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Abstract
Zinc is an essential micronutrient for organisms involved in regulating various biological processes. This study evaluated the 
effects of dietary zinc on growth performance, digestive enzyme activities, antioxidant status, and immune responses of sea 
cucumber Apostichopus japonicus. Five experimental diets were formulated with graded levels of zinc (0, 20, 40, 60, and 
80 mg/kg, respectively), and the actual dietary zinc values were 31.4, 51.0, 68.2, 91.9, and 110.8 mg/kg diet, respectively. 
Sea cucumbers were fed with diets for 2 months. The results showed the growth performance, amylase, and trypsin activities 
of sea cucumber increased significantly with zinc supplementation, and the best growth performance and enzyme activi-
ties were observed at 40 mg/kg zinc diet. Zinc supplementation significantly increased activities of superoxide dismutase, 
catalase, anti-superoxide anion, and inhibiting hydroxyl radical, while significantly reduced the malondialdehyde content. 
Furthermore, the higher zinc supplementation levels resulted in significantly upregulated immune-related genes of hsp90, 
p105, rel, and lsz, suggesting that excessive zinc caused oxidative stress. The broken-line regression analysis of specific 
growth rate indicated dietary zinc requirement in juvenile sea cucumber was ~ 66.3 mg/kg diet. Overall, dietary zinc con-
tributes to the growth and immune resistance of juvenile sea cucumber, and our study will provide insights into the rational 
use of dietary zinc in aquaculture.
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Introduction

Sea cucumber Apostichopus japonicus, widely distributed in 
the northwest Pacific coast, is an economic fishery species 
with high nutritional and commercial value [1]. It is one 
of the pillar species of aquaculture industry in Asia, with a 

total production of 222,707 tons in 2021 Bureau of Fisher-
ies of the Ministry of Agriculture, [2]. With the expansion 
of breeding scale, ecological problems caused by excessive 
breeding density and environmental pollution have become 
increasingly prominent. The ecological problems not only 
restrict the growth of sea cucumber, but also stimulate the 
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organism to produce excessive reactive oxygen to attack the 
cellular defense system, resulting in oxidative damage to 
cells and a variety of diseases [3, 4]. Therefore, new strate-
gies have been exploring to improve the antioxidant capacity 
and growth performance of sea cucumber.

Zinc (Zn) is an essential micronutrient for animal growth, 
development, and metabolism. Zn plays an important role 
in regulating cellular processes such as cell proliferation, 
immune regulation, and antioxidant defense [5, 6]. Mean-
while, Zn acts as a coenzyme factor for more than 200 bio-
logical enzymes and is involved in biological processes of 
protein synthesis and metabolism, scavenging of free radi-
cals, and protection of cell membranes from oxidative dam-
age [6–8]. Zn deficiency leads to symptoms such as stunted 
growth, skin erosion, and decreased immunity [6, 9], while 
Zn supplementation can effectively alleviate and eliminate 
the symptoms caused by Zn deficiency [10, 11]. The pres-
ence and chemical form of Zn are crucial for the absorp-
tion of Zn in feeds [12]. Previous studies confirmed that 
organic Zn could be better absorbed and more bioavailable 
when compared to inorganic Zn [13, 14]. Therefore, sup-
plementing an appropriate amount of organic Zn in feed is 
an effective approach to promote growth performance and 
resist oxidative damage.

Recently, studies on Zn in aquatic species have attracted 
extensive attentions. It has been reported that Zn plays a 
vital part in modulating growth and development, immune 
responses, and stressful regulation in aquatic animals includ-
ing fish and crustaceans [15–17]. Kishawy et al. [15] showed 
that 40 mg/kg of Zn supplementation significantly increased 
the weight gain rate, antioxidant enzyme activity, and bacte-
rial inhibition of Nile tilapia (Oreochromis niloticus). Zhang 
et al. [18] found that dietary Zn ranging from 50 to 81 mg/kg 
has a positive impact on growth, immunity, and reproductive 
performance of female prawn (Macrobrachium nipponense). 
Shi et al. [19] demonstrated that Zn burst in hemolymph of 
Fujian oyster (Crassostrea angulata) can inhibit bacterial 
growth and the accumulation of Zn increases host resistance 
to pathogens. However, the effects of dietary Zn supplemen-
tation on sea cucumber were not clear. Therefore, the objec-
tive of this study was to investigate the effects of dietary 
supplementation of Zn on growth performance, digestive 
enzyme activity, antioxidant levels, and immune-related 
gene expression of sea cucumber.

Materials and Methods

Diet Preparation

Based on previous study on the feed for sea cucumber [20], 
this experiment made some modifications to the formulate 
and configured a basic diet with 20.49% crude protein and 

2.69% crude lipid content using sargassum and sea mud as the 
main ingredients, as shown in Table 1. Zinc glycinate (Shang-
hai Yuanye Bio-Technology Co., Shanghai, China) was sup-
plemented to the basal diet as Zn source in a gradient of 0, 
20, 40, 60, and 80 mg/kg Zn content, of which the 0 mg/kg 
was the control group. The actual levels of Zn in each group 
were 31.4, 51.0, 68.2, 91.9, and 110.8 mg/kg, respectively, as 
shown in Table S1. All feed ingredients were sifted, mixed, 
granulated, and dried to form experimental feed. The dried 
feed pellets were stored at -20 ℃ for future use.

Study Design and Sample Collection

The experiment was conducted at the laboratory of Qingdao 
National Ocean Science Research Center, Ocean University 
of China, for 2 months. The healthy and vigorous juvenile 
sea cucumbers, with average initial body mass of 8.5 g, were 
collected from a local farm (Qingdao, Shandong, China). 
Prior to the experiment, all sea cucumbers were acclimated 
for 2 weeks in the culture environment. After acclimati-
zation, the sea cucumbers were starved for 24 h and ran-
domly assigned to 15 glass aquariums (60 × 30 × 40 cm of 
L × W × H) with the density of 8 individuals per tank. The 15 
glass aquariums were divided into 5 groups and marked with 
3 replicates for each group. One third of water was changed 
at 16:00 every day while the residual bait and feces were 
collected. Feeding was performed once per day at 17:00, 
with about 4% of the body weight. During the experiment 

Table 1   Formulation and proximate composition of the basal diet

a The content of trace elements per kilogram of vitamin and mineral pre-
mix is: Vitamin A acetate 1,050,000  IU, cholecalciferol 195,000  IU, 
DL-α-tocopherol acetate 7.5  g, menadione sodium bisulfite 1.5  g, thia-
mine mononitrate 1.5 g, riboflavin 1.5 g, pyridoxine hydrochloride 1.5 g, 
cyanocobalamin 0.006 g, niacinamide 9 g, folic acid 0.3 g, biotin 0.015 g, 
L-ascorbate-2-phosphate 21 g, inositol 12 g, calcium pantothenate 4.5 g, 
sodium selenite 0.075 g, FeSO4 · 7H2O 12 g, MnSO4 · H2O 6 g, CuSO4 · 
5H2O 1.2 g, CoCl2 · 6H2O 0.075 g, Ca (IO3) 2 0.45 g

Items Content (%)

Ingredients
  Fish meal 10
  Sage powder 47
  Soybean 6
  Sea mud 28
  Beer yeast 5
  Fish oil 1
  Calcium dihydrogen phosphate 2
  Vitamin and mineral premixa 1

Total 100
Nutrition level

  Crude protein 20.49
  Crude lipid 2.69



1769Effects of Dietary Zinc on Growth Performance, Digestive Enzyme Activities, Antioxidant Status,…

1 3

period, oxygen was supplied continuously for 24 h, water 
temperature was kept at 16 ± 0.5 ℃, and salinity was 30–32.

At the end of the experiment, sea cucumbers were starved 
for 24 h and weighed. The coelomic fluid was collected with 
a sterile syringe and stored in 2 ml sterile centrifuge tubes. 
The intestinal tissue was separated with scissors and twee-
zers, washed with sterile water, and put into the marked ster-
ile tubes. Samples from each tank were stored in a mixed 
sample tube, and three sample tubes from three tanks in 
each group were used as biological replicates. All the above 
operations were completed on ice. All the experimental 
tools used during sample collection had been ultrasonically 
cleaned and autoclaved. Samples were immediately trans-
ferred to liquid nitrogen and stored at − 80 °C for further 
analysis.

Determination of Feed Components

Moisture, crude protein, crude lipid, and Zn content were 
analyzed according to the standard procedures of AOAC 
[21]. Feed powder was dried to constant weight in 110 °C 
oven to determine moisture. Crude protein (%) was cal-
culated by Kjeldahl nitrogen determination method, i.e., 
N × 6.25. Crude lipid (%) was obtained with the method of 
Soxhlet extraction. The feed powder was fully decomposed 
in strong acid under high temperature and pressure. After 
constant volume and filtration, the Zn content was deter-
mined by inductively coupled plasma atomic emission spec-
troscopy (ICP-AES).

Determination of Enzyme Activities

The intestinal samples were transferred from − 80 ℃ to ice, 
and appropriate amounts of incompletely melted intesti-
nal tissues were homogenized thoroughly at a ratio of 1:9 
with the corresponding homogenization medium and cen-
trifuged at 4 °C for 10 min (2500 r/min). The supernatant 
was collected to evaluate the activities of digestive enzymes, 
including amylase, lipase, and trypsin. Antioxidant indica-
tors were measured by coelomic fluid, including the activi-
ties of superoxide dismutase (SOD), catalase (CAT), anti-
superoxide anion (ASA), inhibiting hydroxyl radical (IHR), 
and the content of malondialdehyde (MAD). All enzyme 
activities were determined using commercial kits (Nanjing 
Jiancheng Bioengineering Institute, China).

Gene Expression Analysis by Quantitative PCR

Intestinal tissue sample was freeze-ground and added to the 
lysate buffer. The total RNA of each sample was extracted 
using FastPure® Tissue Total RNA Isolation Kit (Vazyme 
Biotech Co., Ltd, Nanjing, China). The extracted RNA was 
run in 1% agarose gel electrophoresis to verify the quality. 

The concentration of the extracted RNA and its absorbance 
values at 260 nm and 280 nm were measured using a Nan-
oDrop 300 spectrophotometer (Hangzhou Allsheng Instru-
ments Co., Ltd) as a basis for determining its purity. Follow-
ing that, the intact and pure RNA was reverse-transcribed in 
a thermal cycle using HiScript® III RT SuperMix for qPCR 
(+ gDNA wiper) (Vazyme Biotech Co., Ltd, Nanjing, China) 
to synthesize cDNA. The final cDNA product was stored 
at − 20 ℃ for subsequent quantitative PCR. Primer sequences 
of β-actin, heat shock protein 90 (hsp90), lysozyme (lsz), 
NF-kappa-B1 (p105), and NF-kappa-B transcript factor p65 
(rel) were referenced from the publication [22], presented in 
Table 2. The expression analysis was performed in a real-time 
quantitative PCR using ChamQ SYBR Color qPCR Master 
Mix (Low ROX Premixed) (Vazyme Biotech Co., Ltd, Nan-
jing, China), and the specific reaction procedure and system 
were as described in the article [23]. In our experiment, three 
replicates of real-time quantitative PCR were performed for 
each sample, and the amplification efficiency of all samples 
was between 90 and 110%. The relative expression of genes 
was calculated by the 2−∆∆t method [24].

Statistical Analysis

The specific growth rate (SGR), weight gain rate (WGR), feed 
conversion ratio (FCR), and protein efficiency ratio (PER) 
were used to measure the growth of sea cucumber fed diets 
with different Zn levels, calculated as follows:

SGR = (ln FBW − ln IBW) ∕ days × 100

WGR = (FBW − IBW) ∕ IBW × 100

FCR = (FBW − IBW) ∕ FI × 100

PER = (FBW − IBW) ∕ FPC × 100

Table 2   Sequences of the primers used in real-time qPCR

Gene Primer sequence (5′-3′)

β-actin Forward TTA​TGC​TCT​TCC​TCA​CGC​TATCC​
Reverse TTG​TGG​TAA​AGG​TGT​AGC​CTC​TCT​C

hsp90 Forward GGA​GGA​GCG​AAC​AAA​CCA​AG
Reverse GTC​AAA​TGG​CGC​CCT​CTT​AG

lsz Forward AGG​GAG​GTA​GTC​TGG​ATG​GA
Reverse GCG​CAA​AAT​CCT​CAC​AGG​TA

p105 Forward GCA​ACA​CAC​CCC​TCC​ATC​TT
Reverse TCT​TCT​TCG​CTA​ACG​TCA​CACC​

rel Forward TGA​AGG​TGG​TAT​GCG​TCT​GG
Reverse TTG​GGC​TGC​TCG​GTT​ATG​
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where IBW means the initial body weight (g), FBW means 
the final body weight (g), FI refers to feed intake, and FPC 
stands for the feed protein content.

Results were presented as mean ± S.D. Statistical analysis 
was performed using IBM SPSS Statistic 22 (SPSS Inc., USA). 
Data from each group were subjected to one-way analysis of 
variance (ANOVA). When overall differences were significant 
(P < 0.05), Duncan’s multiple range test was used to compare the 
mean values among the groups. The dietary Zn requirement of 
sea cucumber was estimated by broken-line regression analysis 
based on SGR. The equation of broken-line regression model is 
y = 𝛽0 − 𝛽1(X − x) if x < X, else y = 𝛽0 + 𝛽2(X − x) when x ≥ X. X 
represents the optimal dietary Zn level for the maximum SGR.

Result

Growth Performance

Growth performance of sea cucumber fed diets with differ-
ent levels of Zn are shown in Table 3. The survival rate of 
each group was 100%. SGR and WGR were significantly 

improved by the supplementation of Zn and showed an 
increased trend followed by decreasing with the increase 
of Zn level. The highest SGR and WGR were observed in 
the 40 mg/kg Zn group (P < 0.05). FCR and PER in the 
20–80 mg/kg Zn groups were significantly higher than 
control (P < 0.05). The broken-line regression analysis of 
SGR showed the optimum Zn content for sea cucumber was 
66.3 mg/kg (Fig. 1).

Activities of Digestive Enzymes

The effect of Zn on the digestive enzyme activities of sea 
cucumber is shown in Fig.  2. Compared to the control 
group, amylase activity was significantly increased in the 
20–80 mg/kg Zn groups (P < 0.05), with the highest value 
reached at 40 mg/kg followed by 20 mg/kg Zn group. No 
significant change of lipase activity was observed among 
the groups (P > 0.05). Increasing dietary Zn level markedly 
enhanced trypsin activity (P < 0.05). Nevertheless, when the 
Zn supplementation content exceeded 40 mg/kg, the trypsin 
activity showed a decreasing trend with the gradual increase 
in Zn level.

Table 3   Growth performance 
and feed utilization of sea 
cucumber (Apostichopus 
japonicus) fed different Zn diets

IBW initial body weight, FBW final body weight, WGR​ weight gain rate, SGR specific growth rate, FCR 
feed conversion ratio, PER protein efficiency ratio. Data were presented as mean ± SD (n = 3). Different 
letters in the same row represent significant differences between diets at the significance level of 0.05 
(P < 0.05)

Diet treatment (mg Zn/kg)

0 20 40 60 80

IBW (g) 8.50 ± 0.35 8.50 ± 0.41 8.49 ± 0.46 8.50 ± 0.46 8.49 ± 0.44
FBW (g) 10.00 ± 0.83 12.75 ± 1.41 13.90 ± 2.01 12.36 ± 1.38 11.28 ± 1.18
WGR (%) 17.48 ± 4.93c 49.81 ± 9.91ab 63.11 ± 14.85a 45.23 ± 8.45ab 32.52 ± 6.92bc

SGR (%/d) 0.27 ± 0.08c 0.67 ± 0.11ab 0.81 ± 0.15a 0.62 ± 0.10ab 0.47 ± 0.08b

FCR (%) 1.33 ± 0.22c 3.51 ± 0.47ab 4.31 ± 0.46a 3.57 ± 0.52ab 2.83 ± 0.47b

PER (%) 6.12 ± 1.09c 17.53 ± 2.36ab 21.57 ± 2.29a 17.83 ± 2.61ab 14.16 ± 2.34b

Fig. 1   Relationship between 
SGR and dietary Zn level for 
sea cucumber based on broken-
line regression analysis, where 
X represents the optimal dietary 
Zn level for the maximum SGR 
of sea cucumber (Apostichopus 
japonicus)
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Activities of Antioxidant Enzymes

The effect of Zn on the antioxidant enzyme activities of 
sea cucumber is shown in Fig. 3. The activity of SOD was 
highest in the 20 mg/kg Zn group, followed by the 40 mg/
kg and 80 mg/kg Zn groups, which were significantly 
higher than the control group (P < 0.05). The CAT activ-
ity was significantly increased and showed a decreasing 
trend with 20–60 mg/kg Zn groups compared to the con-
trol (P < 0.05). The ASA activity increased significantly 
at 20 mg/kg Zn group (P < 0.05), and no significant dif-
ference was observed with a further increase of Zn lev-
els (P > 0.05). The IHR activity was significantly higher 
in the 20 mg/kg Zn group than the control and gradually 
decreased with increasing Zn content (P < 0.05); except 
for the 20 mg/kg Zn group, there was no significant dif-
ference between the other groups and the control group 
(P > 0.05). The MDA content was significantly reduced by 
the supplementation of 20–80 mg/kg Zn compared with the 
control group (P < 0.05), with the lowest at 20 mg/kg Zn 
group and significantly increased with the supplementation 
of 60–80 mg/kg Zn (P < 0.05).

Transcription of Immune‑Related Genes

The expression of immune-related genes in sea cucumber fed 
diets with different levels of Zn is shown in Fig. 4. The rela-
tive expression of hsp90 was increased significantly when 
Zn supplementation reached 60 mg/kg (P < 0.05). The rela-
tive expression of p105 showed significant upregulation with 
the increase of Zn supplementation, which was significantly 
higher than that of the control group except for the 20 mg/kg 
Zn group (P < 0.05). Compared with the control group, the 
rel gene relative expression was significantly higher when 
Zn was added up to 40 mg/kg and exerted an increased trend 
with increased Zn content (P < 0.05). The relative expression 
of lsz in the 60 and 80 mg/kg Zn groups was significantly 
upregulated when compared to other groups.

Discussion

Zn is a trace element in the biological body second only to 
iron, widely distributed in various tissues and organs, with 
catalytic, structural, and regulatory functions. Previous 

Fig. 2   Digestive enzyme activi-
ties of sea cucumber (Apos-
tichopus japonicus) fed different 
Zn diets. Data were presented 
as mean ± SD (n = 3). Differ-
ent letters represent significant 
differences between diets at 
the significance level of 0.05 
(P < 0.05)
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studies have shown that Zn is involved in regulating growth 
and development, oxidative stress, and immune defense of 
various aquaculture animals, including fish and crustaceans 
[6, 10]. However, there has been no report for Apostichopus 
japonicus. Therefore, this experiment explored the effects of 
dietary Zn on growth performance, digestive enzyme activi-
ties, antioxidant status, and immune response of Aposticho-
pus japonicus.

Our results showed the survival rate of each group was 
100% and the growth exhibited a certain degree of improve-
ment after 2 months of cultivation, which could be attributed 
to the excellent conditions and nutrition supply provided 
by the experiment. The Zn supplemented group showed 

significantly higher WGR and SRG compared to the control 
group, especially at a maximum of 40 mg/kg Zn group, indi-
cating an appropriate amount of Zn supplementation pro-
mote the growth of sea cucumber. In addition, FCR and PER 
were found significantly increased in the Zn supplemented 
group, further confirming the positive effects of Zn on the 
growth of sea cucumber. Our results were consistent with 
previous studies in aquatic animals, including African catfish 
(Clarias gariepinus) [25], blunt snout bream (Megalobrama 
amblycephala) [10], and Siberian sturgeon (Acipenser bae-
rii) [26]. Meanwhile, growth performance was significantly 
decreased when Zn supplements were more than 40 mg/kg. 
This is probably due to the negative effects of excess Zn in 

Fig. 3   Antioxidant enzyme 
activities of sea cucumber 
(Apostichopus japonicus) 
fed different Zn diets. SOD, 
superoxide dismutase; CAT, 
catalase; ASA, anti-superoxide 
anion; IHR, inhibiting hydroxyl 
radical, and MAD, malondial-
dehyde. Data were presented 
as mean ± SD (n = 3). Different 
letters represent significant 
differences between diets at 
the significance level of 0.05 
(P < 0.05) 0 20 40 60 80
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the diet [27]. Previous studies reported that high doses of 
Zn produce excess reactive oxygen species, which activate 
immune-related signaling pathways and induce oxidative 
stress and inflammation. The body’s energy is allocated to 
deal with these uncomfortable reactions, and relatively less 
is devoted to growth, resulting in slower growth [28].

Digestive enzymes are essential catalysts for the 
hydrolysis of carbohydrates, lipids, and proteins, and 
the activity of digestive enzymes is an important indica-
tor which reflects the digestive capacity [29, 30]. In the 
present study, dietary Zn supplementation dramatically 
increased the activities of amylase and trypsin, suggest-
ing that Zn can promote the intestinal digestive capacity 
of sea cucumber. The maximum enzyme activities were 
observed with Zn supplementation of 40 mg/kg, which 
was consistent with the growth performance. Consistently, 
the improvement of Zn on digestive enzyme activity has 
been demonstrated in other species. Li et al. [31] found 
that the supplementation of 50 mg/kg Zn to the basal diet 
enhanced the hepatopancreatic amylase activity of hybrid 
tilapia (Oreochromis niloticus) by 70% and the intestinal 
amylase and lipase activities by 48.5% and 84%, respec-
tively. Muralisankar et al. [32] also showed that Zn could 
significantly increase the activities of amylase, protease, 
and lipase in giant freshwater prawn (Macrobrachium 
rosenbergii). Consistent with the above results, in our 
experiment, the activities of amylase and trypsin of sea 
cucumber were increased with the supplementation of Zn, 
but no significant difference was observed in the activity 
of lipase among all groups, which may be due to the low 
lipid requirements of sea cucumber [33].

Zn is a coenzyme factor of various enzymes in organisms 
including SOD, which widely participates in the metabolic pro-
cess of living organisms [17, 34]. In the present study, SOD 
activity was significantly increased in the Zn supplemented 

group and then exerted a decreased trend when compared with 
the control group, indicating that adding appropriate amount of 
Zn in the diet can effectively improve the antioxidant level of the 
body. However, when the Zn supplementation content reached 
80 mg/kg, SOD activity showed an upward trend. Consider-
ing the growth performance of sea cucumber, we proposed that 
excessive Zn supplementation exerted toxicity to sea cucumber. 
There is evidence that excessive Zn can cause oxidative stress in 
the organism and induce genotoxicity, which can inhibit growth. 
Consistently, this toxic effect had previously been described in 
freshwater prawn (Macrobrachium rosenbergii) [32] and gold-
fish (Carassius auratus) [35]. SOD can dismutate superoxide 
anions to produce oxygen and hydrogen peroxide. Hydrogen 
peroxide reacts with the hydrogen ions under the action of CAT 
to convert into water and oxygen [36, 37]. Our results showed 
that the intake of 20–60 mg/kg Zn supplementation significantly 
improved the CAT activity, indicating that Zn can promote the 
decomposition of hydrogen peroxide to weaken the attack of 
reactive oxygen species at this concentration. Consistently, the 
increase of SOD and CAT activities by dietary Zn supplementa-
tion has also been reported in blunt snout bream (Megalobrama 
amblycephala) studied by Jiang et al. [10] and juvenile Jian carp 
(Cyprinus carpio var. Jian) studied by Feng et al. [7], which 
are in agreement with the present investigation. On the other 
hand, Hidalgo et al. [38] have also reported that Zn deficiency 
reduced the CAT activity of rainbow trout (Oncorhynchus 
mykiss), thus reducing the defense ability to reactive oxygen 
species. In general, dietary Zn supplementation improved the 
antioxidant capacity by increasing SOD and CAT activities of 
the organism. In this study, 20–60 mg/kg Zn supplementation 
is more beneficial to the antioxidant defense of sea cucumber, 
while 80 mg/kg Zn supplementation leads to toxic effects.

Hydroxyl free radicals and superoxide anions have strong 
oxidability, which can attack biological membranes and 
peroxidation lipid [36, 39]. MDA, acting as an end prod-
uct of lipid peroxidation, has been widely used to evaluate 
the degree of lipid oxidation [40]. In the current study, sup-
plementation of 20 mg/kg Zn in the diet remarkably raised 
the ASA and IHR activities and achieved the lowest MDA 
content, which may be correlated with the higher SOD and 
CAT activities in this gradient. These results further support 
the inference that Zn can improve the antioxidant status of 
the sea cucumber, while the mechanism of antioxidant role 
played by Zn needs to be further explored.

Heat shock proteins are a kind of stress proteins widely exist-
ing in organisms. Some family members can act as “danger”-
signaling molecules to directly stimulate the innate immune 
system of sea cucumber [41, 42]. It has been demonstrated that 
external stimuli can induce heat shock proteins in cells [41, 
43]. In this experiment, when the Zn supplementation content 
was over 60 mg/kg, the relative expression level of hsp90 was 
significantly upregulated, indicating that high concentration of 
Zn produces oxidative stimulation to the body. As transcription 

hsp90 p105 rel lsz
0.0

0.5

1.0

1.5

2.0

2.5
R

el
at

iv
e 

ex
p

re
ss

io
n

 l
ev

el

0mg/kg
20mg/kg
40mg/kg
60mg/kg
80mg/kg

b

b b

a a
a

a
a

a
a

a a

a

b

b

b b
b

b

b

Fig. 4   Relative expression levels of hsp90, p105, rel, and lsz in sea 
cucumber (Apostichopus japonicus) fed different Zn diets. Data were 
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factors, the NF-kappa-B family participates in the regulation 
of non-specific immune responses of sea cucumber and can 
regulate the expression of multiple target genes including lsz 
[22, 44]. Our results showed that the relative expression levels 
of p105, rel, and lsz genes were significantly elevated at higher 
Zn concentrations, which further confirmed the NF-kappa-B 
signaling pathway in sea cucumber.

Conclusion

In conclusion, the supplementation of Zn in diets can signifi-
cantly improve the growth performance and digestive capacity 
of sea cucumber Apostichopus japonicus. Dietary Zn sup-
plementation can improve the antioxidant capacity of sea 
cucumber Apostichopus japonicus by increasing the activity 
of antioxidant enzymes. Excess Zn causes oxidative stress that 
induces immune response. Based on the specific growth rate, 
the present study indicated that the optimum requirement of 
Zn for juvenile A. japonicus was ~ 66.3 mg/kg.
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