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Abstract
Fluoride (F) is widely distributed in the environment and poses serious health risks to humans and animals. Although a good 
body of literature demonstrates a close relationship between F content and renal system performance, there is no satisfac-
tory information on the involved intracellular routes. Hence, this study used histopathology and mitochondrial fission to 
explore fluorine-induced nephrotoxicity further. For this purpose, mice were exposed to the F ion (0, 25, 50, 100 mg/L) for 
90 days. The effects of different F levels on renal pathomorphology and ion metabolism were assessed using hematoxylin 
and eosin (H&E), periodic acid-Schiff stain (PAS), periodic acid-silver methenamine (PASM), Prussian blue (PB), and 
alkaline phosphatase (ALP) staining. The results showed that F could lead to glomerular atrophy, tubular degeneration, and 
vacuolization. Meanwhile, F also could increase glomerular and tubular glycoproteins; made thickening of the renal cap-
sule membrane and thickening of the tubular basement membrane; led to the accumulation of iron ions in the tubules; and 
increased in glomerular alp and decreased tubular alp. Concomitantly, IHC results showed that F significantly upregulated 
the expression levels of mitochondrial fission-related proteins, including mitochondrial fission factor (Mff), fission 1 (Fis1), 
and mitochondrial dynamics proteins of 49 kDa (MiD49) and 51 kDa (MiD51), ultimately caused apoptosis. To sum up, 
excessive fluorine has a strong nephrotoxicity effect, disrupting the balance of mitochondrial fission and fusion, interfering 
with the process of mitochondrial fission, and then causing damage to renal tissue structure and apoptosis.
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Introduction

Fluorine is a kind of active polar small molecule compound, 
widely distributed in drinking water, air, and soil [1]. As a 
vital metabolic organ, the kidney plays a crucial role in the 
body’s waste elimination process, helping to remove waste 
products, toxins, and drugs [2]. With the escalating levels of 
environmental pollution, the global incidence of kidney dis-
ease has increased by over 5% annually [3]. It is well-known 
that F could cause severe nephrotoxicity [4]. Elevated levels 
of F have been linked to the prevalence of chronic kidney 
disease [5]. Epidemiological surveys showed that 12.5% of 
the population in areas with high F exposure suffers from 
chronic kidney disease, much higher than in areas with low 
F exposure [6, 7]. The fluorosis population has pain in the 
kidney area, polyuria, proteinuria, renal dysfunction, and 
significantly higher than normal concentrations of fluorine in 
urine and serum [8–10]. Undoubtedly, humans and animals 
are highly susceptible to F in regions with elevated F levels 
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[11–13]; hence, the impact of F on the renal system requires 
further in-depth studies.

It is a well-known fact that there is a strong connection 
between F level in epithelial cells with increasing F intake and 
prolonged exposure time [14]. Renal failure prevents the effi-
cient removal of F and consequently makes the body susceptible 
to fluorosis, even with normal F levels [15]. In the same vein, 
excessive F can adversely affect renal tubular reabsorption in 
the ascending medulla of the loop of Henle, alter the degree 
of ion exchange, and ultimately affect the functionality of the 
kidney [16]. In addition, progress in the field has revealed that 
F exposure could significantly decrease calcium, phosphorus, 
and creatinine levels and increase uric acid concentration, lead-
ing to impaired kidney function [17]. Accumulating evidence 
reveals that oxidative stress and mitochondrial impairment are 
the main mechanisms of F-induced kidney damage [18–21]. In 
this regard, our previous studies have shown that F can cause 
kidney damage by disrupting the expression of subunits of the 
mitochondrial complex and increasing mitochondrial synthesis 
[17]. Mitochondrial fission is a highly regulated process that, 
when disrupted, can alter metabolism, proliferation, and apop-
tosis [22]. Proteins involved in mitochondrial fission include 
mitochondrial fission factor (Mff), fission 1 (Fis1), and mito-
chondrial dynamics proteins of 49 kDa (MiD49) and 51 kDa 
(MiD51) [23]. Mitochondrial damage due to mitochondrial 
fission–fusion imbalance is a key cause of renal tubular injury 
[24]. However, to the best of the authors’ knowledge, there is a 
paucity of information to explain the nephrotoxicity of F through 
the possible intracellular events, including oxidative stress and 
mitochondrial-related routes. Hence, the main aim of the current 
study was, therefore, undertaken to investigate the deleterious 
role of F on the renal system by assessing the histopathology 
and mitochondrial fission.

Materials and Methods

Animals and Grouping

Forty-eight sexually mature healthy female Kunming mice 
(35 days old) were obtained from the Experimental Center of 
Zhengzhou University, Henan, China. The animals were kept 
in a standard animal house under 12/12-h light/dark cycle, 
22–25 ℃, and hygienic conditions. All procedures were ethi-
cally approved by the Ethics Committee of Henan University 
of Science and Technology according to the Chinese Animal 
Management Guidelines.

The mice were given distilled water and fed SPF grade 
mice breeding feed ad libitum (Huanyu Bio, Beijing, China). 
After a week of acclimatization, the experimental mice were 
randomly allotted into four groups (n = 12 each): the control 
group drank distilled water without F; the F group was given 
drinking water containing 25, 50, and 100 mg/L F. After 

90 days of treatment with F, the mice were anesthetized with 
a 20% urethane (ethyl carbamate) solution, and their kidneys 
were gently isolated and rapidly fixed in 10% formaldehyde 
for further observations.

Histopathological Observation and Injury Score

The paraffinized tissue sections were cleared in xylene, 
dehydrated in graded ethanolic solutions (100, 95, 90, 80, 
70, and 50%), washed with distilled water (2 min), and 
stained with H&E, PAS, PASM, ALP, and PB, according to 
the manufacturer’s protocol. As mentioned, the PAS stain 
was used to measure renal cast formation in fluorosis mice. 
Images were computed using a computer-supported imaging 
system connected to a light microscope (OlympusAX70). 
The following lesions were evaluated for renal injury scores. 
The percentage of these injuries was counted on a scale from 
0 to 10: 0, absence of lesions (typical); 1–4, 10–40% (mild); 
5–6, 50–60% (moderate); 7–8, 70–80% (severe); and 9–10, 
90–100% (very severe) [25].

TdT‑Mediated dUTP Nick End Labeling (TUNEL) 
Staining

Apoptosis in the kidney of fluorosis mice was evaluated 
using the TUNEL method. According to the manufacturer’s 
instructions, paraffin sections were serially cut and stained 
with a commercially available TUNEL reaction kit (Promega 
DeadEnd™ Colorimetric TUNEL System and Roche Cell 
Death Detection Kit) and DAPI. The sections were observed 
using an Olympus IX51 fluorescence microscope (Olympus 
America, Center Valley, PA), and green fluorescence stain-
ing was considered positive for nuclear DNA fragmentation.

Immunohistochemistry (IHC)

The paraffinized renal tissue slides (5 µm) were cleared in 
xylene, dehydrated in graded ethanolic solutions (see the 
“TdT‑Mediated dUTP Nick End Labeling (TUNEL) Stain-
ing” section), and washed with distilled water. The cleaned 
sections were blocked with 5% bovine serum albumin (BSA) 
to prevent nonspecific antibody binding. The blocked sec-
tions were incubated with specific Fis1 (1:1000, 10956–1-
AP, Proteintech, Wuhan China), Mff (1:1000, 17090–1-AP, 
Proteintech, Wuhan, China), MiD49 (1:1000, 16413–1-AP, 
Proteintech, Wuhan, China), and MiD5(1:1000, bs-12634R, 
Bioss, Beijing, China) at 4 ℃ in a humidified chamber over-
night. Afterward, the incubated sections were washed with 
a phosphate-buffered solution thrice. The sections were 
incubated with a secondary antibody for 50 min at room 
temperature and stained with 3,3-diaminobenzidine. The 
loaded sections were counterstained with hematoxylin and 
washed with tap water. Ultimately, immunohistochemical 
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micrographs were viewed using an Olympus IX51 fluores-
cence microscope (Olympus America, Center Valley, PA).

Statistical Analysis

All data are illustrated as mean ± standard deviation (SD). 
Statistical evaluation was done by one-way variance analysis 
(ANOVA) using GraphPad Prism 8.0.2 (GraphPad Software, 
La Jolla, CA, USA), followed by Tukey’s multiple comparison 
tests. *P < 0.05, **P < 0.01 indicated statistically significant 
differences. Pearson’s correlation analysis was obtained using 
Origin2022 software (Origin Lab, Northampton, MA, USA).

Results

Renal Histological Alterations

In the control group, the glomerular space (the lumen within 
the glomerular capsule) was typical without apparent dam-
age, and the renal tubules were structurally intact and closely 
packed with epithelial cells (Fig. 1). The kidney tissue of 

fluorosis mice presented nucleolytic activity, rupture of 
Bowman’s capsule and renal tubule epithelial cells, and 
atrophy of glomeruli. These results suggest that F can dose-
dependently increase nephrotoxicity.

F increased Glycogen Distribution

The PAS staining showed a uniform distribution of gly-
coproteins in the mouse kidneys of the control group 
(Fig. 2A). However, after 90 days of F treatment, dose-
dependent increments were observed in the number of 
glycoproteins in the glomerular, tubular basement mem-
branes, and kidney injury (P < 0.01; Fig. 2B). The renal 
tubular injury score results showed that excessive F sig-
nificantly increased renal tubular damage (P < 0.05 or 
P < 0.01; Fig. 2B).

Renal Basement Membrane Alterations

As shown in Fig. 3, renal basement membrane injury was 
detected by PASM staining. In the control group, there 

Fig. 1   Effects of F on renal 
morphology and structure using 
H&E staining. Renal tubular 
cells were irregularly arranged 
with swollen cells and pale 
nuclei. The results showed 
that excessive F damaged the 
kidney, resulting in glomeruli 
atrophy and renal capsule space 
increased
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Fig. 2   The effect of F on the distribution of glycogen in kidneys. A 
PAS staining of the kidney. B The statistical data of glomerular PAS-
positive area, renal tubular-positive area, and renal tubular injury 
score. Glycoproteins were accumulated in glomeruli and tubules of 

mice treated with excess F. All data were expressed as mean ± SD 
(n = 6). (*, **) above columns indicated a significant difference 
(P < 0.05 and P < 0.01, respectively) compared to the control group

Fig. 3   The effect of F on the basal membrane of the kidney. A PASM staining of the kidney. B The basement membrane thickness of renal sacs 
and the renal tubular epithelium. All data were expressed as mean ± SD (n = 6). *P < 0.05; **P < 0.01
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were no noticeable pathological changes in glomeruli 
and renal tubules; the basement membrane of the glo-
meruli and the brush border of renal tubules were intact 
(Fig. 3A). With the increase in F dose, the mesangial 
matrix of glomerulus increased and basement membrane 
thickened. Concomitantly, the basement membrane of 
the renal tubules is thickened, and the brush boundary is 
shortened or even broken (P < 0.05 or P < 0.01; Fig. 3A 
and B). These findings indicate that F exposure can dam-
age the brush border of renal tubules in a dose-dependent 
manner.

Renal Alkaline Phosphatase (ALP)

ALP was accumulated in the renal glomerulus of the mice 
exposed to the medium (50 mg/L) and high (100 mg/L) 
doses of F, while dose-dependently decreased in the renal 
tubules of all F treatment mice (P < 0.01; Fig. 4B).

F increased Renal Iron Metabolism

The results of the PB demonstrated a large number of 
iron ions distributing around renal tubules in the medium 
(50 mg/L) and high (100 mg/L) exposed groups (P < 0.01; 
Fig. 5A, B). However, no footprint of iron ions was found in 
the renal glomerulus.

Renal Apoptotic Rate in Fluorosis Mice

The damage of apoptosis-related DNA in renal cells was 
observed by the TUNEL assay, as shown in Fig.  6. A 
few signs of DNA damage or apoptosis were recorded in 
the control group. However, the apoptotic rate was dose-
dependently increased in the kidneys of the mice exposed 
to F (P < 0.01; Fig. 6B). Therefore, these observations sug-
gested that excessive F could aggravate apoptosis in the renal 
system of fluorosis mice.

Renal Expression of Mitochondrial Fission‑Related 
Proteins

As shown in Fig. 7, the expression of mitochondrial fission 
protein in renal tissue was assessed upon exposure to F. 
IHC results showed that the renal expressions of Fis1, Mff, 
MiD49, and MiD51 were dose-dependently upregulated in 
fluorosis mice (P < 0.01; Fig. 7B).

Correlation Analysis

Correlation analysis was approved to evaluate the cor-
relation between renal mitochondrial fission-related pro-
teins and indicators of kidney injury and apoptosis. As 
shown in Fig. 8, there was an apparent positive correla-
tion between renal mitochondrial fission-related proteins 

Fig. 4   Effect of F on ALP in the kidney. A Representative images of ALP-stained kidney tissue sections. B The intensity of glomerular and 
tubule ALP expression. All data were expressed as mean ± SD (n = 6); **P < 0.01
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with apoptosis intensity (AI), iron deposition (ID), cap-
sular space width (CSW), glomerular PAS-positive area 
(GPPA), tubule PAS-positive area (TPPA), glomerular 
ALP expression (GAE), and tubular basement membrane 
thickness (TBMT). However, apoptosis-related indices 
of the thickness of the parietal layer of Bowman’s cap-
sules (TBLBC), tubule ALP expression (TAE), and renal 
mitochondrial fission-related proteins showed a negative 
correlation (Fig. 8).

Discussion

Fluorine (F) is a small polar molecular element that read-
ily diffuses into kidney cells, leading to sustained damage 
to the kidneys [26]. Recent studies have delineated that F 

affects the excretion of waste and reabsorption of essential 
substances in the renal tubules, ultimately causing kidney-
related anomalies [27–29]. In the current study, F exposure 
caused renal tubular epithelial cell degeneration and vacu-
olation. Simultaneously, excessive F shortened or even broke 
the brush boundary of renal tubules and increased the thick-
ness of the basement membrane. Moreover, an increased 
distribution of glycogen in the renal tubules is documented. 
Erstwhile studies have also reported that glycogen accumu-
lation could inevitably intensify the possible impairments 
in the structure and function of the kidneys, leading to 
various complications [30]. Additionally, our observations 
confirmed that excessive F could induce abnormal morpho-
logical and structural changes in renal tubules, suggesting 
another proof of the strong renal toxicity for F.

Fig. 5   Effects of F on renal iron metabolism. A Representative 
images of PB-stained kidney tissue sections. B The area of iron 
deposition in renal tubules. Iron deposition (red arrow) in renal 

tubules increased with the increase of F. All data were expressed as 
mean ± SD (n = 6). **P < 0.01

Fig. 6   Effect of F on renal DNA damage. A Positive expression of apoptosis-related DNA in renal cells. B The average fluorescence intensity of 
TUNEL. All data were expressed as mean ± SD (n = 6). **P < 0.01
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ALP is present in human and plays a key role in intracel-
lular destructive processes and cellular damage [31]. Renal 
tubular epithelial cells contain a considerable amount of 
ALP, and its secretion is common after xenobiotics-induced 
injuries to renal cells [32, 33]. As ALP plays a vital role in 
the secretion and reabsorption of renal tubules; hence, its 
release is considered a reliable marker for kidney injury [34]. 
In the same vein, this study confirmed the decline of ALP in 
renal tubular epithelial cells and its accumulation in the glo-
merulus. This explains the concentration-dependent increase 
in ALP in the luminal fluid due to F [35]. The impact of F on 
renal tubular epithelial cells leads to their impairment, facili-
tating the release of ALP into the bloodstream and subse-
quent accumulation within the glomeruli. This elucidates the 

underlying mechanism behind the elevation of ALP levels in 
serum upon F exposure [36]. In addition, F can significantly 
change the level of ion metabolism [37]. The kidneys are 
essential in iron metabolism and homeostasis [38]. Iron can 
be filtered through the kidneys’ glomeruli and reabsorbed 
by proximal tubules, the loop of Henle, and distal tubular 
cells [39]. Our study found a pronounced iron deposition 
in renal tubules in the F supplemented group. Under patho-
logical conditions, oxidative stress and subsequent intracel-
lular mechanisms may cause excessive iron accumulation in 
the renal tubules, leading to iron-induced kidney injury. An 
in-depth in vitro experiment showed an increment in heme 
degradation and reported that the fluorinated red blood cells 
produced methemoglobin and oxyhemoglobin, releasing 

Fig. 7   Effects of F on renal expression of some mitochondrial fission-
related proteins. A The protein expressions of Fis1, Mff, MiD49, and 
MiD51 in renal tissues were detected by IHC. B Renal Fis1, Mff, 

MiD49, and MiD51 expression levels. All data were expressed as 
mean ± SD (n = 6). (**) above columns indicated a significant differ-
ence (P < 0.01) as compared to the control group
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iron ions from the porphyrin ring [40]. The excess iron ions 
in the kidney are possibly caused by increased accumulation 
of free iron ions in the proximal and distal tubules. This 
accumulation can be a result of high hemoglobin filtration 
and a low resorption rate of renal tubule epithelial cells.

We have repeatedly reported the crucial role of mito-
chondria in maintaining the normal function of the renal 
system [41, 42]. Renal cells are rich in mitochondria, the 
main sites of energy conversion and oxidative phosphoryla-
tion [43]. Mitochondrial fission and mitochondrial fusion 
are dynamic processes [44]. To maintain the functional-
ity of the kidney tissue, renal cells regulate the fission and 
fusion of mitochondria to neutralize the damage caused by 
F. Dysfunction of mitochondrial fission is an important link 
in the development of chronic kidney disease, and persistent 
mitochondrial dysfunction leads to persistent tubular atrophy 
and atresia [45]. Mitochondrial fission can mitigate damaged 

mitochondria during cellular stress by promoting mitophagy 
and apoptosis [46, 47]. Fis1, Mff, MiD49, and MiD51, 
located on the surface of mammalian mitochondria, are 
vital proteins that control and regulate mitochondrial fission 
[48]. Evidence substantiates that mitochondrial fission and 
elongation are induced, respectively, by upregulation and 
downregulation of Mff and Fis1 in cells [49]. High expres-
sion of Fis1 promotes mitochondrial fission, apoptosis, and 
pyroptosis of cells, thus inducing nephrotoxicity [50, 51]. 
MiD49 and MiD51 are considered to be essential compo-
nents of mitochondrial fission mechanisms. Meanwhile, the 
Drp1 recruitment activity of MiD49 and MiD51 appeared 
stronger than that of Mff or Fis1 [52]. We have also reported 
that mitochondrial structural damage in hepatocytes results 
in the mitochondrial release of Cyt-c into the cytoplasm, 
stimulating a cascade reaction between Caspase 9 and Cas-
pase 3 and activating the mitochondria-mediated apoptotic 

Fig. 8   Correlation analysis of mitochondrial fission-related proteins 
with indicators of renal injury and apoptosis after fluoride treatment. 
AI, Apoptosis intensity; ID, iron deposition; CSW, capsular space 
width; GPPA, glomerular PAS positive area; TPPA, tubule PAS posi-

tive area; TBLBC, thickness of the parietal layer of Bowman’s cap-
sules; TAE, tubule ALP expression; GAE, glomerular ALP expres-
sion; TBMT, tubular basement membrane thickness



4133The Footprints of Mitochondrial Fission and Apoptosis in Fluoride‑Induced Renal Dysfunction﻿	

1 3

pathway [53]. Mitochondrial and kidney damage caused by 
increased mitochondrial fission are complementary and form 
a vicious cycle. In this regard, in the current study, excessive 
F also triggered apoptosis through the induction of mito-
chondrial fission via upregulation of the renal Fis1, Mff, 
MiD49, and MiD51 levels. Hence, it can be assumed that 
mitochondrial fission might be a physiological response to 
compensate for mitochondrial dysfunctionality upon expo-
sure to F and may be involved in regulating fluorine-induced 
nephrotoxicity damage.

In conclusion, excessive fluoride intake causes morpho-
logical damage of renal, interfering with mitochondrial fis-
sion and causing apoptosis of renal tubular epithelial cells, 
which showed substantial renal toxicity. This provides an 
important scientific basis for further studying of fluoride-
induced renal dysfunction.
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