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Abstract
In recent years, biologically synthesized metal nanoparticles have emerged as a dynamic field of research with significant 
implications for biomedical applications. This review explores the latest trends in the synthesis of metal nanoparticles 
using biological methods, encompassing plant extracts and microorganisms such as bacteria, yeasts, and fungi. These 
innovative approaches offer a sustainable, cost-effective, and environmentally friendly alternative to conventional chemical 
synthesis methods. Moreover, this review delves into the multifaceted biomedical applications of biologically synthesized 
metal nanoparticles. These applications include drug delivery systems, diagnostics, therapeutics, and imaging technologies, 
showcasing the versatility and promise of these nanomaterials in addressing contemporary biomedical challenges. In addition, 
the review addresses the critical issue of cytotoxicity, offering insights into the safety and viability of these biologically 
derived NPs for medical use. The exploration of recent trends and advancements in this field underscores the transformative 
potential of biologically synthesized metal nanoparticles in revolutionizing biomedical research and healthcare.
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Introduction

Nanotechnology has ushered in a new era of innovation 
across various scientific domains, and one of its most 
intriguing frontiers is the synthesis of metal nanoparticles 
(MNPs). These nanoscale materials exhibit distinctive physi-
cal, chemical, and biological properties due to their reduced 
dimensions, making them highly attractive for a wide range 
of applications [1]. Transitioning these innovations from 
laboratory settings to practical use is the essential step 
towards their real-world impact. The commercialization of 

these groundbreaking technologies is vital for a broad spec-
trum of human needs and global advancement [2]. However, 
meticulous attention must be paid to materials’ potential, 
health assessments, and environmental consequences. It is 
undeniable that nanoparticles (NPs) pose health concerns 
that demand swift attention. Moreover, their production 
and utilization remain largely unregulated, particularly in 
the context of a rapidly evolving industrial landscape [3]. 
As new chemical processes are designed with minimal risks 
in mind, hazardous compounds are minimized or eliminated 
by adhering to a set of fundamental principles. This under-
scores the critical role of the burgeoning green chemistry 
industry [4].

Significant time and effort have been invested in devel-
oping viable synthetic methodologies for producing nano-
particles, primarily due to their distinctive physicochemical 
properties and wide-ranging applications. Nevertheless, the 
environmental hazards stemming from heavy metal residues 
have limited the utility of numerous physicochemical tech-
niques in nanoparticle production. Consequently, the adop-
tion of biological approaches for nanoparticle synthesis has 
emerged as a promising trend in the industry. This shift is 
driven by several key advantages, including non-toxicity, 
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reproducibility, ease of scalability, and the ability to achieve 
well-defined nanoparticle shapes [3–5].

In recent years, there has been a growing emphasis 
on harnessing the capabilities of biological systems for 
the synthesis of MNPs, resulting in the emergence of 
biologically synthesized metal nanoparticles (bio-MNPs). 
The convergence of nanotechnology and biotechnology has 
paved the way for innovative and eco-friendly methods of 
producing MNPs. Employing “green synthesis” techniques 
is crucial to minimize the generation of undesirable or 
hazardous by-products and to promote the development 
of dependable, sustainable, and environmentally friendly 
synthesis methods [6]. Biogenic synthesis, involving the 
use of microorganisms, plants, and other natural resources, 
offers a sustainable approach that not only mitigates the 
environmental impact associated with traditional chemical 
methods but also provides precise control over the properties 
of the synthesized nanoparticles. As a result, bio-MNPs have 
garnered considerable attention across scientific disciplines, 
with biomedical applications taking center stage [7].

The biomedical field is witnessing a transformative 
paradigm shift, with bio-MNPs gaining prominence as 
versatile tools for various diagnostic, therapeutic, and 
imaging applications. Their unique physicochemical 
properties, surface functionality, and biocompatibility make 
them ideal candidates for targeted drug delivery, biosensing, 
cancer therapy, and bioimaging. The ability to tune the 
size, shape, and surface characteristics of bio-MNPs adds 
a layer of customization that is crucial for optimizing their 
interactions with biological systems [2, 7].

In this context, we provide an update on recent 
breakthroughs in the synthesis of biological nanoparticles 
and offer insights into their potential applications and future 
prospects.

Biological Synthesis of Metallic 
Nanoparticles

Biological synthesis of metallic nanoparticles refers to the 
process of creating nanoscale metallic particles using natural 
sources, such as microorganisms (bacteria, fungi, yeast) and 
plants. This approach, often referred to as “green synthesis,” 
offers an environmentally friendly and sustainable 
alternative to traditional physicochemical methods that may 
involve toxic chemicals or generate harmful by-products [8]. 
During the biological synthesis of metallic nanoparticles, 
biological agents or extracts from these agents are used to 
reduce and stabilize metal ions from a precursor solution, 
leading to the formation of nanoparticles with controlled 
sizes and shapes [6].

This method has gained significant attention due to its 
numerous advantages, including [4, 7–9]:

Non‑toxicity Biological synthesis utilizes mild reaction 
conditions and natural reducing agents, minimizing the use 
of hazardous chemicals and reducing toxicity in the final 
product.

Eco‑friendliness The process often involves readily avail-
able biological materials, which reduces the environmental 
impact associated with traditional chemical processes.

Control over Size and Shape By adjusting reaction param-
eters and utilizing specific biological agents, it is pos-
sible to control the size and morphology of the resulting 
nanoparticles.

Reproducibility Biological synthesis methods can be stand-
ardized, leading to consistent and reproducible nanoparticle 
production.

Biocompatibility The resulting nanoparticles often exhibit 
better biocompatibility, making them suitable for various 
biomedical applications.

Scalability Some biological synthesis methods are eas-
ily scalable, allowing for large-scale production of 
nanoparticles.

Versatility Various microorganisms and plant extracts can 
be employed to synthesize nanoparticles of different metals, 
offering a versatile approach.

A pictorial demonstration of the biological synthesis of 
metallic nanoparticles is presented in Fig. 1.

Mechanisms of Biological Synthesis 
of Metallic Nanoparticles

The biological synthesis of metallic nanoparticles (MNPs) 
involves intricate biochemical and biophysical mechanisms 
that vary depending on the organism or biomolecule being 
used. Understanding these mechanisms is essential for 
tailoring the properties of MNPs for specific applications. 
Researchers continue to explore and optimize these 
processes to enhance the efficiency, reproducibility, and 
scalability of biological synthesis methods for MNPs [10]. 
Some common mechanisms involved in the biological 
synthesis of MNPs are:

1. Reduction of metal ions [10, 11]:

• Enzymatic reduction: In many biological synthesis 
methods, enzymes play a crucial role as reducing 
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agents. Enzymes like nitrate reductase, laccase, and 
chloroperoxidase can catalyze the reduction of metal 
ions (e.g.,  Ag+,  Au3+) by providing electrons from their 
cofactors, co-substrates, or active sites. This reduction 
process leads to the formation of metal nanoparticles.

• Microbial reduction: Some microorganisms, such as 
bacteria and fungi, are capable of reducing metal ions 
extracellularly. These microorganisms produce specific 
biomolecules or metabolites (e.g., NADH) that serve 
as electron donors, facilitating the reduction of metal 
ions to MNPs.

2. Nucleation and growth [12]:

• Nucleation: Once metal ions are reduced, they tend to 
nucleate, forming small clusters of atoms. Nucleation 
is a critical step that determines the size and number 
of nanoparticles formed. Various factors, including 
temperature, pH, and concentration of metal ions, 
influence nucleation.

• Growth: After nucleation, the nanoparticles continue to 
grow by the addition of metal ions onto their surfaces. 
The rate of growth and the shape of the nanoparticles 
can be controlled by adjusting the reaction conditions.

3. Stabilization and capping [13]:

• Biomolecule interaction: Biomolecules present in the 
biological system, such as proteins, peptides, or polysac-
charides, can interact with the newly formed MNPs. These 
biomolecules can serve as stabilizing agents, preventing 
the aggregation and precipitation of MNPs.

• Surface modification: The biomolecules that attach to the 
MNP surface can also affect the surface properties, such 
as charge and reactivity. This surface modification can be 
utilized to tailor the MNPs for specific applications.

4. Size and shape control [12, 14]:

Biological templates: Some biological systems provide 
templates or scaffolds for the formation of MNPs with 
specific shapes. For instance, viruses and plant proteins have 
been used to synthesize MNPs with well-defined shapes.

5. Intracellular vs. extracellular synthesis [11, 14]:

• Intracellular synthesis: In some cases, MNPs are 
synthesized within the cells of microorganisms. These 
intracellularly synthesized MNPs can be stored or 
excreted by the organisms.

• Extracellular synthesis: In other instances, MNPs are 
formed outside the cells in the extracellular environment. 
This extracellular synthesis method is commonly used in 
bio-MNP production.

Fig. 1  Biological synthesis of 
metallic nanoparticles
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6. pH and temperature dependence [13]:

• pH influence: pH plays a critical role in biological 
synthesis as it affects the redox potential and charge of 
metal ions, impacting their reduction and subsequent 
nanoparticle formation.

• Temperature effects: Temperature can influence reaction 
rates and the stability of formed MNPs. Optimizing 
temperature conditions is essential for controlling MNP 
synthesis.

Plant‑Based Synthesis of Metallic Nanoparticles

Plant nanotechnology has recently unveiled innovative 
pathways for the eco-friendly production of nanoparticles, 
offering a straightforward, rapid, and stable approach. 
Employing water as a reducing agent in nanoparticle 
synthesis brings numerous advantages, including 
biocompatibility, scalability, and applicability in medicine. 
This signifies that nanoparticles derived from plant 
sources hold the potential to meet the growing demand 
in biomedicine and environmental applications, primarily 
due to their accessibility and non-hazardous nature [14, 
15]. Recent investigations have revealed the feasibility of 
producing gold and silver nanoparticles utilizing Panax 
ginseng leaf and root extracts, showcasing the potential of 
medicinal plants as viable sources of raw materials [16]. 
Furthermore, various plant components such as leaves, 
fruits, and stems, as well as their extracts, have been 
harnessed for the synthesis of metal nanoparticles.

The role of secondary metabolites, including flavonoids 
and alkaloids, has garnered attention for their pivotal roles 
in metal salt reduction, as well as their capability to serve 
as capping and stabilizing agents for nanoparticles produced 
from proteins and amino acids [17, 18]. For instance, Coral-
lina officinalis extract, enriched with polyphenols and proteins 
bearing carbonyl groups, has exhibited potential in facilitating 
the generation and stabilization of gold nanoparticles [19].

Comparing biologically synthesized nanoparticles with 
their physicochemically synthesized counterparts, literature 
suggests that biogenic nanoparticles tend to exhibit height-
ened activity. Achieving stable and monodisperse metallic 
nanoparticles necessitates accurate control over pH, incubation 
time, mixing ratios, and temperature. Diverse plants, including 
curry, mango, neem, turmeric, and guava, have been explored 
for the creation of gold nanoparticles. These plant extracts, rich 
in polyphenols, expedite the breakdown of organic matter, fur-
ther influencing nanoparticle formation [20]. Moreover, plants 
demonstrate an extraordinary capacity to reduce metal ions, 
not only on their surfaces but also in distant organs and tissues. 
This phenomenon has led to the prevalence of nanoparticles 
(NPs) as the primary form of metal deposition, as evidenced 

by studies on metal bioaccumulation [21]. For instance, the 
leaf extract of Diopyros kaki was employed as a green and 
eco-friendly reducing agent in the extracellular synthesis of 
platinum nanoparticles from an aqueous H(2)PtCl(6)0.6H(2)O 
solution [22]. Similarly, Murraya Koenigii leaf extract served 
a dual role as both a reducing and stabilizing agent, facilitating 
the production of silver nanoparticles at ambient conditions 
and gold nanoparticles at 373 K. The resulting nanoparticles 
underwent thorough characterization through UV–vis, trans-
mission electron microscopy (TEM), X-ray diffraction (XRD), 
and FTIR analysis. This innovative method yielded well-dis-
persed silver nanoparticles with a size of approximately 10 nm 
and gold nanoparticles with a size of approximately 20 nm 
[23]. Notably, the concentration of the plant extract has been 
demonstrated to exert a significant influence on the reduction 
rate, particle size, and propensity for agglomeration.

As evidenced by these diverse studies, the realm of plant 
nanotechnology holds immense promise in revolutionizing 
nanoparticle synthesis. Through the strategic utilization of 
plant constituents, researchers are uncovering innovative 
pathways for the sustainable production of nanoparticles 
with a wide array of potential applications [24].

Animal‑Based Synthesis of Metallic Nanoparticles

Animal-based synthesis of metallic nanoparticles involves 
using various animal-derived substances or components 
to facilitate the production of metallic nanoparticles. 
Researchers working on these methods aim to harness the 
natural properties of animal-derived materials to create 
metallic nanoparticles for various purposes, including 
biomedical, catalytic, and environmental applications [25]. 
While the majority of nanoparticle synthesis methods are 
plant-based or microbial, there are some examples where 
animal-based materials are utilized for this purpose. A range 
of natural sources and marine organisms have been explored 
for the synthesis of nanomaterials, including fibroin-
titanium dioxide nanocomposites, nano-hydroxyapatite 
(a form of calcium NPs), and other nanoparticles. These 
eco-friendly synthesis methods utilize silk proteins, 
derived from various species such as spiders, silkworms, 
and tree ants [26]. Sericin, another silk protein, has also 
proven effective in nanoparticle production. Marine 
organisms possessing enzymatic capabilities, such as 
sponges and starfish, have been found to produce biological 
silica nanoparticles. Earthworm extracts, notably from 
species like Eisenia andrei, have been employed for the 
creation of nano-red gold, particularly when trichlorogold 
hydrochloride is present. In the green synthesis of silver 
nanoparticles, marine worms like Polychaeta have shown 
promise [27]. Additionally, chitins obtained from crustacean 
shells, including chitosan, offer a valuable resource for the 
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development of nanocomposites involving titanium dioxide 
and chitosan.

Microbiome‑Based Synthesis of Metallic 
Nanoparticles

Microbiome-based synthesis of metallic nanoparticles 
involves the use of microorganisms, such as bacteria or fungi, 
and their associated microbiomes to facilitate the production 
of metallic nanoparticles. This approach leverages the 
unique metabolic capabilities of microorganisms and their 
interactions with the surrounding microbiota to synthesize 
nanoparticles with various properties [28]. Microbes can 
be used as safe and cheap tools for synthesis of metallic 
NPs like gold, silver, copper, zinc, titanium, palladium, 
and nickel. The synthesis of NPs can be carried out both 
extracellularly and intracellularly using microbes [29, 30].

Recently, bacterial strains belonging to Acinetobacter 
calcoaceticus, Bacillus amyloliquefaciens, Bacillus 
megaterium, Bacillus licheniformis, Escherichia coli, 
Lactobacillus sp., and Pseudomonas stutzeri have been used 
in for the biosynthesis of AgNPs [31, 32]. Zinc oxide NPs 
were synthesized using a bacterium Aeromonas hydrophila 
in simple and cost-effective method. The crystalline nature 
of the NPs was observed by atomic force microscopy 
(AFM), which showed that the NPs were spherical and oval 
with an average size of 57.72 nm [33].

Fungi are excellent sources of many bioactive compounds 
that can be utilized in various sectors. The fungal synthesis 
of metallic NPs is dependent on culture conditions. In a 
previous study, the culture conditions of Trichothecium sp. 
reduced Au ions resulting extracellular NPs synthesis but 
produced NPs intracellularly when cultured with agitations 
[34]. In another study, the biosynthesis of AgNPs using 
Fusarium oxysporum was reported where the effect of 
substrate concentration and incubation temperature was 
studied [35].

Yeast cells act as one of the most important agents for 
bioremediation of heavy metals. Yeasts are easily cultured 
in low-cost media and capable of removing various heavy 
metals. Saccharomyces cerevisiae was used for biosynthesis 
of AgNPs by biotransformation. Both the dried and fresh 
culture S. cerevisiae was used as the biocatalyst [36]. Pichia 
jadinii was used for intracellular synthesis of AuNPs ranging 
from 1 to 100 nm. In this study, the growth and cellular 
activities of P. jadinii were controlled easily to regulate 
AuNPs size and shape [37].

Several studies illustrate that viruses are considered to be 
a suitable group which serves as a biotemplate for material 
synthesis at the nanoscale to microscale [38]. Recently, mate-
rial science researchers have been using the viral NPs (VNPs) 
as templates or scaffolds for the synthesis of novel hybrid 
nanomaterials [39]. The synthesis of nanomaterials using 

viruses is a clean, nontoxic, and environmentally friendly 
method which provides a broad range of sizes, shapes, com-
positions, and physicochemical properties [40]. In a study, a 
notorious plant pathogenic virus, squash leaf curl China virus 
(SLCCNV) was used as biotemplate to fabricate silver and 
gold nanomaterials. The SLCCNV was exposed to  HAuCl4 
and  AgNO3 precursors in presence of sunlight and quick 
(∼5 min) formation of SLCCNV-metallic-hybrid nanoma-
terials in an eco-friendly way was observed [41]. In another 
research, tobacco mosaic virus and bovine papilloma virus 
were used as additive materials with plant extracts Avena 
sativa, Hordeumvulgare, Musa pradisiaca, and Nicotiana 
benthamiana. These two viruses promoted the reduction and 
increase of the NPs number remarkably as compared to a 
control without virus [42]. These viral synthesized nanoma-
terials have a wide range of applications in biomedicine and 
serve as catalysts to biosensors [43].

Development of Biosynthesized Metallic 
Nanoparticles

Biosynthesized metallic nanoparticles are nanoparticles 
that are produced through biological methods using vari-
ous microorganisms, plants, and other biological entities 
as reducing and stabilizing agents. These nanoparticles 
are often referred to as “biogenic nanoparticles” or “green 
nanoparticles” due to their eco-friendly and sustainable 
production process [16, 20, 23]. The metallic nanoparticles 
developed using biological methods are presented in Fig. 2.

Gold Nanoparticles

Gold nanoparticles, comprising gold atoms, encompass 
a diverse range of sizes, spanning from a few nanometers 
to several hundreds of nanometers in diameter. These 
nanoparticles manifest distinctive characteristics owing to 
their diminutive dimensions and impressive surface area-to-
volume ratio, setting them apart from bulk gold properties. 
The manifold attributes of gold nanoparticles render them 
invaluable across various domains, continually unveiling 
novel applications for exploration [44]. Extensive research 
has been devoted to exploring nanoparticle-based delivery 
systems for enhancing the loading of organic molecules. 
Particularly within the realm of nanotechnology, these 
particulate systems necessitate the incorporation of proteins, 
lipids, and carbohydrates. Notably, nanoparticles represent 
colloidal systems with size dimensions typically ranging 
from 10 to 1000 nm. [45, 46].

Gold, with its exceptional optical absorption properties, 
stands as an ideal candidate for detection purposes, while 
its photothermal attributes render it potent as an anticancer 
agent. Complex gold nanostructures can be meticulously 



3388 L. Devi et al.

1 3

engineered to optimize drug release efficacy. Strategies 
encompass the attachment of drug particles onto metal 
nanoparticle surfaces and the creation of hollow inner 
structures, augmenting entrapment efficiency. These 
structures are often easily modifiable to incorporate 
diverse optical properties. Furthermore, the nanoparticle 
surface can be coated with thermosensitive monomers to 
facilitate controlled drug delivery. These polymers enable 
the manipulation of drug-loaded particle suspension 
diffusion rates by contracting in warm conditions and 
expanding in colder environments. This innovative 
approach can be synergistically combined with gold’s 
photothermal characteristics, offering a novel avenue for 
drug administration. For example, by focusing a laser on 
tumor sites to induce the melting of gold nanoparticles in 
proximity to the tumor location, effective drug delivery can 
be enhanced, while minimizing nonspecific toxicity.

Gum acacia (GA) has been employed as a polysaccha-
rides-based technique to successfully establish gemcitabine 
hydrochloride (GEM)-loaded colloidal gold nanoparticles 
[47–49]. The improved water solubility and drug release rate 
of GEM when delivered on a gold carrier can be attributed to 
colloidal GEM-GA-AuNPs. Consequently, GEM’s targeting 
effectiveness is significantly enhanced, owing to substantial 
increases in particle size, enhanced water solubility, and an 
improved drug release profile [47].

Silver Nanoparticles

Silver nanoparticles (AgNPs) stand as one of the most 
significant and captivating nanomaterials, finding versatile 
applications in various biomedical contexts. Within this 
domain, the environmentally friendly green synthesis 

of AgNPs using herbal extracts has garnered substantial 
attention, presenting an eco-conscious alternative. 
Notably, Impatiens balsamina, Lantana camara, and 
Cucumis prophetarum leaf extracts have been harnessed, 
demonstrating dual roles as both reducing and capping agents 
in the biosynthesis of AgNPs [50, 51]. Another noteworthy 
example revolves around the utilization of Salvia officinalis, 
a member of the salvia genus, renowned for its capacity 
to yield AgNPs imbued with remarkable antibacterial, 
antiplasmodial, antioxidant, anti-inflammatory, and 
antileishmanial properties [52, 53]. Intriguingly, geranium 
leaf extract has been employed in the extracellular synthesis 
of AgNPs. This process yields quasi-linear superstructures, 
spanning a size range from 16 to 40 nm, as evidenced by 
transmission electron microscopy (TEM). These AgNPs 
exhibit exceptional stability and crystallinity [54].

Further research has explored the potential of five plant 
leaf extracts (Pine, Persimmon, Ginkgo, Magnolia, and 
Platanus) in the extracellular synthesis of metallic silver 
nanoparticles. The plant leaf extracts served as effective 
reducing agents for Ag( +) to Ag(0) in aqueous  AgNO3 
solutions, yielding stable silver nanoparticles. UV–visible 
spectroscopy was employed to quantitatively monitor the 
formation of these nanoparticles [55].

Additionally, Azadirachta indica leaf extract has been 
investigated as a potent reducing agent for the rapid bio-
synthesis of AgNPs. This research delved into the effects 
of AgNPs on growth, glutathione‐S‐transferase (GST) 
activity, total protein concentration, and potent antibacte-
rial efficacy against Staphylococcus aureus [56]. The syn-
thesis of AgNPs has also witnessed innovation through the 
combined use of Mentha X Piperita (Mint) and Ocimum 
tenuiflorum (Tulsi). This combination yielded AgNPs with 

Fig. 2  Development of metallic 
nanoparticles by green synthesis 
method
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outstanding antimicrobial activity, particularly against 
Streptococcus mutans [57].

Recent research has extended the green synthesis fron-
tier by employing Mangifera indica leaf extracts to syn-
thesize Mi-AgNPs. These Mi-AgNPs were found to be 
polycrystalline, spherical in shape, with an average size 
of 62 ± 13 nm [58].

Palladium Nanoparticles

Palladium nanoparticles (PdNPs) have garnered significant 
attention from researchers owing to their wide-ranging 
applications. Nonetheless, conventional methods for 
synthesizing PdNPs often entail the use of harmful 
solvents and reducing agents, leading to the generation of 
toxic pollutants and by-products [59]. To address these 
pressing environmental concerns, the green synthesis of 
palladium nanoparticles using plant extracts has emerged 
as a promising and sustainable alternative. This biosynthesis 
approach harnesses the inherent eco-friendliness of plant 
extracts, circumventing the drawbacks associated with 
traditional methods. Notably, these biologically synthesized 
nanoparticles exhibit advantageous characteristics, including 
enhanced selectivity and catalytic properties, rendering them 
highly appealing for diverse applications [60].

A compelling instance of this green synthesis involves 
the use of aqueous Saccharomyces cerevisiae extract for 
the biofabrication of palladium nanoparticles (PdNPs) 
and their subsequent photocatalytic applications [61]. Fur-
thermore, the extract of Diospyros kaki leaves has been 
employed as a bio-stimulator to synthesize PdNPs, which 
demonstrated proficient antibacterial efficacy against both 
Escherichia coli and Staphylococcus aureus, yielding 
zones of inhibition measuring 18 and 10.5 mm, respec-
tively [62]. Another noteworthy study showcased the feasi-
bility of biosynthesizing Pd-NPs using Shewanella loihica 
PV-4, with a specific focus on their potential application 
as efficient catalysts for the remediation of chromium con-
tamination [63].

Copper Nanoparticles

Copper nanoparticles have attracted significant attention 
among researchers due to their unique properties and cost-
effectiveness, setting them apart from noble metal nanopar-
ticles. In recent times, the green biosynthesis approach has 
gained notable prominence, particularly within the realm 
of biological applications. This preference arises from its 
simplicity, non-toxicity, and eco-friendly attributes, which 
stand in stark contrast to conventional physical and chemi-
cal synthesis methods. While some green materials exhibit 
dual functionality, serving as both stabilizing and reducing 
agents in the production of copper nanoparticles (Cu-NPs), 

others may necessitate an additional environmentally 
friendly boost [64, 65]. In a noteworthy study, copper nano-
particles (CuNPs) were successfully synthesized by treat-
ing an aqueous solution of copper sulfate pentahydrate with 
an extract derived from Magnolia kobus leaves, showcas-
ing the potential of this green approach [66]. Additionally, 
stable copper nanoparticles were effectively synthesized 
through the utilization of Ocimum sanctum leaf extract, 
further exemplifying the eco-friendliness of green methods 
[67]. Furthermore, CuNPs were biosynthesized employ-
ing a Pseudomonas stutzeri bacterial strain isolated from 
wastewater originating from the electroplating industry, 
highlighting the adaptability of green synthesis techniques 
to various contexts [68].

In a recent investigation, the utilization of the Stenotropho-
monas maltophilia strain SCS1.1 for the biosynthesis of cop-
per oxide nanoparticles (CuONPs) proved significant. These 
CuONPs were subsequently evaluated for their inhibitory 
effects against various plant pathogenic microorganisms, 
showcasing the potential applications of green synthesized 
nanoparticles in agriculture and environmental contexts [69].

Iron Nanoparticles

Iron oxide nanoparticles (FeNPs) are widely employed 
due to their low toxicity and significant utility in everyday 
applications. In nature, two types of iron oxides, hematite 
and magnetite, hold distinct roles in scientific investiga-
tions [70]. Notably, iron oxide nanoparticles within the size 
range of 10–100 nm have played a pivotal role in various 
studies [71].

The utilization of Ziziphora clinopodioides leaf extract 
as a reducing agent has proven effective in the green syn-
thesis of FeNPs from  FeCl3 solution. These FeNPs exhib-
ited remarkable enhancements in immunological, hema-
tological, and biochemical markers in anemic wild mice. 
Moreover, they demonstrated potent antioxidant activity 
against DPPH in  vitro [72]. Additionally, FeNPs dis-
played significant dose-dependent cell viability effects in 
the HUVEC cell line, indicating their potential biomedical 
applications [56].

In another investigation, FeNPs were biosynthesized using 
Phoenix dactylifera extract as a reducing agent and iron sul-
fate heptahydrate  (FeSO4·7H2O) as a substrate. The antimicro-
bial activity of these synthesized FeNPs was assessed against 
various bacterial strains, including Escherichia coli, Bacillus 
subtilis, Micrococcus leutus, and Klebsiella pneumoniae. The 
results revealed differential antimicrobial potential, with the 
maximum zone of inhibition observed against Escherichia coli 
[73]. Furthermore, a separate study employed Mentha spicata 
for the synthesis of FeNPs and investigated their antimicrobial 
efficacy against Phytophthora infestans [74].
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Zinc Oxide Nanoparticles

Zinc oxide nanoparticles (ZnO-NPs) stand as a prime example 
of metal oxide nanomaterials, valued for their unique physical 
and chemical properties [75]. These nanoparticles have cap-
tured the interest of researchers, with numerous studies utiliz-
ing various plant sources for their synthesis. For instance, the 
leaf extract of Calotropis gigantea, in the presence of  ZnNO3 
salt, successfully yielded nanoparticles with a size range of 
30–35 nm [76]. Functionalization of these green synthesized 
ZnONPs has revealed their potential in various domains. 
These nanoparticles exhibit promising anti-diabetic proper-
ties, high biocompatibility, and significant antibacterial activ-
ity [57]. Utilizing organic constituents present in Wattakaka 
volubilis leaf extract, ZnONPs were produced through reduc-
tion and capping of zinc ions. Beyond their anti-diabetic appli-
cations, these nanoparticles possess safety advantages, mak-
ing them suitable for reliable pharmaceutical formulations and 
scalability. This development aligns with the evolution of drug 
design, emphasizing the need to identify and extract the active 
components responsible for their anti-diabetic effects [77, 78].

In a separate study, iron nanoparticles were synthesized 
using aqueous Ageratum conyzoides extracts, and their anti-
microbial and photocatalytic properties were evaluated. 
Comprehensive characterization involved UV–Vis spectro-
photometry, FT-IR spectrophotometry, X-ray diffractom-
etry, and scanning electron microscopy. Gas chromatogra-
phy-mass spectrometry (GC–MS) profiling of the extracts 
revealed the presence of secondary metabolites, with quan-
tification of total phenolic and total flavonoids content. Anti-
microbial activity was assessed against five microorganisms, 
demonstrating moderate activity compared to the antibiotic 
ciprofloxacin. Additionally, the nanoparticles exhibited pho-
tocatalytic efficiency in degrading methylene blue, achieving 
a degradation efficiency of 92%. These findings underscore 
the role of Ageratum conyzoides in the bioreduction of iron 
ions to FeNPs, with potential applications in microorganism 
control and photocatalytic processes [79].

Platinum Nanoparticles

Platinum nanoparticles (PtNPs) represent invaluable scien-
tific tools, under intense exploration across various biotech-
nological, nanomedical, and pharmacological domains. Their 
remarkable attributes, including antimicrobial, antioxidant, and 
anticancer properties, have spurred extensive research [80, 81].

In one notable study, platinum nanoparticles were synthe-
sized using Ocimum sanctum leaf extract as a reducing agent 
in the presence of aqueous chloroplatinic acid  (H2PtCl6H2O). 
Leveraging an O. sanctum leaf broth at a reaction temperature 
of 100 °C resulted in a more efficient conversion of platinum 
ions into nanoparticles [82]. In another investigation, Atriplex 
halimus leaf aqueous extract played a pivotal role in the green 

synthesis of platinum nanoparticles (At-PtNPs). These At-
PtNPs exhibited remarkable stability over a span of 3 months. 
They served as highly effective catalysts for the degradation of 
MB dye and displayed significant antibacterial efficacy against 
Gram-negative bacteria. Additionally, At-PtNPs showcased 
potent antioxidant properties [83]. These findings underscore 
the versatile applications and promising potential of platinum 
nanoparticles in various scientific and biomedical endeavors.

Selenium Nanoparticles

Selenium has garnered increased attention in recent years due 
to its vital role in human health. This essential element is 
involved in critical metabolic pathways, including thyroid hor-
mone regulation and immune system function. Selenium also 
plays a key role in safeguarding cells from damage caused by 
free radicals, as it facilitates the incorporation of antioxidant 
enzymes [84].

In a noteworthy study, selenium nanoparticles, known as 
phytofabricated selenium nanoparticles (PF-SeNPs), were 
synthesized using the aqueous fruit extract of Emblica 
officinalis through a simple, green, cost-effective, and envi-
ronmentally friendly method. The fruit extract of E. offici-
nalis was found to be rich in secondary metabolites such 
as phenolics, flavonoids, and tannins, rendering it highly 
suitable for nanoparticle biosynthesis. PF-SeNPs exhib-
ited remarkable antioxidant, antimicrobial, and biocom-
patible properties. These nanoparticles displayed a wide 
range of antimicrobial activity, with fungi being the most 
susceptible, followed by Gram-positive and Gram-negative 
bacteria. Importantly, cytotoxicity studies revealed that PF-
SeNPs were significantly less toxic and safer than sodium 
selenite [85].

In another study, selenium nanoparticles (SeNPs) were syn-
thesized using extracts from three distinct plants: Allium cepa 
(onion), Malpighia emarginata (acerola), and Gymnanthemum 
amygdalinum (boldo). Antibacterial activity was assessed 
using microdilution in broth, followed by a time-kill curve 
analysis against bacterial strains, including Staphylococcus 
aureus, methicillin-resistant S. aureus, Pseudomonas aerugi-
nosa, and Escherichia coli (Tables 1 and 2). The observed anti-
microbial efficacy and low hemolytic concentration suggest the 
potential utility of these nanoparticles against Gram-positive 
bacteria, including multidrug-resistant strains, thereby opening 
up a wide range of applications [115].

Biomedical Application of Biosynthesized 
Metallic Nanoparticles

Metallic nanoparticles (MNPs) find extensive utility 
across various biomedical applications, encompassing 
medical diagnostics, molecular biology, bioimaging, drug 
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delivery, and tumor targeting. The multifaceted applica-
tions of MNPs are detailed in the following sections.

Medical Diagnosis and Molecular Biology

The remarkable properties of metallic nanoparticles are har-
nessed for biomedical purposes. As particle size shrinks, 
their high surface area imparts distinct properties distinct 

from macro-sized structures. Metallic nanoparticle synthe-
sis employs either bottom-up or top-down approaches. The 
bottom-up method, primarily through thermal decomposi-
tion, is cost-effective and flexible, and yields homogeneous 
particles. Notably, biological synthesis has gained promi-
nence for its non-toxicity, cost-efficiency, sustainability, and 
eco-friendliness [116–118].

Table 1  Synthesis of metallic 
nanoparticles by different plant 
extracts

Plant extracts Type of nanoparticles Location Size range (nm) References

Azadirachta indica Ag, Au, and Ag/Au Extracellular 50–100 [86]
Pelargonium graveolens Ag - 16–40 [87]
Cymbopogon citratus Au - 200–500 [88]
Avena sativa (oat) Au Extracellular 5–85 [89]
Alfalfa sprouts Ag Intracellular 2–20 [90]
Aloe vera Au Extracellular 50–350 [91]
Cinnamomum camphora Au and Ag Extracellular 55–80 [92]
Asparagus racemosus Pt/Pd NPs - 1–6 [93]
Ginkgo biloba Cu - 60 [94]

Table 2  Synthesis of metallic 
nanoparticles by different 
microorganisms

Microorganism Type of nanoparticles Location Size range (nm) References

(A) Bacteria
Pseudomonas stutzeri
Morganella sp.
Lactobacillus strains
Plectonema boryanum 

(Cyanobacteria)
Escherichia coli
Shewanella algae
Rhodopseudomonas 

capsulate
Escherichia coli DH5α
Thermomonospora sp.
Rhodococcus sp.
Pseudomonas aeruginosa

Ag
Ag
Ag and Au
Ag
CdS
Au
Au
Au
Au
Au
Au

Intracellular
Extracellular
Intrecellular
Intrecellular
Intracellular
Intracellular
Extracellular
Intracellular
Extracellular
Intracellular
Extracellular

∼200
20–30
-
1–10
2–5
10–20
10–20
25–33
8
5–15
15–30

[95]
[96]
[97]
[98]
[99]
[100]
[101]
[102]
[103]
[104]
[105]

(B) Yeast
MKY3
Candida glabrata and 

Schizosaccharomyces 
pombe

Ag
CdS

Extracellular
Intracellular

2–5
200

[106]
[107]

(C) Fungi
Phoma sp. 3.2883
Fusarium oxysporum
Verticillium
Aspergillus fumigates
Trichoderma asperellum

Ag
Au
Ag
Ag
Ag

Extracellular
Extracellular
Intracellular
Extracellular
Extracellular

71–74
20–40
25
5–25
13–18

[108]
[109]
[110]
[111]
[112]

(D) Algae
Sargassum wightii
Chlorella vulgaris

Au
Au

Extracellular
-

8–12
9–20

[113]
[114]
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Bioimaging

Advancements in non-invasive techniques have 
revolutionized medical research, benefiting fields like drug 
development, diagnostics, and cellular biology. Innovations 
span MRI, electro-optic imaging, ultrasonic scans, positron 
emission tomography, and molecular bioimaging. Noble 
metals such as gold and silver nanoparticles play pivotal 
roles in enhancing imaging, capitalizing on their efficient 
photon emission in the near-infrared range. These 
nanoparticles serve as potent contrast agents [119–121].

Magnetic Resonance Imaging (MRI)

MRI, renowned for its superior spatial resolution, 
noninvasiveness, and non-destructiveness, has evolved due 
to nanotechnology. Nanoparticles (NPs) have unlocked 
possibilities for specialized therapeutic applications, 
particularly superparamagnetic iron oxide NPs, as contrast 
agents for cellular and molecular-level quality [122, 123].

Contrast Agents in X‑ray Computed Tomography (CT)

X-ray computed tomography is pivotal in various medical 
applications but often requires contrast agents to improve 
visibility. Metallic nanoparticles, owing to their high X-ray 
absorption and specific gravity, are explored as alternatives to 
iodine-based agents. Efforts to reduce toxicity through surface 
modification with organic molecules are underway [124].

Tissue Construction

Nanoparticles have gained significance in tissue engineering, 
offering ideal properties such as low toxicity, adaptability, 
contrast-enhancing effects, active targeting, and precise 
control. Au nanoparticles and BGC nanoparticles (bioactive 
glass ceramic-based nanoparticles) are promising choices in 
stem cell therapy and tissue regeneration [125, 126].

Protein Detection

Proteins play pivotal roles in biological systems, neces-
sitating their detection and understanding. Gold nanopar-
ticles are frequently employed in immunocytochemistry 
for protein–protein interaction studies. Surface-enhanced 
Raman scattering spectroscopy enhances protein probe 
functionality [127, 128].

Drug Delivery

Metal nanomaterials offer promising avenues for 
efficient medical treatment and diagnosis. Their unique 

physicochemical properties, including high electrical and 
thermal stability, large surface area, and bioactivity, make them 
invaluable in drug delivery. Metal nanoparticles enhance drug 
permeability and retention, particularly through encapsulation, 
making them suitable for various therapies [129].

Cancer Drug Delivery

Effective cancer therapeutics strive for maximum 
bioavailability and site-specific action while minimizing harm 
to healthy tissues. Gold nanoparticles (AuNPs) exhibit low 
toxicity, ease of surface modification, and targeted activity 
on cancer cells. Silver nanoparticles (AgNPs) also display 
anticancer properties, inducing apoptosis and increasing 
ROS generation. Iron oxide nanoparticles (IONPs) offer high 
targeting capabilities under external magnetic fields, improving 
therapeutic efficacy with minimal damage to healthy cells. A 
range of metal nanoparticles, including zinc oxide (ZnO), 
copper oxide, cerium oxide (CeO), titanium dioxide (TiO2), 
and palladium nanoparticles (Pd NPs), are utilized for drug 
delivery in cancer treatment. These nanoparticles contribute to 
apoptosis, ROS production, and tumor suppression [130–132].

Nanovaccines

Metallic nanomaterials represent one of the most diverse 
classes of nanomaterials, characterized by a plethora of 
valuable properties. Numerous studies have shown that 
nanoparticles (NPs) possess the capability to stimulate immune 
responses, which encompass cell recruitment, activation 
of antigen-presenting cells (APCs), and the induction of 
cytokine and chemokine release. Scientific research has 
specifically demonstrated that metallic nanoparticles, such 
as silver nanoparticles, have the ability to activate immune 
cells like macrophages. Similarly, gold nanoparticles are 
known to induce cytokine secretion and exhibit efficient 
cellular penetration, thereby activating the first line of defense 
mechanisms through the stimulation of antigen-presenting 
cells [133, 134].

Cytotoxicity of Green Synthesized Metallic 
Nanoparticles

Main Consideration

A significant challenge in nanotechnology is the potential 
release of metal nanoparticles into the environment and 
their exposure to humans. The increasing commercial uti-
lization of nanoparticles is likely to lead to elevated expo-
sure levels, which could have adverse effects on human 
health. This concern falls within the extensive domain of 
nanotoxicology, which addresses these potential risks. 
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Various nanomaterials can enter the human body through 
ingestion via the gastrointestinal tract, absorption through 
the skin, or inhalation. The skin, comprising several pro-
tective layers, plays a vital role as a physiological barrier 
in both humans and animals. It serves as a defense mecha-
nism against the spread of diseases or the harmful effects 
of substances. When nanoparticles are ingested, they are 
known to accumulate in the liver, an organ with a high met-
abolic rate, leading to issues such as glutathione depletion, 
impaired mitochondrial function, and increased oxidative 
stress [95]. Another area of concern for ingested nanopar-
ticles is their potential impact on the respiratory system. 
Many metal nanoparticles have been found to adversely 
affect pulmonary function through oxidative mechanisms 
and other means [135, 136].

Cytotoxicity of Metallic Nanoparticles Manufactured 
by Green Synthesis

Nanomaterials, particularly those manufactured using envi-
ronmentally friendly methods, hold significant promise in 
the medical industry, particularly as controlled drug deliv-
ery systems and potential anticancer agents [137]. How-
ever, there are still concerns about the safety of metallic 
nanoparticles used in anticancer treatments. Research has 
shown that the size of nanoparticles can negatively influ-
ence their cytotoxicity. Most metallic nanoparticles pro-
duced by plants are typically circular or nearly spherical, 
with a mean lethal dose of 120 g/mL. While less potent 
nanoparticle variants exist, certain plant-mediated manu-
facturing techniques have shown no harmful effects [138]. 
For instance, when assessing the cytotoxicity of Ag-NPs 
on the MOLT-4 cell line using the MTT assay, these nano-
particles exhibited remarkable antibacterial activity at low 
concentrations. According to cytotoxicity assays, environ-
mentally produced Ag-NPs displayed an IC50 of 0.011 m, 
in contrast to 1.8 for cisplatin, a more potent monoclonal 
antibody for the MOLT-4 cell line [139].

Current Challenges Associated with Green 
Synthesized Metallic Nanoparticles

Challenges of Targeted Action

Effective therapeutic action necessitates the precise delivery 
of drugs from MNPs to the site of illness. Nanoparticles 
play a crucial role in assisting drug molecules in traversing 
various biological barriers. For instance, oral nanoparticles 
(NPs) must exhibit stability in gastric acid and navigate 
the intestinal epithelium to achieve systemic availability. 
Similarly, intravenously injected nanoparticles must 

surmount numerous biological obstacles to reach their 
designated targets. In the context of cancer therapy with 
MNPs, drug delivery is often hindered by the high density 
of cancer cells and the extensive tumor stroma [140, 141]. 
Additionally, the presence of high interstitial fluid pressure 
within tumors acts as a barrier, reducing transvascular drug 
delivery and resulting from impaired lymphatic drainage. To 
enhance efficiency and optimal internalization, the success 
of active targeting relies on the affinity and effectiveness of 
nanocarrier ligands [142].

Challenges of Green Synthesized Metallic 
Nanoparticles Analysis and Characterization

The complexity of metal nanoparticles necessitates advanced 
testing techniques to comprehensively describe the physical, 
chemical, and biological properties of created NPs. Despite 
the development of cutting-edge testing techniques for MNPs 
analysis, they often struggle to differentiate between active 
formulations and those that are inactive or less active [143].

Pharmacology and Safety Challenges

Conventional assessment of plasma drug concentration is 
a commonly used method to evaluate the pharmacokinetic 
properties of nanoparticles. However, due to the wide 
range of nano sizes exhibited by MNPs, achieving uniform 
pharmacokinetic properties is challenging, making it 
difficult to determine their bioequivalence and therapeutic 
efficacy. Furthermore, there is a scarcity of data regarding 
the in vivo toxicity of metal nanoparticles, particularly when 
administered over extended periods [144, 145].

Regulatory Challenges

While the FDA and the European Medicines Agency (EMA) 
have granted approval for several nanoparticles for use in can-
cer therapy, regulatory bodies have yet to establish guidelines 
for medicinal products involving soft matter. Consequently, 
the evaluation of NPs currently relies exclusively on time-
consuming, specialized risk–benefit analyses for individual 
cases, leading to regulatory delays. To ensure the safe utiliza-
tion of MNPs, there is an urgent need to develop state-of-the-
art, versatile tools and establish comprehensive guidelines for 
nanoparticle applications [146, 147].

Summary and Future Perspectives

This comprehensive review delves into the world of metallic 
nanoparticles (MNPs), exploring their manufacturing 
techniques and their myriad of biological applications. 
Through meticulous examination of the existing literature 
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and the practical deployment of nanosystems in clinical 
settings, this review provides a panoramic view of the recent 
developments in nanomedicine, with a particular focus on 
drug delivery systems. Over the past two decades, an array 
of innovative, cost-effective, and dependable synthesis 
methods has emerged. These advancements have not only 
enhanced the physicochemical properties of hybrid MNPs 
but have also unveiled novel possibilities in the realm of 
disease diagnosis and treatment. Recent research trends have 
ushered in a profound exploration of the diverse roles MNPs 
can play in the biological field. The versatility of MNPs has 
been greatly influenced by surface modifications and tailored 
functionalization, paving the way for their use in managing 
tissue and organ-related challenges, targeted drug delivery, 
singular-agent disease diagnostics and therapy, among other 
emerging healthcare applications.

MNPs have emerged as indispensable tools in the 
twenty-first century, making significant contributions to 
the fields of biology and medicine. Their pivotal role in 
enhancing drug targeting and delivery, especially in cancer 
treatment, has been widely acknowledged. Furthermore, 
MNPs have evolved to serve as effective imaging diag-
nostic tools for cancer cells, facilitating precise diagno-
sis and monitoring. In the biomedical arena, MNPs have 
proven to be a safe, efficient, and cost-effective alterna-
tive to conventional treatments. However, they encounter 
challenges when navigating biological barriers, limiting 
their potential impact. These biological constraints pose 
significant obstacles, potentially hindering pharmaceuti-
cal companies from investing in metallic nanomedicines. 
To overcome these barriers, it is imperative to deepen our 
understanding of disease pathophysiology and the inter-
patient and intra-patient variations that exist. Modifying 
the physicochemical attributes of MNPs is another criti-
cal aspect to improve drug targeting towards the site of 
illness. The dearth of knowledge regarding the intricate 
interplay between patient biology and MNP behavior often 
results in optimistic expectations falling short in clinical 
studies. Addressing this issue requires a meticulous evalua-
tion of preclinical data encompassing safety, effectiveness, 
bio-distribution, and pharmacokinetics, ideally in suitable 
animal models. While MNPs have shown promise as car-
riers for chemotherapeutic drugs through the enhanced 
permeability and retention (EPR) effect, its efficacy has 
been documented primarily in a limited number of tumor 
types due to the heterogeneous nature of tumors, inter-
patient variability, and intra-patient variations. As such, 
a one-size-fits-all approach for nanoparticle size in cancer 
therapy should be avoided.

Synthesizing MNPs is a complex and challenging pro-
cess, involving both chemical and green methods. The high 
manufacturing costs, intricacies of synthesis techniques, 
and the complex structures of MNPs present limitations 

for large-scale production. To harness the full potential of 
MNPs in the biomedical field, attention must be given to 
rethinking nanoparticle synthesis processes. While green 
synthesis offers a sustainable approach, it is imperative that 
the materials used are not only eco-friendly but also cost-
effective and devoid of hazardous substances. Moreover, 
the clinical safety of MNPs requires thorough evaluation, 
given their potential for clinical toxicities. As various types 
of metal nanoparticles and composites gain popularity in the 
medical, biological, and healthcare sectors, comprehensive 
toxicological and safety assessments become increasingly 
essential. Strategies to mitigate the self-toxicity of MNPs 
include ion doping, functionalization, and the development 
of conjugated polymer-metal oxide nanoparticles.

Recent technological advancements have paved the way 
for extensive testing of MNPs for multifaceted applications. 
While their primary application today is the treatment of 
malignant cells, exploring MNPs as drug delivery systems 
(DDS) for various therapeutic drug classes is gaining 
momentum. Additionally, MNPs’ antibacterial properties 
could be harnessed to create medical devices with self-
disinfection capabilities, potentially offering a cost-effective 
alternative to conventional antibiotics.

In conclusion, addressing the challenges associated with 
MNPs holds the promise of significantly advancing their 
clinical translation for various biological applications, 
including cancer treatment and beyond. The ongoing quest 
for solutions will undoubtedly contribute to the evolving 
landscape of MNPs in healthcare [148, 149].
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