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Abstract
The ionome—an important expression of the physiological state of organisms—is poorly known for mammals. The focus on 
particular tissues—such as liver, kidney, and bones—in biomonitoring of environmental pollution and potential deficiencies 
is based on widely held assumptions rather than solid knowledge of full mammalian ionomes. We examined the full ionome 
of Red deer (Cervus elaphus) and Wild boar (Sus scrofa), two commonly used mammals for biomonitoring, in a Dutch 
protected nature reserve (Veluwezoom). We used four individuals per species. We dissected 13 tissues and organs from each 
individuals (eight in total) of each species and measured 22 elemental concentrations in each. We assessed, for each element, 
how concentrations varied across tissues within and between individuals. Based on existing literature, we put our findings in 
the context of their function in the mammalian body. We found that the ionome was highly variable between as well as within 
the two species. For most elements, tissues containing the highest and lowest concentration differed between individuals. No 
single tissue accurately represented the accumulation of toxic elements or potential deficiencies in the bodies. Our assessment 
of the element’s biological roles revealed a serious lack of reference values. Our findings imply that analyses of commonly 
used tissues in biomonitoring do not necessarily capture bioaccumulation of toxins or potential deficiencies. We recommend 
establishing a centralized database of mammalian ionomes to derive reference values in future. To our knowledge, our study 
is one of the most complete assessments of mammalian ionomes to date.
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Introduction

The elemental composition of organisms—the ionome—is 
an important expression of their physiological state [1, 2]. 
Like ecological stoichiometry—the study of the balance of 
energy and chemical elements in ecological interactions 
[3–5] -, ionomics has been applied to population ecology 

to understand allocation and life history plasticity [6, 7] and 
population growth [8, 9]. The ionome relates to a wide vari-
ety of ecological processes, including foraging, scavenging 
and carrion decomposition [10, 11]. So far, ionomics and 
ecological stoichiometry have been widely applied to plants 
[e.g. 12–15], invertebrates [e.g. 16, 17], and fish [e.g. 18, 
19]. Insights into the mammalian ionome, particularly large 
mammals, are limited.

The ionome reflects both the nutrient status and ecotoxic 
load of animals. While foraging across landscapes, large 
mammals accumulate a wide range of elemental nutrients in 
their bodies over their lifespan [20]. These include essential 
trace elements—e.g. cobalt (Co) and selenium (Se)—that are 
hard to gather for animals in sufficient amounts, especially 
in nutrient-poor areas. Large mammals may experience diffi-
culties in acquiring sufficient amounts of essential elements, 
increasing the risk of deficiencies. This particularly applies 
to areas with unbalanced nutrient availability, for example 
due to decades of high nitrogen (N) deposition, which leads 
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to acidified soils and leaching of cations to deeper hori-
zons, hence increasing the risks of deficiencies for wildlife 
[21–23].

While foraging, large mammals may also take up poten-
tial ecotoxic elements, such as arsenic (As), cadmium (Cd) 
and lead (Pb). Large mammals, especially ungulates that are 
the main consumers of vegetation [e.g. 24], are therefore 
commonly used for biomonitoring of such ecotoxic elements 
[25]. Biomonitoring of environmental pollution—i.e. eco-
toxicity—is mainly based on the assumption that ecotoxic 
elements would accumulate in liver, kidney, bones or hairs 
of wildlife, in order to be excreted from the body as fast 
as possible [e.g. 26–28]. These tissues are also most fre-
quently used for assessing risks of elemental deficiencies of 
scarce elements [e.g. 29, 30]. However, it is uncertain that 
this assumption holds given the high variation of the mam-
malian ionome [e.g. 11, 31].

In Europe, ecotoxicity and potential deficiencies are 
commonly monitored by screening of particular tissues—
mainly liver and kidney—of culled Red deer (Cervus ela-
phus) and Wild boar (Sus scrofa) [e.g.32–37]. For example, 
Nowakowska et al. [38] used liver and kidney samples of 
Wild boar to examine environmental levels of Se in Poland. 
Vikøren et al. [39] used the liver as an indication for the 
cupper (Cu), Co and Se concentration in wild Red deer 
in Norway. However, due to the lack of knowledge of the 
full mammalian ionome, it is uncertain whether liver and 
kidney are indeed the proper focal tissues for ecotoxic and 
scarce elements. The lack of extensive overviews of the full 
mammalian ionome also limit the interpretation of current 
ionomic studies [40].

For both ecotoxic and scarce elements, the distribution 
over the mammalian body thus remains poorly known and 
extensive overviews are missing [e.g. 41]. Most ionomic 
studies thus use an incomplete approach, which could unin-
tendedly cause severe bias in the assessment of ecotoxicol-
ogy and potential deficiencies in ionomic studies dealing 
with large mammals. Also, a systematic overview of the bio-
logical relevance of chemical elements for the mammalian 
body, as well as signs of deficiency or toxicity, is missing. 
This is needed to put existing and new ionomic insights in 
the context of their biological and physiological role.

Here, we aimed to gain more insight in the ionome of 
large mammals, particularly in how elements are distributed 
across the body. We measured the concentrations of 22 ele-
ments in 13 different tissues from four individuals of Red 
deer and four individuals of Wild boar (henceforth ‘deer’ 
and ‘boar’). These individuals were culled in a national park 
in The Netherlands, a mineral- and nutrient-poor environ-
ment that experienced decades of high N deposition, where 
deficiencies are likely to occur. We also tried to put our find-
ings in the context of their function in the mammalian body, 
based on the literature.

Methods

Study Site and Species

We focused on deer and boar in Veluwezoom National 
Park (henceforth ‘Veluwezoom’), the Netherlands 
(52°02’N, 6°01’E), a protected area of 5,000 ha situated on 
partly glacier deposits and partly on cover sands over these 
deposits, making the natural mineral availability limited 
to very scarce (mineral-poor cover sands). Veluwezoom 
is a former agro-silvopastoral landscape that became a 
national park in 1930 [42]. It contains a mosaic of dry 
grass-heathlands, pastures, abandoned crop fields, and 
woodland, grazed by free-ranging Scottish highland cat-
tle (Bos taurus) and Icelandic horses (Equus ferus cabal-
lus)—introduced in the 1980s—as well as by Roe deer 
(Capreolus capreolus), Fallow deer (Dama dama), Red 
deer and Wild boar [43]. Due to surrounding highways 
former pollution (especially before 1980’s) with Pb might 
be possible. Samecka-Cymerman et al. [44] found elevated 
levels of Pb in bryophytes collected from Veluwezoom.

The Red deer is a herbivorous ruminant ungulate that is 
associated with woodland habitats [e.g. 45, 46]. Only the 
males have antlers, that cast in spring and regrow in late 
summer [e.g. 47]. Single-born calves are born in spring. 
The mating season (“rut”), which costs lots of energy, is 
from September to November with a peak in October [e.g. 
48, 49].

The Wild boar is a monogastric, opportunistic omnivo-
rous ungulate that is known for its highly plastic diet and 
their ability to adapt to diverse food and habitats [e.g. 50]. 
Reproduction is less seasonal and litter sizes range from 
one to twelve piglets, depending on many factors includ-
ing the maternal body weight and summer temperature 
[e.g. 51].

Carcass Dissection

We used freshly culled carcasses that were obtained in the 
culling season 2019–2020 (culled between October 2019 
and March 2020), and used four individuals of each spe-
cies. Local hunters used Pb free RWS HIT ammunition. 
Culling at Veluwezoom is only used as an intervention 
against wildlife damage, i.e. culled individuals are not har-
vested but left to decompose in nature. For deer, we used 
two young females (‘RD1’ and ‘RD2’), one young male 
(‘RD3’), and one male calf (‘RD4’). For boar, we used two 
male piglets (‘WB1’ and ‘WB2’) and two female piglets 
(‘WB3’ and ‘WB4’). For each carcass, we dissected 13 tis-
sues belonging to different organ systems [52]: bone; skin 
and hair; muscle; brain; eyes; lungs; heart; spleen; kidney; 
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liver; pancreas; stomach (including rumen for deer); and 
intestines. We were able to dissect all these tissues from all 
the carcasses, except the pancreas for the male calf (RD4) 
and a male piglet (WB1).

No animals were killed for the purpose of our study. 
According to the Animal Welfare Officer of Wageningen 
University & Research, our study is not considered as exper-
imentation on animals (Appendix 1), and therefore permitted 
under Dutch law.

The dissection procedure was performed in two steps. 
First, we dissected seven of the tissues—skin and hair, mus-
cle, lungs, heart, spleen, kidney, and liver—in a self-made 
dissection room at Veluwezoom. We also collected the entire 
guts, head and the right hind leg that we needed to create 
tissue samples for the other six tissues. The carcass remains 
after dissection were returned to nature. Second, we further 
dissected the guts—pancreas, stomach, and intestines -, the 
head—brain and eyes -, and the hind leg—bone—in the dis-
section room of Wageningen Environmental Research. For 
the bone, we sawed a piece of bone from the lower leg, that 
we cleaned by boiling it a few minutes. Once dissected, we 
stored all the collected tissues in the freezer at minus 18 °C 
until we further processed them into homogeneous tissue 
samples.

For culling purposes only, the local game wardens occa-
sionally provide mineral licks for the deer and corn for 
the boar. We analyzed these mineral licks—two different 
types—and the corn using the same procedure as described 
below since mineral licks and additional feeding might help 
ungulates to compensate for any deficiencies in their diet 
[e.g. 53]. However, since we can only speculate about the 
consequences for the ionome of deer and boar that we ana-
lyzed, we do not discuss the elemental composition of these 
salt licks and corn (Appendix 2), and potential effects on the 
ionome of deer and boar, in detail in this study.

Measurements

Each collected tissue was homogenized in the dissection 
room of Wageningen Environmental Research by grinding 
it with a blender. We stored about 15–25 g of the grinded tis-
sue—three table spoons—in plastic bags. The tissue samples 
were frozen at minus 18 °C before we transferred them into 
plastic tubes for freeze-drying. The freeze-dried samples 
were transported to Radboud University, where we further 
prepared them for the chemical analysis.

We used a microwave digestion method with 5 mL 65% 
nitric acid (HNO3) and 2 mL 30% hydrogen peroxide (H2O2) 
to prepare the tissue samples for measuring the elemental 
concentrations with Inductively Coupled Plasma Optical 
Emission Spectroscopy (ICP-OES) and Inductively Cou-
pled Plasma Mass Spectroscopy (ICP-MS). We measured 22 
elemental concentrations for all the tissue samples. We used 

ICP-OES to measure 7 elements: calcium (Ca), potassium 
(K), magnesium (Mg), sodium (Na), phosphorus (P), sulfur 
(S), and silicon (Si). The other 15 elements were measured 
using ICP-MS: aluminum (Al), As, boron (B), Cd, Co, chro-
mium (Cr), Cu, iron (Fe), manganese (Mn), molybdenum 
(Mo), nickel (Ni), Pb, Se, strontium (Sr), and zinc (Zn). We 
used the same devices as in Wenting et al. [11], meaning that 
the reported spike-and-recovery experiments also apply to 
this study. Correspondingly, the accuracy of these devices 
was guaranteed—besides using certified reference material 
for every microwave run—by using the following quality 
controls (QC): Multi element standard IV, Merck 1.11355; 
Phosphate standard, Merck 1.19898; Sulphate standard, 
Merck 1.19813; and Silicium standard, Merck 1.70236. The 
QC matrices were considered to correspond to the sample 
matrices since for both, any contamination of HNO3 and 
H2O2 was eliminated by using blanks (see for more details, 
including spike-and-recovery experiments, Wenting et al. 
[11]).

Results

We present our results in a descriptive way due to the low 
sample sizes that we used, with four individuals of each spe-
cies. First, we summarized the total concentrations per ele-
ment per individual in a table (Table 1). This table revealed 
variation in the total concentrations that we measured, which 
may indicate variation amongst tissues as well. Second, we 
listed the highest and lowest concentration measured per 
element for deer (Table 2) and for boar (Table 3), including 
the tissues in which these were found. For most elements, 
the tissues containing the highest and lowest concentrations 
varied within and between the species. Third, we used wind 
rose diagrams, with log(y + 1)-scale, to visualize how the 
total elemental concentration—as noticed in Table 1—is 
distribution over the 13 tissues (Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22).

As we aimed to put our findings in the context of their 
biological function, we report them per element separately, 
including a description of the biological relevance of each 
element for the mammalian body, as well as signs of toxic-
ity and deficiency. We discuss the elements in alphabetical 
order. 

Aluminum (Al)

Although Al is the third most common element in the earth’s 
crust, it is poorly absorbed in the animal body and there is 
no clear role described for this element [54, 55]. Due to 
long-lasting acidification of the environment due to excess 
N deposition mainly from agriculture, industry and traffic, 
pH values dropped significantly below 3.5 [22], which is 
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much lower than the given pH value of 4.2 below which Al 
becomes soluble from soil aluminum oxides and hydroxides 
[56] and is thus potentially taken up by the vegetation, and 
so by animals. Although Al toxicity is associated with mal-
absorption of e.g. P (Allen 1984, cited in [54]), it remains 
unclear which and how other elements interplay with it to 
cause toxicity [54]. Most described symptoms of Al toxicity 
include inappropriately decreased feelings of thirst, refusal 
to swallow, and movement disorders such as hypokinesia 
[e.g. 57, 58].

Thurston et al. [59] and Pérez-Granados and Vaquero 
[55] described that Al will be mainly accumulated in bone 
when renal function is compromised. However, although the 
digestive organs tended to be important target tissues for 
some individuals (Fig. 1a-h; Tables 2 and 3), we found no 
particular tissue that contained most of the Al for the indi-
viduals we measured.

Arsenic (As)

Contrary to Al, As is well absorbed but has no specific role 
in the animal body [54], although Frost et al. [60] described 
that As may function as antibiotic and anti-coccidial in swine 
and poultry. By our knowledge, it has not been used for that 
purpose in other animals [54]. Since it is well absorbed, As 
toxicity is likely to occur when food is contaminated with As 
[e.g. 61], for instance from Cu and Pb smelters [62]. When 

As exposure builds up slowly, animals may get used to it and 
ruminants may even develop a taste for it [63]. As appears 
to be most toxic in inorganic form [64, 65], and affects most 
organs, although kidney is mentioned as the most sensitive 
organ for As toxicity [66]. Commonly described symptoms 
of As toxicity include straining, abdominal pain, bone mar-
row depression with anemia, skin pigmentation changes, and 
diarrhea containing blood and mucus [e.g. 67–69].

Although the As concentration in WB2 was noticeable 
lower compared to the other boar, we found noticeably 
higher As concentrations in boar compared to deer (Table 1). 
It has been traditionally thought that As accumulates in the 
hairs [e.g. 70], however skin and hair did not contain the 
highest concentration for any individual (Fig. 2a-h; Tables 2 
and 3). As was rather randomly scattered throughout the 
whole body for WB3 (Fig. 2g), and the guts appeared to be 
the main target tissues for the other individuals (Fig. 2a-h). 
We were not able to detect As in any other tissue than liver 
for RD3 (Fig. 2c; Table 2).

Boron (B)

B is an essential trace element that is important for numer-
ous life functions, including bone density, wound healing, 
embryonic development and metabolism of sex steroids and 
vitamin D (e.g. 71–73]. Although symptoms of B toxicity 
are poorly understood in animals [e.g. 74], acute B toxicity 

Table 1   Total concentrations 
(µg Kg−1) of elements in 
individuals of red deer and 
wild boar collected from 
Veluwezoom National Park, the 
Netherlands. Elements are in 
alphabetical order

RD1 RD2 RD3 RD4 WB1 WB2 WB3 WB4

Al 287 1,172 433 1165 895 393 526 1,141
As 0.220 0.290 0.010 0.430 24.07 0.800 12.06 26.66
B 32.51 88.37 32.87 16.02 75.24 43.46 65.20 55.65
Ca 351,232 171,542 155,282 302,348 435,317 348,739 469,061 256,532
Cd 27.25 39.98 15.08 5.12 19.57 15.19 27.30 20.54
Co 1.020 1.900 1.170 1.920 0.240 0.120 0.680 0.990
Cr 117.39 39.77 16.50 15.73 10.49 16.29 17.84 23.03
Cu 329.94 345.54 374.00 237.93 263.71 252.60 292.33 251.46
Fe 6,420 7,928 7,250 8,665 8,494 8,643 9,127 6,403
K 305,535 259,502 274,613 278,729 268,186 240,455 299,686 264,669
Mg 26,420 22,522 21,626 19,317 26,182 21,398 23,628 21,948
Mn 3,331 5,462 2,785 5,027 1,535 698 1,902 1,130
Mo 59.70 58.77 54.10 47.30 59.43 45.76 35.63 57.89
Na 152,728 145,511 149,330 156,760 139,680 117,545 146,317 158,860
Ni 105 85.02 72.92 77.50 146 80.14 92.23 111
P 376,183 273,821 286,736 356,541 399,327 344,298 223,948 320,518
Pb 4.67 14.00 619.94 13.61 24.89 4.82 9.01 21.41
S 193,954 174,096 182,296 187,548 169,640 144,988 170,016 168,743
Se 11.44 14.55 11.93 10.35 14.55 14.76 27.53 22.29
Si 1,768 3,054 1,362 2,391 1,911 1,407 1,797 3,153
Sr 163 106 78.71 107 182 234 27.18 129
Zn 2,207 1,822 2,418 1,972 1,667 1,939 1,938 1,671
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Fig. 1   Distribution of aluminium (Al) per tissue per individual

Fig. 2   Distribution of arsenic (As) per tissue per individual
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Fig. 3   Distribution of boron (B) per tissue per individual

Fig. 4   Distribution of calcium (Ca) per tissue per individual
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Fig. 5   Distribution of cadmium (Cd) per tissue per individual

Fig. 6   Distribution of cobalt (Co) per tissue per individual
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Fig. 7   Distribution of chromium (Cr) per tissue per individual

Fig. 8   Distribution of copper (Cu) per tissue per individual
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Fig. 9   Distribution of iron (Fe) per tissue per individual

Fig. 10   Distribution of potassium (K) per tissue per individual
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Fig. 11   Distribution of magnesium (Mg) per tissue per individual

Fig. 12   Distribution of manganese (Mn) per tissue per individual
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Fig. 13   Distribution of molybdenum (Mo) per tissue per individual

Fig. 14   Distribution of sodium (Na) per tissue per individual
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Fig. 15   Distribution of nickel (Ni) per tissue per individual

Fig. 16   Distribution of phosphorous (P) per tissue per individual
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Fig. 17   Distribution of lead (Pb) per tissue per individual

Fig. 18   Distribution of sulfur (S) per tissue per individual
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Fig. 19   Distribution of selenium (Se) per tissue per individual

Fig. 20   Distribution of silicon (Si) per tissue per individual
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Fig. 21   Distribution of strontiunm (Sr) per tissue per individual

Fig. 22   Distribution of zinc (Zn) per tissue per individual
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has been described for humans, including symptoms as 
nausea, vomiting, diarrhoea, and lethargy [75]. Chronic B 
toxicity is associated with symptoms including weight loss, 
reduced reproduction, and decreased appetite (Hunt 1993, 
cited in Nielsen [74]). However, for both humans and ani-
mals, no critical intake values have been described, which 
also applies to potentially B deficiency [e.g. 71]. Signs of B 
deficiency, however, are correlated with low immune func-
tion and increased mortality risk due to high incidence of 
osteoporosis [73].

Although it has been suggested that B is mostly accu-
mulated in bone, nails and hair [e.g. 76, 77], we found it 
scattered throughout the whole body (Fig. 3a-h). The B con-
centration was the lowest for RD4 (Table 1), which tended 
to accumulate more in bone, eyes, intestines and stomach 
(Fig. 3d). B was not detectable in the bone and heart of RD3 
but was present in any other tissue (Fig. 3c). Moreover, WB3 
was the only individual with the highest B concentration 
in bone (Table 3; Fig. 3g), while the B concentration was 
notably the highest in the stomach and intestines for WB4 
(Table 3; Fig. 3h).

Calcium (Ca)

Ca has many functions in the animal body, including the 
formation of skeletal tissues, transmission of nervous tis-
sue impulses, excitation of skeletal and cardiac muscle con-
traction, and blood clotting (e.g. 54, 78]. Excessive dietary 
intake is not associated with any specific signs of [54]. Ca 
toxicity—aka hypercalcemia—can manifest in many differ-
ent forms, including renal stones, bone pain, gastrointestinal 
abdominal moans, neuromuscular psychic groans, and car-
diovascular issues [e.g. 79]. Ca deficiency—aka hypocalce-
mia—is most dangerous for young animals, which leads to 
reduced mineralization of new bones and therefore reduced 
growth [54, 80]. Like a deficiency of vitamin D or P, a defi-
ciency of Ca can also contribute to rickets [54, 80].

We found Ca in all body tissues for all individuals 
(Fig. 4a-h). NRC [54] described that about 98 percent of the 
total Ca pool is located in the bones. However, although we 
found the highest Ca concentration in bone for all individu-
als (Tables 2 and 3), we found that the Ca concentrations in 
bone contributed to 86 to 94 percent of the total Ca of deer 
(Tables 1 and 2), and 92 to 97 percent for boar (Tables 1 
and 3). WB4 had the lowest Ca concentration in its body 
(Table 1), of which the concentration in bone was about 92 
percent of the total Ca (Tables 1 and 3), and was the only 
boar with a total Ca concentration lower than 300,000 µg 
Kg−1 (Table 1). RD1 had the highest Ca concentration of 
the deer, followed by RD4 (Table 1). For these individuals, 
the percentage of Ca stored in bone was higher compared to 
RD2 and RD4 (Tables 1 and 2).

Cadmium (Cd)

Cd is a highly toxic heavy metal that has no essential func-
tion in any physiological and biochemical process [e.g. 54, 
81–85]. It accumulates in kidney, causing renal damage, 
from where it is very poorly and slowly excreted [54]. It 
is antagonistic to Zn, Cu and Fe [54, 86]. Acute Cd tox-
icity appears to be rare, but chronic Cd toxicity may be 
expressed by disturbed renal function, altered reproduc-
tion, and damaged lung function [e.g. 87].

For all individuals, we indeed found the highest Cd con-
centrations in the kidney, but we also detected it in liver 
and, for some individuals, in pancreas (Fig. 5a-h). In one 
wild boar (WB1), however, we found Cd more scattered 
throughout the body (Fig. 5e), which might be due to a 
lower Se concentration (Table 1) as Se can act as antioxi-
dant for both As and Cd toxicity [88].

Cobalt (Co)

Co is a scarce but essential trace element that is an impor-
tant component of vitamin B12 [54]. Although Co toxic-
ity is less plausible due to its scarcity, symptoms of Co 
toxicity include reduced feed intake, hyperchromemia and 
eventually anemia [e.g. 89, 90]. Co deficiency seems much 
more likely to occur and include symptoms as fatty degen-
eration of the liver, anemia with pale mucous membranes, 
and increased susceptibility to infections due to impaired 
neutrophil function [91–93].

Although ruminants seem to be more sensitive to Co 
deficiency than monogastric animals [54], we found higher 
Co concentrations for deer than for boar (Table 1). For 
boar, we found comparable concentrations as found by 
Gasparik et al. [94], although they only measured mus-
cle, liver and kidney. For all deer, we found the highest 
concentrations in liver (Fig. 6a-d; Table 2), while the guts 
were more prominent for boar (Fig. 6e-h; Table 3). Over-
all, we found Co more scattered throughout the body than 
expected.

Chromium (Cr)

Although some forms of Cr are known as ecotoxic metals, 
Cr is an important trace element for normal glucose metabo-
lism, especially when animals experience physiologic stress 
[e.g. 54]. Cr toxicity is primarily linked to hexavalent Cr 
(Cr6+) exposure, that passes the cell walls faster and is at 
least five times more toxic than other Cr forms, eventually 
causing pathologic changes in the DNA [e.g. 54, 95–97]. 
Symptoms of Cr deficiency include reduced insulin sensi-
tivity and reduced growth [e.g. 98]. Other symptoms may 
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include glucose intolerance, hunger hyperglycemia, neuropa-
thy, and reduced muscle proportion [e.g. 99, 100].

Gasparik et al. [29] reported Cr concentrations in liver, 
kidney, and muscle of Red deer in Slovakia, and found com-
parable Cr concentrations between these tissues. However, 
we found that these tissues did not store the major Cr pool 
in the body (Fig. 7a-h). Cr was more randomly scattered 
throughout the whole body for RD1, RD3, RD4, WB1, 
WB2, and WB4 (Fig. 7c-f, h). Cr was predominantly found 
in the intestines of RD2 and WB3 (Fig. 7b, g), the individu-
als with the highest Se concentrations (Table 1).

Copper (Cu)

Cu is an essential element that is a component of many 
enzymes in a wide range of biochemical processes that 
include cellular respiration, free radical detoxification and 
iron transport [54]. Cu toxicity has been most described 
for ruminants, especially cattle [e.g. 54, 101]. Commonly 
described symptoms include lethargy, recumbency, pale 
mucous membranes, excessive thirst, and jaundice [e.g. 
102]. Cu deficiency has been reported as ataxia in adult 
deer [e.g. 103–105]. For ungulates in general, Cu deficiency 
may manifest subclinical with low Cu concentrations in liver 
and serum but without any other signs of poor health [e.g. 
106–108].

Traditionally, Cu concentrations are measured in the liver 
and kidney [e.g. 109]. Although we found the highest con-
centrations in liver for most of the deer (Table 2) and in kid-
ney for some boar (Table 3), we found Cu present throughout 
the whole body (Fig. 8a-h). It has been described in cattle 
that Cu accumulates in the liver before toxicosis becomes 
evident [54]. This seems unlikely for the deer and boar that 
we measured due to the scarcity of Cu in nature [e.g. 110]. 
Furthermore, levels of Cu concentration that are considered 
as normal seem to be unclear or case specific as McCullough 
[111], for instance, reported Cu levels in liver between 84 
and 142 ppm and considered these to be normal, which is 
up to 600 times higher than the concentrations we found 
(Tables 1, 2 and 3).

Iron (Fe)

Fe functions as a component of heme in hemoglobin and 
myoglobin and is therefore very important for all vital organs 
in the body [54]. When Fe uptake exceeds the binding capac-
ity, free Fe may increase in the body, which is very reactive 
and can cause increased free radical production and oxida-
tive stress, which increases the need of anti-oxidants [112]. 
This is associated with symptoms like diarrhea, reduced feed 
intake and weight gain [54]. Fe levels in water are believed 
to be higher than those in food items and should not exceed 
0.3 mg Fe per liter for humans, while animals may be able 

to cope with higher concentrations [54]. Fe deficiency seems 
to be more likely to occur, of which a major symptom is 
hypochromic microcytic anemia, which is the result of 
improper hemoglobin production [54]. Another symptom 
can be increased morbidity and mortality due to depressed 
immune responses [113]. Generally, Fe deficiency is very 
rare due to the ubiquitous nature of Fe in the environment 
including soil contamination, and requirements decrease 
with increase of age [91].

We found Fe in all body tissues that we measured 
(Fig. 9a-h). For both species, we found the highest concen-
trations in lungs—a vital organ (Reece et al. 2011)—and the 
lowest concentrations in bones (Tables 2 and 3). However, 
we cannot rule out that this is due to the gunshot.

Potassium (K)

K is one of the most abundant elements in the body and 
is important for many life functions including maintaining 
osmotic pressure, acid–base regulation, nerve impulse trans-
port and muscle contraction [54]. Under natural conditions, 
K toxicity seems unlikely to occur [54] and it is not well 
defined which dietary K concentration may lead to toxicity 
[114]. It has been suggested that K toxicity can cause cardiac 
arrest [115]. A daily intake of 0.06 to 0.15 percent K of the 
total food intake has been reported as too low for dairy cat-
tle [116, 117]. Signs of K deficiency include reduced feed 
and water intake, weight loss, loss of hair flossiness, and 
decreased pliability of the skin [e.g. 54].

K is thus needed in the entire body and, as such, we 
found it in all tissues that we measured (Fig. 10a-h). For 
deer, spleen tended to store the highest concentrations of 
K (Table 2), while we did not identify a specific tissue for 
boar (Table 3). Bone, and skin and hair appeared to store the 
lowest K concentrations for both species (Tables 2 and 3).

Magnesium (Mg)

Similar to K, Mg is an essential element that is needed for 
enzymatic reactions vital to every major metabolic pathway, 
normal nerve conduction, muscle function and bone mineral 
formation [54]. Animals may suffer from skeletal abnor-
malities when they consume excessive amounts of Mg in 
their diets [e.g. 118], which is unlikely to occur since most 
animals are able to excrete large amounts of Mg via urine 
[54]. Symptoms of Mg deficiency—which is often described 
for livestock, despite being the fourth most abundant cation 
in the world—have been extensively described and include 
muscle twitches, tremors, osteoporosis, and cramps [e.g. 
119–121].

We found Mg throughout the whole body, with no par-
ticular target tissue (Fig. 11a-h). Mg was detectable in all 
tissues, except the intestines of RD3 (Fig. 11d), which we 
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would attribute to a measurement error since this is the only 
missing Mg concentration in our data. We found rather 
similar Mg concentrations for deer and boar, ranging from 
19,319 to 36,420 µg Kg−1 (Table 1).

Manganese (Mn)

Mn is an essential trace element that is important for the 
forming of connective tissue, bones, blood clotting and 
sex hormones [54]. Mn toxicity has been widely described 
[e.g. 122, 123], and can be associated with many symptoms 
including Parkinsonism, bradykinesia, tremor, impaired 
postural reflexes and dystonia [123, 124]. Other symp-
toms include, especially for ruminants, reduced food intake 
and growth [125]. It has been shown that rats and humans 
that suffered from Fe deficiency experienced increased 
Mn absorption [e.g. 126], and vice versa [e.g. 127, 128]. 
Although Mn deficiency is unlikely to occur since Mn is 
available in nearly all food items [129], Mn deficiency 
reveals most likely in the form of skeletal abnormalities [e.g. 
123, 130], like enlarged joints, deformed legs with thick-
ened and shortened long bones, and overall lameness in pigs, 
ruminants and poultry [131].

Mentioned target tissues for Mn include skeleton, liver 
and hair [132], or brain and bone [e.g. 133–135]. Mn has 
been traditionally measured in tissues as liver, kidney and 
muscle [e.g. 29, 30]. We found the highest concentrations 
in the guts for most individuals (Fig. 12a-h). We found the 
highest concentration in bone only for WB3 (Tables 1 and 
3; Fig. 12g). Bone stored the least Mn for most of the other 
individuals (Tables 2 and 3). We found overall higher Mn 
concentrations for deer than for boar, respectively ranging 
from 2,785 to 5,462 µg Kg−1 and from 698 to 1,902 µg Kg−1 
(Table 1).

Molybdenum (Mo)

As an essential trace element, Mo is a component of many 
enzymes throughout the body, including enzymes found in 
milk (Mills and Davis 1987, cited in [54]). Mo is antagonis-
tic to Cu, implying that Mo toxicity can occur in the form of 
Cu deficiency [e.g. 54, 136, 137]. Ruminants would be more 
sensitive to Mo toxicity than monogastric animals [137]. 
Mo toxicity can cause diarrhea, anorexia, depigmentation of 
hair, neurological disturbances and premature death [138]. 
Although naturally occurring Mo deficiency has never been 
demonstrated in free-living animals, Mo deficiency can be 
the result of low Mo levels in soil, plants, drinking water 
and other food items [e.g. 139]. Mo is known for its anticar-
cinogen properties, low concentrations being associated with 
oesophageal cancer in particular [e.g. 139–141].

Mo concentrations are traditionally measured in liver and 
kidney [e.g. 136, 139, 142]. However, we found no specific 

tissue that stored the majority of the Mo pool in the body 
(Fig. 13a-h). The eyes turned out to have the major content 
for WB3 (Fig. 13g), while Mo had been hardly detected in 
this tissue for most of the other individuals (Fig. 13a-d, f, 
h). We found slightly higher Mo concentrations in deer than 
in boar, ranging from 47.30 to 59.71 µg Kg−1 and 35.63 to 
59.42 µg Kg−1, respectively (Table 1).

Sodium (Na)

Na is an essential macro element that is important for life 
functions including controlling blood pressure, blood vol-
ume and water balance [54]. A proper Na and K balance is 
required for heart function and nerve impulse conduction 
[e.g. 54], and it is a major component of salts in saliva to 
buffer acid from ruminal fermentation [143]. When the Na 
concentration in the blood is too high, which can be a result 
of dehydration, animals can suffer from hypernatremia, 
manifesting in symptoms like excessive thirst or lethargy 
[e.g. 144, 145]. Excessive Na levels would be first detect-
able in the brain [e.g. 146, 147]. Animals that suffer from 
Na deficiency are described to have an intense craving for 
salt, that they show by chewing and licking various objects 
[e.g. 54, 148].

We detected Na in all tissues that we measured (Fig. 14a-
h). The highest Na concentrations were found in the eyes of 
boar (Table 3), and in the eyes and brain of deer (Table 2). 
We found the lowest concentrations in muscle, skin and hair 
(Tables 2 and 3). Overall, the deer tented to have slightly 
higher Na concentrations compared to the boar, ranging 
from 145,511 to 156,760 µg Kg−1 and 117,545 to 158,860 µg 
Kg−1, respectively (Table 1).

Nickel (Ni)

The best described functions of the essential trace element 
Ni include increasing hormonal activity, lipid metabo-
lism, and urease activity [e.g. 12, 54, 149]. One of the best 
described forms for Ni toxicity is found in its carcinogenic 
effects [e.g. 150, 151]. Other toxic effects are genotoxic, 
immunological, endocrine, neurogenic, cardiovascular, gas-
trointestinal, musculoskeletal, dermal and metabolic [150], 
although it remains unclear when Ni accumulation would 
become a problem for wildlife [152]. Naturally occurring Ni 
deficiency is rare due to the extremely low intake require-
ments [153–155]. Signs of Ni deficiency include depressed 
growth, lower reproduction, lower plasma glucose, or altered 
distribution of e.g. Fe, Cu, Ca, and Zn [156].

Although it has been suggested that Ni is, once ingested, 
distributed mostly to kidney, bone and lungs [e.g. 54], we 
found it more randomly throughout the body (Fig. 15a-
h). For some individuals—RD2, RD3, RD4, WB2, and 
WB3—we indeed found relatively high concentrations 
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in lungs (Tables  2 and 3; Fig.  15b-d, f-g). We found 
remarkably high concentrations of Ni in the pancreas 
of RD1 (Table 2; Fig. 15a), the intestines of RD2 and 
WB1 (Tables 2 and 3; Fig. 15b, e), and the spleen of WB4 
(Table 3; Fig. 15h).

Phosphorous (P)

P has more known functions in the animal body than any 
other element and is located in all body cells where it is 
involved in nearly all energy transactions [e.g. 54, 119]. 
When P is excessive in the diet for a long period, it can cause 
problems of Ca metabolism [e.g. 54]. This is most likely to 
occur in monogastric animals since ruminants can tolerate 
a wider Ca:P ratio [54]. P deficiency seems most likely to 
occur when animals forage on P poor soils [e.g. 157, 158]. 
General signs of P deficiency include weight loss, stiff joints 
and muscular weakness [e.g. 54, 159]. Other symptoms can 
be the desire to eat wood, bones, rocks and other materials 
[e.g. 160, 161].

We found P in every tissue and none of the tissues in 
particular (Fig. 16a-h). Most individuals had the highest P 
concentrations in bone and the lowest concentrations in skin 
and hair, or eyes (Tables 2 and 3). We found similar concen-
trations for deer and boar, ranging from 273,821 to 376,183 
µg Kg−1 and from 223,948 to 399,327 µg Kg−1, respectively 
(Table 1).

Lead (Pb)

Pb is the most common cause of toxicoses in animals [162]. 
There is no evidence for its essentiality [e.g. 54, 162]. Often 
described symptoms of Pb toxicity include disturbed muscu-
lar coordination, reduced cognitive performance and anemia 
[e.g. 162, 163]. Pb disturbs the balance between functions of 
other metals including Cu and Zn [164].

Accordingly other heavy metals, the liver and kidney are 
traditionally considered as the target organs for Pb [e.g. 30, 
164, 165]. It is also believed to accumulate in bone [e.g. 
86, 166]. We found bone as the major storage pool of Pb 
for RD1, WB1, WB2 and WB3 (Fig. 17a, e–g), whereas we 
found the highest concentrations in the digestive system for 
RD2 and WB4 (Fig. 17b, h). For RD4 and WB3, Pb was 
more scattered throughout the body (Fig. 17d, g), which was 
also the case to a lesser extent for WB1 (Fig. 17e). RD3 was 
the only individual with the highest Pb concentration in the 
lungs (Fig. 17c), with considerably higher concentrations 
compared to any of the other individuals (Tables 1, 2 and 
3). This might be a sign of toxicosis, as the lungs are one of 
the vital organs [52], although reference values are missing 
to validate this presumption.

Sulfur (S)

S is an essential element that has many functions in the ani-
mal body, including forming several amino acids, and pro-
moting DNA fixation and the antioxidant systems [e.g. 54, 
167]. It is present in every body cell [e.g. 168]. S toxicity 
is most likely to manifest neurologic transmissions, causing 
acute symptoms including blindness, muscle twitches and 
recumbency [169]. Other symptoms include severe enteritis, 
peritoneal effusion, and petechial hemorrhages in especially 
kidney [170]. It may occur that S toxicity can be smelled 
in the breath [54]. Symptoms of S deficiency in ruminants 
include reduced food intake, weight and hair loss, overall 
weakness and death, which are all signs of digestive tract 
or metabolism problems [168, 171]. Since S deficiency 
has been mostly studied in ruminants, it is unclear whether 
monogastric animals experience similar symptoms.

Kierdorf et al. [172] found S in higher concentrations 
in deer’s antlers compared to pedicles. We found overall 
slightly higher S concentrations in deer compared to boar 
(Table 1). Skin and hair seems to contain the highest S con-
centrations for deer (Table 2), while we did not find any 
specific tissue for boar (Table 3). As S is part of every body 
cell, we found it distributed throughout the whole body with 
no particular target tissue (Fig. 18a–h).

Selenium (Se)

Se has antioxidant properties when supplied in low concen-
trations [e.g. 88]. It is important in several enzymes, helps to 
make DNA, and protects against cell damage and infections 
(e.g. [54]). The soil is the best Se source for all life forms, 
although the Se concentration in the soil does not seem to be 
the best indicator of Se availability for animals [173, 174]. 
Se toxicity is most commonly known in the form of alkali 
disease—aka selenosis, severely damaged hooves [e.g. 54, 
174]. Se deficiency can cause white muscle disease or nutri-
tional muscular dystrophy [e.g. 54], often resulting in death.

Kidney or liver are most commonly used as bioindicator 
of Se in the environment [e.g. 38, 39, 175, 176]. We found 
the highest Se concentration in kidney for all individuals 
(Tables 2 and 3), while it was also found in nearly all other 
tissues that we analyzed in lower concentrations (Tables 2 
and 3; Fig. 19a-h). We found the highest concentrations in 
boar and the lowest concentrations in deer (Table 1).

Silicon (Si)

Si is only found in very trace amounts in animal bodies [54]. 
It has a role in connective tissue and healing from injuries 
[e.g. 54, 55, 177, 178]. Since Si is easily excreted, Si tox-
icity is unlikely to occur [179]. Si deficiency may lead to 
delays in growth, bone deformations and abnormal skeletal 
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development [177]. It affects connective tissue metabolism 
and thus organic bone formation [180].

Although we found a lot of variation in the total Si con-
centration among individuals (Table 1) and it was scattered 
throughout all tissues we measured (Fig. 20a-h), Si slightly 
tended to be most concentrated in the digestive system—
intestines or pancreas—for some individuals (Tables 2 and 
3). Moreover, Bellés et al. [181] described that Si prevents 
Al absorption and reduces Al concentrations in tissues 
including brain, liver, bone, kidney, and spleen. We found, 
however, the highest Al concentrations in the individuals 
with the highest Si concentrations—RD2, RD4, and WB4 -, 
while for none of these individuals the highest Si concentra-
tions were measured in brain, liver, bone, kidney, or spleen 
(Fig. 1b, d, h; Tables 1, 2 and 3).

Strontium (Sr)

Sr can be seen as the chemical analog of Ca, and as such, 
its major role is found in the formation and breakdown of 
bony material [e.g. 182–184]. Bony material is most com-
monly used to measure the Sr concentration in animals 
[185]. Sr toxicity seems unlikely to occur since dietary 
Sr can vary widely without any toxic symptoms [186]. It 
has been mentioned that high dietary Sr increased the risk 
of P deficiency [187]. Although Sr has never been shown 
to be an essential element, Sr has been shown to promote 
bone Ca and to reduce fracture rate in osteoporotic patients 
[186]. This might imply that osteoporosis may be related to 
Sr deficiency, although reference values to investigate this 
presumption are missing [186].

We found indeed the highest Sr concentrations in the 
bones of all individuals (Tables 2 and 3; Fig. 21a-h). Skib-
niewski et al. [188] used muscle as model tissue, however 
muscle belonged to the tissues with lowest Sr concentration 
in our analysis (Fig. 21a-h), which was for RD3 and RD4 
even the tissue with the lowest Sr concentration (Table 2).

Zinc (Zn)

As a component of many enzymes, Zn affects the metabo-
lism of carbohydrates, proteins, lipids, and nucleic acids, 
and it helps in regulating hormones and the immune sys-
tem [e.g. 12, 54, 189]. Zn salts have been shown to protect 
against different forms of toxicity, including Cu toxicity 
[190–192]. Zn toxicity is most likely to occur in the form 
of Cu deficiency since Zn and Cu are antagonistic to each 
other [54, 193]. Excessive Zn uptake can also give symp-
toms including epigastric pain, lethargy, and fatigue [194]. 
Zn deficiency include symptoms as reduced feed intake and 
reduced growth [54].

Although most studies measure Zn in the liver, kidney, 
or muscle (e.g. 24, 175, 188, 189), we found Zn scattered 

throughout the whole body, with no particular tissue as 
major storage pool (Fig. 22a–h). Overall, deer tended to 
have slightly higher Zn concentrations compared to boar 
(Table 1).

Discussion and Conclusions

In this study, we aimed to gain insights in the ionome of 
large mammals, by measuring 22 chemical elements across 
13 tissues of two ungulate species (deer and boar), and eval-
uating how these elements are distributed over the body. We 
used four individuals of deer and boar that lived in a nutri-
ent-poor Dutch National Park (Veluwezoom), where defi-
ciencies are most likely to occur. We found that de ionome 
was highly variable between and within the two species. 
For most elements, tissues having the highest and lowest 
concentration differed between individuals (Tables 2 and 3). 
No single tissue accurately represented the accumulation of 
toxic or scarce elements in the bodies. These findings imply 
that analyses of elemental concentrations in single tissues do 
not necessarily reflect bioaccumulation of toxins or deficien-
cies of scarce elements.

We attempted to put our findings in the context of the 
biological and physiological role of the elements, and 
noticed that the lack of reference values per element per 
species indeed limited our understanding and the interpre-
tation of the measured concentrations. Such reference val-
ues are required to determine any toxicities or deficiencies. 
The signs of toxicities or deficiencies are element-specific 
[e.g. 39, 195–197], and can be even species-specific [e.g. 
197–199]. Since the margins per element for wild deer and 
boar remain unknown, we were unable to assess toxicities 
or deficiencies. Therefore, the elemental concentrations that 
we reported here must be seen as a first step to enlarge the 
comprehension of the elemental composition of wild living 
deer and boar.

Our study showed that at the individual level most ele-
ments are rather scattered throughout the whole body. Also 
elements that seem to have a target tissue, e.g. kidney for Se 
(Fig. 19a-h), appeared to be more scattered than expected. 
Thus, when focusing on only a few samples of tissues tradi-
tionally mentioned as storage pools for particular elements, 
there is a high risk of underestimation or missing crucial 
information, which may lead to wrong conclusions. Moreo-
ver, we encourage further studies to collect samples of indi-
viduals in the shortest time interval, largest sample sizes, 
and most complete ionomes as possible.

We see four possible limitations of our study. First, the 
sample size per species was low given the high variabil-
ity of elemental concentrations that we found within and 
between the species. Many more individuals would probably 
be needed to attain stable averages, if possible, of elemental 
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concentrations. Second, the individuals we dissected were 
obtained from regular culling. This might introduce some 
unintended bias due to potential harvest bias in terms of sex, 
age and condition [e.g. 40, 200, 201]. Third, salt licks and 
corn—for the deer and boar, respectively—were provided 
occasionally to facilitate culling. Although we measured 
these salt licks and corn for the same elements as we did 
for the tissue samples that we analyzed (Appendix 2), we 
are only able to speculate about the effect of these supple-
ments on the elemental concentrations we that found. For 
instance, the mineral licks contained more Co and Cu than 
the corn (Appendix 2). Since we found higher Co and Cu 
concentrations in deer compared to boar (Table 1), it might 
be possible that the mineral licks contributed to these higher 
concentrations, although any evidence is missing [e.g. 135]. 
We assume that these supplements attracted the individuals 
equally. Fourth, we did not include the antlers of male deer 
in our analysis. Therefore, we cannot address their potential 
function of yearly shedding in reducing the ecotoxic burden 
in male deer. We propose to include this as an extra tissue in 
future studies examining the full ionome of deer. We do not 
believe, however, that any of the above-mentioned limita-
tions affect the conclusions of our study.

We encourage other scientists to execute extensive sur-
veys of the elemental composition of wild living animals, 
including as much information possible about these animals 
and the circumstances they encountered during their lives. 
This will not only improve the physiological understanding 
of trace elements in the animal body, but also enables us to 
link ionomic insights to ecological processes. We propose 
to install an international database where all the measured 
elemental concentrations can be uploaded per tissue and spe-
cies combination, including the sex, status (e.g. pregnancy, 
lactating) and age of the individuals, to enlarge the current 
knowledge and to potentially approach reference values in 
the future.
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