight modifications, catalase (CAT) activity, superox-
ide dismutase (SOD), glutathione-S-transferase (GST), and 
glutathione reductase (GR) [22–29].

Liver and Kidney Function Markers

For liver function, serum glutamate pyruvate transami-
nase (SGPT, CAT #CC2-ALT.17N), serum glutamate 
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oxaloacetate transaminase (SGOT, CAT #CC3-AST.16N), 
alkaline phosphatase (ALP; CAT #CC2-ALK.02U), and 
total bilirubin (CAT #CC3-BIG.004) were estimated. 
Urea (CAT #CC2-UAB.019) and creatinine (CAT #CC3-
CEN.024) concentrations were analyzed for kidney function. 
These serum assays were done by using commercially avail-
able kits from Reckon Diagnostics Pvt. Ltd., Gujarat (India).

Histological Studies

For histological assessment, double staining was done with 
hematoxylin and eosin (H&E) [30]. Briefly, the mice liver 
and kidney were isolated, fixed in 10% formaldehyde, dehy-
drated using different grades of alcohol, and embedded in 
paraffin. After that 5-µM-thick sections were cut, dewaxed. 
These sections were then hydrated with alcohol gradient and 
stained with hematoxylin for 1 min. The samples were then 
washed with phosphate buffered saline (PBS) and stained 
with eosin for 15 s before dehydration with an alcohol gradi-
ent. The sections were treated with xylene, mounted in DPX, 
and viewed under a light microscope. Then, tissue samples 
were evaluated with a light microscope to observe cellular 
damage. To determine an appropriate scoring system for 
liver and kidney tissue alterations, the scores were derived 
semi-quantitatively using light microscopy [31].

Genotoxic Parameters

Micronuclei Assay

Post-sacrifice the femur was cleared, and bone marrow was 
flushed out of the femur using a syringe filled with 1 mL 
of fetal calf serum into centrifuge tubes. Cells were dis-
persed by repeated aspiration and pipetting and collected 
by centrifugation at 1200 rpm for 10 min at 4 °C. A 5 µL 

of bone marrow cell suspension was placed on the centre 
of the acridine orange (10 µL of 1 mg/mL) coated slide. 
This protocol was done according to the method of Hayashi 
et al. (2000) [32]. Stained cells were examined by fluores-
cent microscope, and micronuclei frequency in polychro-
matic erythrocytes (PCE) was evaluated by scoring 1000 
PCE and normo-chromatic erythrocytes (NCE) per animal 
(n = 6) per group.

Comet Assay

The extent of DNA damage was quantified in lympho-
cytes by studying DNA migration patterns through sin-
gle gel electrophoresis [33]. Briefly, ~ 1.5 mL blood from 
the jugular vein was collected and centrifuged (1400 rpm 
for 30 min) in histopaque to separate lymphocytes. These 
lymphocytes were lysed, electrophoresed, neutralized, and 
fixed on slides in different buffers. Slides were stained with 
EtBr and viewed under the fluorescence microscope. A total 
number of 150 cells per animal (n = 6) were analyzed using 
CometScoreTM (version 1.5) software. Three replicates 
were prepared per slides and three slides were produced per 
animal in each group. Fifty randomly selected cells were 
analyzed per replicate per sample. The parameters investi-
gated to determine the DNA damage level were % DNA in 
the comet tail and tail moment.

DNA Fragmentation

For genomic DNA fragmentation, agarose gel electrophore-
sis was performed using standard phenol:chloroform:isoamyl 
alcohol method. Briefly, liver and kidney tissues were 
homogenized in Tris-EDTA (TE) buffer and after centrifu-
gation, the pellet was dissolved in lysis buffer. After addition 
of 5% sodium dodecyl sulfate (SDS) and proteinase K, the 

Table 1  Experimental design for Cd–Ni induced hepato-renal toxicity in BALB/c mice

Abbreviations: Cd, cadmium; i.p., intraperitoneal; mg/kg b.wt., milligram per kilogram body weight; Ni, nickel; TA, tannic acid

Groups Dose Duration

1 Control (CON) Saline 30 days (i.p.)
2 Cadmium (Cd) 0.7 mg/kg b.wt 30 days (i.p.)
3 Nickel (Ni) 7.06 mg/kg b.wt 30 days (i.p.)
4 Tannic acid (TA) 100 mg/kg b.wt 15 days (oral)
5 Tannic acid + Cd (TA + Cd) TA, 100 mg/kg b.wt

Cd, 0.7 mg/kg b.wt. of Cd
TA, 15 days (oral)
Cd, next 30 days (i.p.)

6 Tannic acid + Ni (TA + Ni) TA, 100 mg/kg b.wt
Ni, 7.06 mg/kg b.wt

TA, 15 days (oral)
Cd, next 30 days (i.p.)

7 Cd + Ni co-exposure (Cd + Ni) Cd, 0.7 mg/kg b.wt
Ni, 7.06 mg/kg b.wt. (after 8 h exposure of Cd)

Co-exposure for 30 days (i.p.)

8 Tannic acid + Cd-Ni co-exposure 
(TA + Cd + Ni)

TA, 100 mg/kg b.wt
Cd, 0.7 mg/kg b.wt. Cd
Ni, 7.06 mg/kg b.wt. (after 8 h exposure of Cd)

TA, 15 days (oral)
Co-exposure of Cd and Ni for 

next 30 days (i.p.)
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phenol:chloroform:isoamyl alcohol (25:24:1) mixture was 
added and centrifuged. Further, isopropanol was added to 
the obtained aqueous layer and incubated for 2–3 h. After 
centrifugation, the pellet was washed with 70% ethanol and 
the final pellet was dissolved in 20 µL of TE buffer and 
stored at 20 °C until further use. DNA integrity was checked 
on 0.8% agarose gel.

Interaction Index for Cadmium‑Nickel Co‑exposure

The combined effect of Cd and Ni was measured quantita-
tively using Bliss independence method or also called as 
relative-effect multiplicative model. Using this method, the 
relative levels (θX) of a parameter X were calculated and 
further, the interaction index (γ) value was determined using 
the equation

where θA = normalized level of parameter X in Cd exposed 
group, θB = normalized level of parameter X in Ni exposed 
group, and θAB = normalized level of parameter X in Cd + Ni 
co-exposed group.

The calculated value of γ < 0, γ = 0, or γ > 0 indicates a 
sub-additive, additive, or supra-additive interaction of Cd 
and Ni co-exposure, respectively [34, 35]. These calculated 
interaction index values (γ) for combinational exposure of 
Cd and Ni are given in Table 2.

Statistical Analysis

The data was expressed as mean ± standard deviation. The 
comparison of control, experimental, and TA-treated groups 
was statistically analyzed by one-way ANOVA (analysis of 
variance) followed by Tukey’s post hoc test. Values with 
p < 0.05 were considered statistically significant.

Results

Oxidative Stress Biomarkers

Thirty days of cadmium (0.7  mg/kg b.wt.) and nickel 
(7.07 mg/kg b.wt.) exposures (individual and co-exposure) 
instigated statistically significant (p < 0.05) intensification 
in the levels of LPO in hepatic and renal tissues of mice in 
comparison with the control group. Co-exposure of these 
inorganic metals caused ~ 1.4-fold and threefold increase in 
LPO in hepato-renal tissues, respectively. The oral pre-treat-
ment of TA for 15 days lowered the LPO levels by ~ 1.1-fold 
in hepatic and twofold in renal tissue, respectively, compared 
to Cd- and Ni-exposed groups, respectively (p < 0.05). While 
in the co-exposure groups, TA caused significant reduction 

�X = ���
(

�AB
)

− ���
(

�A
)

− log
(

�B
)

of LPO levels by 1.6-fold and twofold in liver and kidney tis-
sues, respectively (p < 0.05; Fig. 1a). Cd and Ni intoxication 
significantly decreased the reduced glutathione levels (GSH) 
in the liver and kidney (p < 0.05). While TA pre-treatment 
efficiently restored the GSH levels in both the organs to near 
control values in the case of Cd, Ni, and co-exposed groups 
(p < 0.05) (Fig. 1b).

Administration of Cd and Ni significantly declined the 
levels of CAT, SOD, GST, and GR in liver and kidneys, 
respectively (p < 0.05). Cd alone was found to be more toxic; 
it caused more reduction of antioxidants than Ni alone. The 
co-exposure of both the metals exhibited sub-additive effect 
in enhancing LPO (γ =  − 0.06, − 0.38) and supra-additive 
interaction in reducing GSH levels (γ = 0.11, 0.26) in liver 
and kidney tissues, respectively. Furthermore, supra-additive 
effect was observed in all other oxidative stress markers of 
liver and kidney tissues. TA treatment significantly elevated 
the levels of CAT, SOD, GST, and GR antioxidants in all the 
Cd-, Ni-, and co-exposure-treated groups (γ values are given 
in Table 2) (p < 0.05) (Fig. 1c–f).

Liver and Kidney Function Markers

Thirty days of cadmium and nickel (individual and co-
exposure) intoxication caused a statistically significant 
(p < 0.05) increase in the levels of SGOT, SGPT, and ALP, 
whereas there was a significant decline in the levels of 

Table 2  Calculated interaction index values (γ) for combinational 
exposure of Cd and Ni

Liver Kidney

Oxidative stress markers
  LPO  − 0.06  − 0.38
  GSH 0.11 0.26
  CAT 0.13 0.06
  SOD 0.07 0.14
  GST 0.16 0.09
  GR 0.13 0.20

Liver function markers
  SGPT  − 0.47
  SGOT  − 0.49
  ALP  − 0.45
  Bilirubin 0.14

Kidney function markers
  Urea  − 0.08
  Creatinine  − 0.08

Micronuclei assay
  − 1.14

Comet assay
  % DNA in tail  − 0.43
  Tail moment  − 0.34
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serum bilirubin (p < 0.05). Pre-treatment of tannic acid 
effectively restored the levels of these hepatic markers 
(p < 0.05) (Fig. 2a). Principle kidney function markers, 
i.e., urea and creatinine, were elevated in blood serum 

after sub-chronic exposure to Cd, Ni, and their co-admin-
istration (p < 0.05). However, TA decreased the levels of 
urea by 1.3-fold and of creatinine by 1.1-fold in blood 
serum in co-exposure group (p < 0.05) (Fig. 2b).

Fig. 1  a Lipid peroxidation (LPO) (n moles/mg protein). b Reduced 
glutathione (GSH)-μ moles/mg protein. c–f Levels of endogenous 
antioxidant enzymes SOD (units/min/mg protein), CAT (μ moles 
of H2O2 decomposed/min/mg protein), GST (μ moles GST adduct 
formed/min/mg protein), and GR (moles NADPH oxidised/min/mg 
protein) in the liver and kidney tissues of rats in CON-, Cd-, Ni-, 
Cd + Ni-, TA-, TA + Cd-, TA + Ni-, and TA + Cd + Ni-treated groups, 

respectively. Values are shown as mean ± S.D. (n = 6); levels of signif-
icance, * p < 0.05 (statistically significant); a, comparison with con-
trol group; b, comparison with cadmium treated group; c, comparison 
with nickel treated group; d, comparison with Cd + Ni co-exposure 
treated group. ANOVA followed by Tukey’s honestly significant dif-
ference test
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Histopathology

Individual exposures of Cd and Ni for 30 days caused 
histopathological alterations in liver like vacuolization 
(25%, 18%), few foci of Kupffer cell infiltration (26%, 
19%), widening of sinusoids (18%, 16%), damaged hepat-
ocytes (13%, 10%), and vascular congestion around the 
central vein (Fig. 3a). Thirty-day co-exposure of Cd and 
Ni exhibited pronounced histoarchitectural alterations 
in liver revealing evident vacuolization (30%), Kupffer 

cell infiltration (32%), sinusoidal widening (25%), and 
highly damaged hepatocytes (14%) indicative of sub-
additive effect of co-exposure. Pre-treatment of mice with 
TA effectively attenuated the individual cadmium and 
nickel exposure-induced histopathological alterations 
in the liver as indicated by normal hepatocytes, reduc-
tion in sinusoidal widening, decreased vacuolization, and 
reduced Kupffer cell infiltration (p < 0.05), whereas in the 
co-exposure group, moderate ameliorative efficacy of TA 
was observed (Fig. 3a, b).

Fig. 2  a Levels of liver function markers SGPT (U/L), SGOT (U/L), 
ALP (U/L), and total bilirubin (mg/dL) in control, Cd, Ni, Cd + Ni, 
TA, TA + Cd, TA + Ni, and TA + co-exposure treated groups. b Lev-
els of kidney function markers urea (mg/dL) and creatinine (mg/
dL) in CON-, Cd-, Ni-, Cd + Ni-, TA-, TA + Cd-, TA + Ni-, and 

TA + Cd + Ni-treated groups. Values are shown as mean ± S.D. 
(n = 6); a, = comparison with control group; b, comparison with cad-
mium treated group; c, comparison with nickel treated group; d, com-
parison with cadmium + nickel treated group. ANOVA followed by 
Tukey’s honestly significant difference test
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Fig. 3  a Comparative light 
micrographs of normal and 
metal treated liver of CON, 
Cd, Ni, Cd + Ni, TA, TA + Cd, 
TA + Ni, and TA + Cd + Ni 
groups of mice (× 400). b 
Graphical representation of 
the percent of histological 
alterations in liver tissue in 
each group. Abbreviations: CV, 
central vein; PT, portal triad; 
H, hepatocytes; S, sinusoids; 
Nc, necrosis; Pk, pyknosis; KC, 
Kupffer cell; VL, vacuolization; 
CI, cellular infiltration; Hm, 
hemorrhage; SW, sinusoidal 
widening. c Comparative light 
micrographs of normal and 
metal treated kidney of CON, 
Cd, Ni, Cd + Ni, TA, TA + Cd, 
TA + Ni, and TA + Cd + Ni 
groups of mice (× 400). d 
Graphical representation of per-
cent histological alterations in 
kidney of each group. Abbrevia-
tions: BC, Bowman’s capsule; 
G, glomerulus; M, mesangioly-
sis; PC, protein cast; C, conges-
tion; SG, shrinked glomerulus; 
VL, vacuolization; HM, hemor-
rhage; TC, tubular congestion; 
GN, glomerular necrosis; TN, 
tubular necrosis. Values are 
shown as mean ± S.D. (n = 3); 
a, comparison with control 
group; b, comparison with 
cadmium treated group; c, 
comparison with nickel treated 
group; d, comparison with 
cadmium + nickel treated group. 
ANOVA followed by Tukey’s 
honestly significant difference 
test
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After 30 days of Cd and Ni individual exposures, kid-
neys demonstrated significant histoarchitectural changes 
like enlargement of mesangial space (24%, 21%), conges-
tion in proximal and distal convoluted tubules (11%, 9%) 
due to protein casts (27%, 26%), glomerular shrinkage 
(10%, 8%), and tubular degeneration (14%, 11%), reveal-
ing the nephrotoxic nature of Cd and Ni, respectively. 
Cd exposure was found more toxic than Ni individual 
exposure as mesangiolysis and infiltration of mononu-
clear cells were visible at multiple foci in Cd treated mice 
kidneys. Cd–Ni co-exposure has more pronounced toxic 
effects in the renal tissue exhibiting sub-additive effect. 
A large number of shrunken glomeruli (14%), mesangi-
olysis, enlargement in mesangial space (27%), interstitial 
inflammation, and necrotic lesions in tubular cells (17%) 
along with dense protein cast in PCT and DCT (33%) were 
observed due to co-exposure of metals. Pre-treatment with 
TA significantly restored the histoarchitecture of individ-
ual Cd and Ni exposure groups indicated by normal glo-
meruli, PCT, and DCT (p < 0.05). Pre-treatment with TA 
in the co-exposure group decreased the impact of heavy 
metals, but mononuclear cell infiltration and few foci of 
tubular congestion were visible, indicating moderate ame-
lioration of TA pre-treatment in this case (Fig. 3c, d).

Micronuclei Induction

The Cd and Ni exposures enhanced the levels of micronu-
cleation in bone marrow cells by approximately 26- and 
22-fold, respectively, as compared to the control (p < 0.05). 
The combinational exposure of Cd and Ni showed sub-
additive effects (γ =  − 1.14), i.e., a 44-fold increase in the 
micronucleation in bone marrow cells was observed (Fig. 4a, 
b). Pre-administration of TA significantly (p < 0.05) reduced 
micronucleation as compared to toxicant groups. TA more 
efficiently reduced the micronucleation in bone marrow cells 
in Cd and Ni alone treated groups as compared to the co-
exposure due to heavy load of genetic damage.

Comet Assay

A significant (p < 0.05) increase in comet assay parameters, 
such as % DNA in tail (8.58 ± 0.92, 7.27 ± 0.89) and tail 
moment (0.85 ± 0.12, 0.80 ± 0.11), was observed in blood 
lymphocytes of mice treated with Cd and Ni, respectively, 
when compared with normal control mice (Fig. 5a, b). After 
co-exposure of these heavy metals, sub-additive effect in DNA 
damage, i.e., % DNA in tail (10.41 ± 0.99; γ =  − 0.43) and tail 
moment (0.93 ± 0.13; γ =  − 0.34), was observed. Pre-treatment 

Fig. 4  a Photomicrographs 
illustrating micronuclei forma-
tion in bone marrow cells of 
a CON-, Cd-, Ni-, Cd + Ni-, 
TA-, TA + Cd-, TA + Ni-, and 
TA + Cd + Ni-treated mice. 
b Percentage frequency of 
micronuclei/1000 cells in bone 
marrow cells of CON-, Cd-, 
Ni-, Cd + Ni-, TA-, TA + Cd-, 
TA + Ni-, and TA + Cd + Ni-
treated mice. Values are 
shown as mean ± S.D. (n = 6); 
a, comparison with control 
group; b, comparison with 
cadmium treated group; c, 
comparison with nickel treated 
group; d, comparison with 
cadmium + nickel-treated group. 
ANOVA followed by Tukey’s 
honestly significant difference 
test
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of TA for 15 days to Cd and Ni individual as well as co-
exposed mice demonstrated a substantial DNA protective 
efficacy by significantly reducing % DNA damage and tail 
moment (4.93 ± 0.47, 0.60 ± 0.11) (Fig. 5a, b).

DNA Fragmentation

Agarose gel electrophoretograms revealed intact DNA bands 
in control and TA groups (lanes 1 and 5) of hepato-renal tis-
sues. While, 30 days Cd and Ni exposure revealed shearing of 
DNA in liver and kidney tissues (lanes 2 and 3). DNA shearing 
was more evident in co-exposure group revealing maximum 
DNA fragmentation in both the tissues as indicated in lane 4. 
Pretreatment of TA to Cd, Ni, and co-exposed groups mark-
edly protected DNA damage as demonstrated in lanes 6, 7, and 
8, respectively, of electrophoretograms revealing genoprotec-
tive efficacy of TA. Moderate DNA preventive efficacy of TA 
was seen in Cd–Ni co-exposure group (Fig. 6a, b).

Discussion

Co-exposure to Cd and Ni may produce additive or supra- 
or sub-additive interactions that could enhance their toxic 
effects. Evaluating these interactions is essential for risk 

assessment and management of toxicity related to their co-
exposure [36]. In the present study, 30-day cadmium and 
nickel exposures exhibited a marked elevation in lipid per-
oxidation in hepatic and renal tissues. These observations 
comply with the observations of other studies, who have 
documented the cytotoxic effects of cadmium and nickel in 
rats [37–39]. Similarly, the co-exposure of Cd and Ni caused 
an additive effect in LPO in hepato-renal organs. Moreover, 
a significant decline of GSH levels was also recorded in the 
liver and kidney of Cd, Ni individual and co-treated groups. 
These results are validated by the studies of Micali et al. 
(2018) and Yu et al. (2018), who observed decreased levels 
of GSH after co-exposure intoxication [40, 41]. The most 
probable reason for augmented LPO and decreased GSH 
could be the enhanced generation of free radical species, like 
superoxide anions, hydroxyl radicals, and hydrogen perox-
ide by nickel and high affinity of cadmium toward the thiol 
group of GSH [38, 42]. Enhanced levels of free radicals 
cause oxidation of cellular macromolecules, which formed 
the basis of redox imbalance, genotoxicity, and histological 
alterations [43].

Oxidative stress-mediated suppression of cellular anti-
oxidant defense was confirmed by declined levels of CAT, 
SOD, GST, and GR, in individual and co-exposed groups. 
Most plausibly, augmented consumption of these enzymatic 

Fig. 5  a Photomicrographs of 
comet assay in peripheral blood 
lymphocytes of CON-, Cd-, 
Ni-, Cd + Ni-, TA-, TA + Cd-, 
TA + Ni-, and TA + Cd + Ni-
treated groups. b Graphi-
cal representation of DNA 
migration patterns, i.e., percent 
DNA in tail and tail moment in 
lymphocytes of mice. Values 
are shown as mean ± S.D. 
(n = 6); a, comparison with 
control group; b, comparison 
with cadmium treated group; c, 
comparison with nickel-treated 
group; d, comparison with 
cadmium + nickel-treated group. 
ANOVA followed by Tukey’s 
honestly significant difference 
test
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antioxidants in scavenging free radicals instigated unalter-
able inhibition in their activities [8, 10, 14]. Many authors 
have documented similar observations of heavy metal-
induced suppression in antioxidant enzymes and support 
the present study [44–46]. Moreover, present study has evi-
dently exhibited that combinational exposure of Cd and Ni 
has supra-additive effect on cellular antioxidant suppression. 
In current study, TA-mediated reduction in LPO could be 
due to free radical scavenging or electron transferring ability 
to electrophilic radicals. Phenolic groups of TA might che-
late the metal ions and stop the progression of free radical 
formation via complexing ferrous ions and inhibiting steps 
of the Fenton reaction [19, 47]. These properties of TA allow 
it to act as a reducing agent by converting Fe (II) to Fe (III), 
hydrogen donor, and quencher of singlet oxygen [19, 21]. 
TA scavenges reactive metabolites due to the presence of 
the galloyl moiety, allowing efficient  H•-atom transfer to the 
free radicals and converting them to less reactive metabo-
lites [48]. In the present study, tannic acid reduced LPO and 
restored the levels of antioxidants in hepato-renal tissues and 
re-established the balance of pro- and antioxidants.

Oxidative stress and subsequent lipid peroxidation might 
have formed the basis for observed histoarchitectural altera-
tions in hepatic and renal tissues following Cd–Ni individual 
and co-exposures. These observations are in accordance with 
the study of Yu et al. (2018) and Zou et al. (2020) who 
have documented cadmium- and nickel-induced histological 
changes in hepatic tissue [41, 49]. Furthermore, observed 
increase in levels of AST and ALT frequently utilized indi-
cators of hepatocellular necrosis, correlates and validates 
Cd–Ni co-exposure-induced hepatocellular damage. Mul-
tiple reports support these observations and highlight the 
adverse effects of heavy metal co-exposure in liver [14, 

31, 39, 50]. Kidneys being the principle excretory organ 
exhibits evident metal co-exposure-induced tissue damage. 
Plausibly, these metals get attached to the lipid membranes 
of the glomerulus and result in the accumulation of lipid 
droplets in the voids of the glomerular membrane, which 
results in decreased glomerular filtration rate and increase 
in nitrogenous waste products (urea and creatinine) in the 
serum in intoxicated metal groups [9, 44]. Observed eleva-
tion in renal LPO, kidney function markers, and histological 
alterations are in consensus with above mentioned reports. 
However, TA treatment significantly lowered the levels of 
serum hepato-renal function biomarkers in Cd–Ni individual 
and co-exposure groups, indicating its redox balancing and 
ameliorative potential. This study is in close agreement with 
the observations of Akomolafe et al. (2014), who have stud-
ied the modulatory potential of TA against cisplatin-induced 
nephrotoxicity in rats [51].

Moreover, the present study revealed Cd–Ni co-expo-
sure-induced sub-additive effect in causing genotoxicity. 
Genotoxic potential of these metals is confirmed by DNA 
fragmentation, and enhanced micronucleation and comet 
formation in bone marrow cells. Cd and Ni exposures lead 
to increased free radicals, which can induce DNA cross-
links, DNA strand breaks, and modification of DNA bases. 
The present observations of enhanced comet tailing and 
micronucleation in Cd–Ni co-exposure are in accordance 
with studies of Kaushal et al. (2019) and El-Habit and 
Moneim (2014), who have also documented heavy metal-
induced genotoxicity [52, 53]. Cd–Ni individual and co-
exposure demonstrate genotoxic potential of these moie-
ties plausibly by inhibiting DNA repair enzymes [44, 49, 
52]. Co-exposure of these metals can cause DNA modi-
fications such as fragmentation, micronuclei formation, 

Fig. 6  Representative agarose-gel electrophoretograms of extracted DNA from a liver and b kidney of BALB/c mice. Control (lane 1), cadmium 
(lane 2), nickel (lane 3), Cd + Ni (lane 4), TA (lane 5), TA + Cd (lane 6), TA + Ni (lane 7), and TA + Cd + Ni (lane 8) treated mice
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chromosomal aberrations, and aneuploidogenicity by 
direct binding to DNA and/or enhancing the effects of 
other mutagens to generate genetic lesions [14, 54–57]. 
In the present study, TA has exerted its genoprotective 
potential possibly by two mechanisms: first, by prevent-
ing the oxidative damage of DNA by directly quenching 
metal ions and harmful free radical species, and second, by 
binding to DNA and reducing its susceptibility to damag-
ing effects of heavy metals [58, 59]. However, its moder-
ate efficacy against Cd–Ni co-exposure is plausibly due 
to competition among heavy metals for binding sites on 
TA, potentially hindering metal ion sequestration. Overall, 
this study suggests that free radical scavenging and metal 
chelating properties of TA have helped in restoring cel-
lular redox imbalance, integrity of DNA, and normal his-
toarchitecture of hepato-renal tissues in Cd–Ni individual 
and co-exposure groups. Thus, it is noteworthy to add that 
use of TA containing drinks is an effective, economical, 
and convenient source of antioxidants, if added in daily 
routine.

Taken together, present observations suggest that Cd is a 
more potent toxicant than Ni metal in individual exposures, 
while their combinational exposure exhibits either supra-
additive, additive, or sub-additive effects. Owing to antioxi-
dant and genoprotective properties, TA exhibits remarkable 
ameliorative efficacy against individual metal exposure and 
moderate efficacy in co-exposure group. For optimizing TA 
efficacy in co-exposure scenario, exploring various TA dos-
ages, potential structural modifications to enhance its selec-
tivity or capacity, and understanding its interactions with 
metal ions at molecular level are pivotal. Although TA-based 
nano-formulations are worthy of further investigation.
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