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Abstract
Protein diets are required for the normal development of the reproductive system and their inadequacy or deficiency might 
have hazardous functional complications during maturational and developmental stages. The study was carried out to evaluate 
the effect of selenium (Se) and zinc (Zn) supplementation on the male and female reproductive organs of rats with postna-
tal protein malnutrition. Male and female weanling rats were randomly assigned to six groups respectively. The adequate 
protein diet rats were fed with 16% casein diet while the protein malnourished diet (PMD) rats were fed with 5% casein 
diet. After the 8th week of feeding, Se (sodium selenite; Na2SeO3) and Zn (zinc sulfate; ZnSO4·7H2O) were supplemented 
for 3 weeks. The growth curve of body weights, lipid profile, testosterone and progesterone level, Na+-K+-ATPase activity, 
oxidative stress, and antioxidant status were evaluated. The results showed that PMD reduced the body weights of male and 
female rats. It also reduced the activities of catalase and glutathione peroxidase in the testes, but reductions in superoxide 
dismutase and glutathione-S-transferase activities, glutathione, vitamins C and E, testosterone, and progesterone levels were 
observed in both the testes and ovaries. Furthermore, PMD increased the nitric oxide level in both organs and altered the 
plasma lipid profiles in both sexes. Se and Zn supplementation, however, restored almost all the alterations observed in all 
the parameters analyzed. In conclusion, Se and Zn supplementation protects the male and female reproductive organs of rats 
against postnatal protein malnutrition.
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Introduction

Protein malnutrition (PM) is a nutritional disorder, which 
poses a global concern, especially among young infants in 
Africa, Latin America, Asia, and many underdeveloped or 

developing countries [1]. Proper nutrition is essential for the 
normal growth and development of the reproductive system 
and its associated processes. PM has been reported to cause 
hazardous functional complications during maturational 
and developmental stages to both male and female repro-
ductive organs. It has been demonstrated that PM changes 
the testicular structure and causes a permanent effect on 
their capacity to produce spermatozoa and/or decreases 
daily sperm production [2]. Moreover, evidence shows that 
PM reduces the weights of the testis, seminal vesicle, and 
epididymis [3, 4]. Also, reduction in the level of serum tes-
tosterone and impairment in sperm production have been 
reported in protein-malnourished rats [5]. Furthermore, 
PM reduces the thickness of the uterine endometrium, and 
the level of androgen receptors, and increased the estrogen 
receptor β [6].

It has been reported that oxidative damage from free radi-
cals is accentuated in protein-malnourished animals leading 
to loss of protein function and altered cellular redox balance 
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resulting in impairment in tissue function [7]. In addition, 
reactive oxygen species (ROS) has been implicated in male 
infertility [8] as well as female infertility and impaired ovar-
ian functions [9]. Antioxidants are essential for normal func-
tion and the maintenance of redox balance in both testes and 
ovaries. For example, testes possess high concentrations of 
antioxidants that protect against oxidative stress and thus 
play critical roles in the prevention of testicular atrophy and 
maintenance of spermatogenesis [10]. However, it has been 
reported that deficiency of Se, Zn, and other micronutrients 
usually occurs in plasma and cells after exposure to a low-
protein diet [11, 12].

Selenium (Se), with atomic number 34, is a trace element 
required for cellular functions in animals and other organ-
isms. It is covalently incorporated into peptide chains as 
a component of selenoproteins occurring as selenocysteine 
[13]. Se, via the functions of seleno-dependent enzymes 
and selenoproteins, plays an essential role in redox reac-
tions and male reproduction as it is highly expressed in the 
testes [14]. Se is an essential component of glutathione per-
oxidase (GPx) selenoprotein P (Sel P), thioredoxin reductase 
(TXNRD), and selenoprotein V (Sel V) which are highly 
expressed in the testes [15, 16]. The GPx has been docu-
mented as an important antioxidant for spermatogenesis 
[15]. Moreover, Abedelahi et al in an in vitro study showed 
that Se reduced ROS levels and increased the total antioxi-
dant capacity and GPx activity resulting in improved folli-
cular development [17]. Furthermore, Se confers protection 
on ischemia/reperfusion injury in a rat ovary model [18]. Li 
et al. showed that dietary selenium-deprived chicks exhib-
ited poor development of testis and impaired sex hormone 
synthesis. It also reduces antioxidant enzyme activity and 
increased the expressions of mRNA and protein autophagy-
related factors [19]. Se enhanced reproductive performance, 
progesterone levels, and animal health [20]. It improves 
semen quality and reproductive hormone concentration of 
Saanen goat kids [21].

Zn, another trace element with atomic number 30, is 
essential as a cofactor in stabilizing proteins structurally and 
it is useful in enzymatic catalysis. The antioxidant capacity 
of Zn has been associated with its ability to induce metal-
lothioneins, confer protection on protein sulfhydryls, and 
also reduce the formation of hydroxyl radicals through the 
antagonism of redox-sensitive transition metals [7, 22]. Defi-
ciency of Zn has been linked to insufficient dietary intake, 
malabsorption, chronic liver and renal diseases, and other 
sicknesses [23]. Deficiency in Zn in the male reproductive 
system has been associated with impotence, hypogonadism, 
or delayed sexual development [22, 24] whereas several 
pathological conditions like abnormal ovarian develop-
ment, prolonged gestation period, impaired synthesis and/
or secretion of follicle-stimulating hormone and luteinizing 
hormone (LH), and disruption of the menstrual cycle have 

been reported for female [25, 26]. Zn supplements have been 
used for cancer prevention and it regulates primary ovarian 
tumor growth and metastasis [27] and also for a reduction 
of prostate size in benign prostate hyperplasia [28]. Zn sup-
plementation can improve testosterone levels and sexual 
function in postmenopausal women [29].

Although several studies have been reported on male and 
female reproductive organs, and the effects of Se and Zn 
supplementation on them, yet there is a paucity of informa-
tion on the role of Se and Zn on the reproductive organs of 
rats subjected to postnatal protein malnutrition. We hypoth-
esize that Se and Zn supplementation reverses biochemical 
alterations arising from postnatal protein malnutrition in 
male and female reproductive organs. Therefore, the study 
was carried out to investigate biochemical parameters and 
the effects of Se and Zn supplementation on the male and 
female reproductive organs of rats exposed to postnatal pro-
tein malnutrition.

Materials and Methods

Animal and Diets

Seventy-eight rats, 39 male and 39 female weanlings Wistar 
rats (3–4 weeks old), were procured from Animal House, 
University of Lagos Teaching Hospital (LUTH), Lagos, 
Nigeria. The rats were housed in polypropylene cages and 
were allowed to acclimatize for 2 weeks. The rats were fed 
with commercial rat chow and water during the period and 
maintained at 12 h of light-dark cycles at room temperature 
throughout the experiment. The procedures on animal han-
dling were approved by the Animal Ethical Committee of 
Olabisi Onabanjo University, Ogun State, Nigeria, and were 
following the principle of NIH Guidelines for Humane Use 
and Care of Laboratory Animals. The protein malnourished 
diet (PMD) contained 5% casein while the adequate protein 
diet (APD) contained 16% casein. The other components 
of the PMD diets include carbohydrates, vitamins, fats, and 
minerals mixture; all these are in sufficient amounts with an 
adequate amount of iodine (32.5 mg per 100 g) as previously 
reported by Adebayo et al. [7, 30].

Experimental Protocols

Male and female weanling rats were randomly assigned 
to six groups respectively after acclimatization. The APD 
rats which serve as the control group contained five rats per 
group and were fed with 16% casein diet, while the PMD 
rats contained eight rats per group and were fed with 5% 
casein diet. After the 8th week of feeding, Se (sodium sele-
nite; Na2SeO3) and Zn (zinc sulfate; ZnSO4·7H2O) were sup-
plemented at a concentration of 0.15 mg−1L and 227 mg−1L 
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respectively in drinking water (for both male and female 
groups) for 3 weeks as previously reported by Adebayo et al. 
[7, 31]. Both the APD and PMD rats continue with their 
respective diets until the 11th week when the experiment 
was terminated and rats were sacrificed.

The grouping and treatments are as follows:
Group A: APD containing 16% casein diet.
Group B: PMD containing 5% casein diet.
Group C: APD containing 16% casein diet was supple-

mented with Se (0.15 mg−1L).
Group D: PMD containing 5% casein diet was supple-

mented with Se (0.15 mg−1L)
Group E: APD containing 16% casein diet was supple-

mented with Zn (227 mg−1L)
Group F: PMD containing 5% casein diet was supple-

mented with Zn (227 mg−1L).
The rats were weighed every week to determine the 

growth curve of body weights and to evaluate the effect of 
Se and Zn supplementation on the weight by sex.

At the end of the treatments, blood samples from male 
and female rats were collected via ocular sinus using micro-
hematocrit capillary tubes. The blood samples were care-
fully kept in sterilized anticoagulant-free bottles and cen-
trifuged at 5000 rpm for 5 min using Eppendorf Centrifuge 
5415R. The plasma collected was refrigerated and stored at 
−20 °C to be used later for lipid profile and hormonal assays.

Testes and Ovaries Collection

Male and female rats were sacrificed after diethyl ether 
anesthesia by decapitation and the testes were excised from 
males and ovaries were removed from female rats in each of 
the groups. The testes and ovaries were kept in the freezer 
at −20 °C until used.

Sample Preparation for Biochemical Estimations

Ten percent (w/v) testis and ovary homogenates were pre-
pared in 0.1 M phosphate buffer, pH 7.4, by using a Potter-
Elvehjem-type glass homogenizer. The homogenates were 
centrifuged at 5000 rpm in a cold centrifuge for 5 min. The 
supernatants were kept at −20 °C and used for various bio-
chemical assays.

Biochemical Assays

The oxidative markers were assessed to determine the level 
of oxidative stress in the testes and ovaries of PMD-fed rats 
and the effects of Se and Zn supplementation on them by 
analyzing the following parameters.

Estimation of Lipid Peroxidation Level

Malondialdehyde (MDA), a by-product of lipid peroxida-
tion (LPO), was quantified by measuring the amount of 
MDA formed as described by Varshney and Kale [32]. The 
method is based on the formation of pink chromophores 
when malondialdehyde is treated with 2-thiobarbituric acid. 
Briefly, 0.5 mL of 30% trichloroacetic acid (TCA) was added 
to a mixture of homogenate (0.4 mL from the supernatant 
of tissue samples) and 1.6 mL Tris-KCl buffer. This was 
followed by the addition of 0.5 mL of 0.75% thiobarbituric 
acid and then incubated in a water bath for 45 min at 80 
°C. The mixture, after it was cooled down in ice, was cen-
trifuged at 3000 ×g. The clear supernatant was collected 
and absorbance was measured against a reference blank of 
distilled water at 532 nm. The results were expressed as 
micromoles/milligram of protein using a molar extinction 
coefficient chromophore of 1.56 × 10−5 M−1 cm−1.

Estimation of Nitric Oxide Level

Nitric oxide (NO) in conjunction with other reactive oxygen 
species contributes to oxidative stress. NO level was deter-
mined as described by Tracey et al. [33]. Fifty microliters 
of the sample supernatants was mixed with 1.5 mL of 0.1 M 
phosphate-buffered saline and 0.5 mL of Griess’ reagents 
and the reaction mixtures were incubated at 25 °C for 15 
min. The pink chromophore formed was measured at 540 
nm and the results were expressed as micromoles per mil-
ligram of protein.

Estimation of Superoxide Dismutase Activity

Superoxide dismutase (SOD) activity in the supernatants 
of both the testis and ovary was determined as described 
by Mistra and Fridovich [34] based on the inhibition of 
autoxidation of epinephrine (pH 10.2) at 30 °C. The assay 
mixture contained 20 μL of sample and 2.5 mL of 0.05 M 
carbonate buffer (pH 10.2). After equilibration in the spec-
trophotometer, 300 μL of freshly prepared solution of 0.3 
mM epinephrine was added and mixed by inversion. The 
increase in absorbance at 480 nm was monitored in a spec-
trophotometer for 150 s at 30-s intervals. The activity of 
SOD was expressed as units/milligram of protein.

Estimatimation of Catalase Activity

Catalase (CAT) activity in the tissue supernatants was 
determined following the procedure of Sinha [35]. The 
diluted sample was added to the mixture of hydrogen per-
oxide-phosphate. The principle is based on the formation 
of chromic acetate when hydrogen peroxide reacts with a 
dichromate-glacial acetic mixture at 100 °C. Briefly, 1 mL 
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of 0.01 M phosphate buffer (pH 7.0), 0.1 mL of sample, and 
0.4 mL of 0.2 M H2O2 were mixed. This was followed by the 
addition of 2 mL of dichromate-glacial acetic acid reagent 
(5% potassium dichromate and glacial acetic acid in a ratio 
of 1:3). The absorbance of the decomposition of hydrogen 
peroxide when acted upon by CAT and the reduction in the 
green coloration was measured at 570 nm. The results were 
expressed as micromoles/minute/milligram of protein using 
an extinction coefficient of 40 M−1 cm−1.

Estimation of Glutathione Peroxidase Activity

GPx activity was determined as described by Ellman [36]. 
The reaction mixture contained 200 μL of 0.4 M phosphate 
buffer (pH 7.0), 100 μL of 10 mM sodium azide, 200 μL 
of 4 mM reduced glutathione, 100 μL of 0.2 mM hydrogen 
peroxide, and 200 μL of sample. The mixture was incubated 
at 37 °C for 10 min and the reaction stopped by adding 400 
μL of 10% TCA and was later centrifuged at 5000 rpm. One 
milliliter of the supernatant was added to 0.5 mL of Ellman’s 
reagent and 3 mL of 0.2 M phosphate buffer (pH 8.0). The 
absorbance was read at 412 nm. The results were expressed 
as μmol/min/mg protein.

Estimation of Glutathione‑S‑Transferase Activity

Glutathione-S-transferase (GST) activity was determined 
according to Habig et al [37]. Briefly, the assay mixture 
containing 0.03 mL of tissue supernatant, 2.79 mL of 0.1 M 
sodium phosphate buffer (pH 7.4), and 0.15 mL of 20 mM 
1-chloro-2, 4,-dinitrobenzene in 95% alcohol was incubated 
at 37 °C for 5 min and then 0.03 mL of 20 mM glutathione 
(GSH) was added and mixed by inversion. The mixture was 
immediately read at 340 nm against a blank containing all 
the components except the sample for 180 s at 60-s intervals 
in a spectrophotometer. The results were expressed as micro-
moles/minute/milligram of protein using a molar extinction 
coefficient of 9.6 × 103 M−1 cm−1.

Estimation of Reduced Glutathione Level

The level of glutathione (GSH) in the testis and ovary was 
estimated by the method of Sedlak and Lindsay [38]. The 
method is based on the development of a relatively stable 
yellow complex formed from the reaction between Ellman’s 
reagent and free sulphydryl groups that absorbs maximally 
at 412 nm. The absorbance at 412 nm is proportional to the 
level of GSH in the sample. Briefly, 2 mL of 10% TCA was 
added to 1 mL of the sample and centrifuged at 5000 rpm for 
10 min. One milliliter of the supernatant was added to the 
mixture of 0.5 mL of 0.01 M Ellman’s reagent (5,5′-dithio-
bis-2-nitrobenzoic acid) and 3 mL of 0.2 M phosphate buffer 
(pH 8.0). The absorbance was read at 412 nm and the results 

were expressed as nanomoles/milligram of protein using 
1.34 × 104 M−1 cm−1 as the molar extinction coefficient.

Estimation of Vitamin C Level

Vit C level was determined as described by Roe and Kue-
ther [39]. To 0.1 mL of tissue supernatant, 0.3 mL of 6% 
TCA was added, stirred, allowed to stand for 5 min, and then 
centrifuged. To the supernatant was added 0.15 g of acid-
washed norit, vigorously stirred, and filtered. To the filtrate, 
0.1 mL of 0.1 M 2,4-dinitrophenylhydrazine was added and 
incubated at 37 °C for 3 h. The color was produced by add-
ing 0.4 mL of 85% H2SO4 and then incubated for 30 min. 
The color developed was read at 540 nm and results were 
expressed as milligrams per 100 g.

Estimation of Vitamin E Level

The level of Vit E in the tissue sample was estimated as 
described by Baker et al. [40]. Lipid was extracted from the 
tissues according to Folch et al. [41]. 0.5 mL of lipid extract 
from the tissue was added to 1.5 mL of absolute ethanol 
and 2 mL of petroleum ether. The mixture was centrifuged 
at 3500 rpm for 5 min and the supernatant was evaporated 
to dryness at 80 °C. To this was added 0.5 mL of 0.2% 
2–2′dipyridyl solution and 0.1 mL of 0.5% ferric chloride 
and kept in the dark for 5 min before 4 mL of butanol was 
added. The developed color was read at a wavelength of 520 
nm and the result was expressed as milligrams per 100 g.

Determination of Na+‑K+‑ATPase Activity

The activity of Na+-K+-ATPase was determined according 
to the method of Lardy and Wellman [42] with slight modi-
fication. Briefly, 0.5 mL of sample was added to 0.4 mL of 
reaction medium (65 mM Tri-HCl buffer (pH 7.4), 0.5 mM 
KCl, 25 mM sucrose), and 0.1 mL of 1 mM ATP. The reac-
tion was incubated in a shaker at 25 °C for 30 min and later 
stopped by the addition of 1 mL of 10% TCA. The mixture 
was centrifuged at 3000 rpm for 5 min. Zero-time tubes 
were deproteinized by the addition of chilled 1 mL of 10% 
TCA before the addition of ATP. All tubes were chilled after 
deproteinization and analyses for inorganic phosphate were 
made by the procedure of Stewart [43]. The supernatant was 
measured at a wavelength of 660 nm and the results were 
expressed as nanomoles Pi/minute/milligram of protein.

Hormonal Level Determination

Estimations of Testosterone and Progesterone

Considering the importance of sex hormones, testos-
terone (the primary male hormone that is required for 
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spermatogenesis and the activities of Sertoli cells) and 
progesterone (a progestogen sex hormone involved in 
the menstrual cycle, pregnancy, and embryogenesis) lev-
els were estimated in the plasma using the ELISA Assay 
kits (DiaMetra, Spello (PG), Italy; Cat. No: DCM002-10 
and DCM006-8; for testosterone and progesterone respec-
tively). Competitive immunoenzymatic colorimetric pro-
cedures for the quantitative determination of total testos-
terone and progesterone concentrations in the plasma were 
carried out according to the manufacturer’s manuals. The 
absorbance was read at 450 nm against the respective blank 
within 5 min.

Estimation of Lipid Profile

Cholesterol (CHOL), high-density lipoprotein (HDL), triglyc-
erides (TG), low-density lipoprotein (LDL), and very-low-
density lipoprotein (VLDL) were estimated in the plasma 
using Randox kits. Assays were carried out as described in 
the kits’ manuals. VLDL and LDL were obtained through 
calculation as described by Njike et al. [44].

Statistical Analyses

The significant difference between the evaluations of the 
rats subjected to protein restriction compared to the controls 
with adequate diet was evaluated. All data are expressed 
as the mean ± standard deviation and were analyzed using 
one-way analysis of variance (ANOVA). Post hoc multiple 
comparisons to assess the significant differences between 
the means across the groups were determined using Duncan 
multiple range test, and values with p < 0.05 were consid-
ered statistically significant. IBM SPSS (Statistical Package 
for the Social Sciences) software version 23 (Armonk, NY) 
was used for the analysis.

Results

Effect of Protein Malnourished Diet, Se, and Zn 
Supplementation on the Growth Curve of Body 
Weights of Male and Female Rats

The effect of PMD on the growth curve of body weights 
of male and female rats is presented in Fig. 1 A and B. 
At the end of the 11th week of feeding, male and female 
PMD-fed rats showed significant reductions in their body 
weights as compared to APD-fed rats. Se and Zn supple-
mentation for 3 weeks did not have significant effects on 
both PMD- and APD-fed rats.

Effect of Se and Zn Supplementation 
on the Oxidative Markers in the Testes and Ovaries 
of Protein Malnourished and Adequate Protein 
Diet–Fed Rats

Oxidant Parameters

Lipid Peroxidation  As presented in Fig. 2 A, the level of 
MDA in the testes of PMD-fed rats did not show any signifi-
cant effect compared to APD-fed rats whereas a significant 
reduction was observed in the ovaries when compared to 
APD-fed rats. Se and Zn supplementation, in APD-fed rats 
compared to non-supplemented APD-fed rats, significantly 
reduced the level of MDA in the testes and in the ovaries. Se 
and Zn supplementation did not affect MDA level in PMD-
fed rats when compared to the non-supplemented PMD-fed 
rats in the testes but a significant increase was observed after 
Se supplementation in the ovaries.

Fig. 1   The growth curve of body weights of protein malnourished 
diet (PMD)- and adequate protein diet (APD)-fed rats. The body 
weights of male PMD rats fed with 5% casein diet versus the body 
weights of male APD rats fed with 16% casein diet (A). The body 
weights of female PMD rats fed with 5% casein diet versus the body 

weights of female APD rats fed with 16% casein diet (B). Both males 
and females were supplemented with Se (sodium selenite; Na2SeO3) 
and Zn (zinc sulfate; ZnSO4·7H2O) at a concentration of 0.15 mg−1L 
and 227 mg−1L respectively in drinking water. APD n = 5, PMD n = 
8. The level of significance was assessed at p < 0.05
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Nitric Oxide  As shown in Fig. 2 B, there was a signifi-
cant increase in the level of NO in the testes of PMD-fed 
rats compared to APD-fed rats. Supplementation with 
Se and Zn significantly reduced the level of NO in the 
testes of APD-fed rats but only Se reduces the level of 
NO in the testes of PMD-fed rats while Zn supplementa-
tion increases it. In the ovaries, there was a significant 
increase in the level of NO in PMD-fed rats compared 
to the APD-fed rats. Supplementation with Se and Zn 
significantly reduced the level of NO in both the ovaries 
of PMD- and APD-fed rats.

Antioxidants Parameters

As shown in Fig. 2 C and D, there were significant reduc-
tions in the activities of SOD and CAT in the testes of PMD-
fed rats compared to APD-fed rats. Se and Zn supplementa-
tion increased the activities of SOD and CAT in the testes 
of both PMD- and APD-fed rats. Also, the activity of CAT 
was significantly increased in the ovaries of PMD-fed rats 
compared to APD-fed rats. Supplementation with Se and 
Zn significantly increased the ovarian SOD activity in both 
PMD- and APD-fed rats.

The activities of GPx and GST, as presented in Fig. 3 
A and B, were significantly reduced in the testes of 
PMD-fed rats compared to the APD-fed rats. Se and Zn 

supplementation significantly increased the activity of GST 
in the testes of PMD- and APD-fed rats. Se increased the 
activity of GPx in the testes of PMD- and APD-fed rats 
and Zn supplementation increased GPx activity only in 
the testes of APD-fed rats. On the other hand, PMD did 
not affect GPx activity in the ovaries when compared to 
the control rats but there was a significant reduction in the 
activity of GST in the ovaries of PMD-fed rats when com-
pared to APD-fed rats. However, supplementation with Se 
and Zn significantly increased the activities of both GPx 
and GST in the ovaries of both PMD- and APD-fed rats. 
Moreover, there were significant reductions in the level of 
GSH (Fig. 3C) in both the testes and ovaries of PMD-fed 
rats when compared to the APD-fed rats. Supplementation 
with Se and Zn to PMD- and APD-fed rats significantly 
increased the GSH levels in both tissues.

Assessment of vitamins C (Fig. 3D) and E (Fig. 4A) in 
PMD-fed rats showed significant reductions when com-
pared to the APD-fed rats in both the testes and ovaries. 
Zn supplementation significantly increased the levels of 
both vitamins in the testes and ovaries of rats fed PMD and 
APD. Se increased vitamin C levels in the testes and ova-
ries of PMD- and APD-fed rats. Se also increased vitamin 
E levels in the testes of PMD- and APD-fed rats whereas 
Se only increase vitamin E levels in the ovaries of PMD-
fed rats.

Fig. 2   Oxidative markers and the effects of Se and Zn supplementa-
tion in the testes and ovaries of PMD-fed and APD-fed rats. The level 
of MDA, a by-product of lipid peroxidation (A), assessment of NO 
level (B), the activity of superoxide dismutase (SOD) (C), and the 
activity of catalase (CAT) (D) and supplementation with Se and Zn 

were assessed in the testes and ovaries of PMD- and APD-fed rats. 
APD n = 5, PM n = 8. *PMD significantly different from APD group; 
**APD treated significantly different from untreated group; ##PMD 
treated significantly different from untreated group (p < 0.05)
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Effect of Se and Zn Supplementation 
on Na+‑K+‑ATPase Activity in the Testes and Ovaries 
of Protein Malnourished and Adequate Protein 
Diet–Fed Rats

As shown in Fig. 4 B, the activity of Na+-K+-ATPase in 
the testes and ovaries of PMD-fed rats was not statistically 
different from APD-fed rats. While there was a significant 
increase in the ovarian Na+-K+-ATPase activity in Se- or Zn-
supplemented APD-fed rats as well as a significant increase 
in Zn-supplemented PMD-fed rats, the activity of testicular 

Na+-K+-ATPase in Se- or Zn-supplemented rats does not 
affect PMD- and APD-fed rats.

Effect of Se and Zn Supplementation 
on the Hormonal Level of Protein Malnourished 
and Adequate Protein Diet–Fed Rats

Table 1 shows that testosterone and progesterone levels 
were significantly reduced in PMD-fed rats when compared 
to APD-fed rats. Supplementation with Se significantly 
increased testosterone levels in both APD- and PMD-fed 

Fig. 3   Antioxidant parameters and the effect of Se and Zn sup-
plementation in the testes and ovaries of PMD and APD rats. The 
activity of glutathione peroxidase (A), the activity of glutathione-S-
transferase (B), the level of reduced glutathione (C), and the level of 
vitamin C (D), and supplementation with Se and Zn were assessed 

in the testes and ovaries of PMD and APD rats. APD n = 5, PM n = 
8. *PMD significantly different from APD group; **APD treated sig-
nificantly different from untreated group; ##PMD treated significantly 
different from untreated group (p < 0.05)

Fig. 4   Assessment of vitamin E (A), the activity of Na+-K+-ATPase 
(B) supplemented with Se and Zn in the testes and ovaries of PMD- 
and APD-fed rats. APD n = 5, PM n = 8. *PMD significantly dif-

ferent from APD group; **APD treated significantly different from 
untreated group; ##PMD treated significantly different from untreated 
group (p < 0.05)
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rats. Also, Zn supplementation increased the level of testos-
terone in PMD-fed rats. Furthermore, progesterone level was 
significantly increased in PMD- and APD-fed rats after Zn 
supplementation. In the Se-supplemented rats, the proges-
terone level was increased in the PMD-fed rats.

Effect of Se and Zn Supplementation on Lipid Profile 
in the Testes and Ovaries of Protein Malnourished 
and Adequate Protein Diet–Fed Rats

Lipid profiles from the plasma of male and female rats, as 
presented in Table 2 shows significant reductions in CHOL, 
HDL, and LDL in the plasma of male PMD-fed rats and 
significant reductions in HDL, VLDL, and TG in the plasma 
of female PMD-fed rats when compared to the APD-fed rats. 
Se supplementation significantly decreased plasma levels 
of HDL, and LDL in both males and females and CHOL 
in females but a significant increase in TG was observed in 
both males and females and VLDL only in male APD-fed 
rats. Moreover, Se supplementation to PMD-fed rats sig-
nificantly reduced plasma CHOL, LDL, VLDL, and TG in 
females and significantly increased plasma HDL levels in 
females. Also, Zn supplementation in male APD-fed rats 
significantly decreases CHOL, HDL, VLDL, LDL, and 
TG while it increases all the parameters in the plasma of 
female APD-fed rats. Zn supplementation to the PMD-fed 
rats significantly increased CHOL and HDL in the plasma 
of both males and females rats and the increase in the levels 
of VLDL, LDL, and TG was only observed in the female 
while the LDL and TG levels were reduced in the plasma of 
male PMD-fed rats.

Discussion

The present study was carried out to evaluate the effect of Se 
and Zn supplementation on the male and female reproductive 
organs of rats subjected to postnatal protein malnutrition. 

Table 1   Effect of selenium and zinc supplementation on testosterone 
and progesterone levels in the plasma of PMD- and APD-fed rats

APD n = 5, PMD n = 8. *PMD significantly different from APD 
group; **APD treated significantly different from untreated group; 
##PMD treated significantly different from untreated group (p < 0.05)

Treatments Testosterone
(ng/mL)

Progesterone
(ng/mL)

APD 1.60 ± 0.10 0.30 ± 0.05
APD + Se 2.20 ± 0.10** 0.36 ± 0.05
APD + Zn 0.36 ± 0.02** 0.46 ± 0.05**
PMD 0.30 ± 0.10* 0.20 ± 0.01*
PMD + Se 1.20 ± 0.10## 0.33 ± 0.05##

PMD + Zn 0.67 ± 0.21## 0.37 ± 0.02##
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Protein is an important nutrient containing essential amino 
acids that are required for biological functions. Evidence 
has shown that reproductive maturation and function are 
influenced by protein malnutrition which is accompanied 
by changes in testicular structure resulting in a reduction 
in daily sperm production and/or has a permanent effect on 
their capacity to produce spermatozoa [2, 45].

Protein Malnourished Diet, Se, and Zn 
Supplementation on the Body Weights of Male 
and Female Rats

Body weight has been associated with reproductive poten-
tial in animals [46]. The finding from this study showed a 
significant decrease in the body weights of male and female 
PMD-fed rats as compared to the APD-fed rats’ counter-
parts. Reduction in the body weights of PMD-fed rats has 
previously been reported as a demonstration of the impor-
tance of protein for normal development [47]. Moreover, 
reduction of body weight due to PM has been linked with 
appetite failure and metabolic disturbances, consequently 
leading to increased transamination or deamination of amino 
acids arising from increased endogenous protein degradation 
[48]. Supplementation with Se and Zn did not have any sig-
nificant effect on the body weights of both male and female 
rats fed with either low-protein or adequate-protein diets. 
There are conflicting reports about the effect of Se and Zn 
on body weight. Hasani et al. [49] reported that Se improves 
weight control in obese rats and this was corroborated by 
another report showing that sodium selenite attenuated 
increased body weight in high-fat-diet-fed mice [50]. Some 
have shown that Se in high doses has been associated with 
weight gain [51]. Similarly, some have reported an increase 
in body weight and some reduction after Zn supplementation 
[49]. However, the present study corroborated the earlier 
report that Se and Zn supplementation does not affect body 
weight [7]. The reason for these conflicting results may be 
attributed to dosage, route of administration, duration of 
exposure, the type and species of animals used, and prob-
ably some other mechanisms which unfortunately are not 
the focus of this present study but may serve as proposed 
future studies.

Se and Zn Supplementation on Oxidative Markers 
in the Testes and Ovaries of Protein Malnourished 
and Adequate‑Protein‑Diet‑Fed Rats

Oxidative stress has been implicated with compromised 
reproduction and fertility and this includes impaired ovar-
ian functions, deteriorated oocyte quantity, and gynecologi-
cal disease [52]. In this study, PMD did not influence the 
testicular level of LPO products whereas a reduction in the 
ovarian level of LPO products was observed. This result 

contradicts the normal trends that are usually observed in 
PMD-fed rats [7, 53, 54] and the reason for this discrepancy 
could not yet be ascertained. However, NO levels increased 
in both tissues. NO, produced from l-arginine by NO syn-
thase, is a signaling molecule that is essential for normal 
cellular function. In this case, NO is acting as a potent oxi-
dant species because it contains an unpaired electron in its 
highest orbital making it a highly reactive molecule. In the 
presence of superoxide anion (O2

·−), NO is converted to 
peroxynitrite (ONOO−) which exerts pro-oxidant actions 
more than NO itself and this can modify lipids, proteins, 
and DNA [7, 55]. The report has shown that increased NO 
production has been linked to PM resulting in a higher rate 
of apoptosis after cytokines or oxidative stress aggregation 
[56]. Se reduced NO level in the testes and ovaries of both 
PMD- and APD-fed rats.

Se prevents peroxynitrite formation from NO and controls 
the level of cellular free radicals via its various selenopro-
teins. Reduction in NO level by Se has been reported in rat 
models of ischemia/reperfusion injury in various tissues and 
a rat ovary model [18, 57]. Se was also reported to protect 
against NO production and gene expression of inflammatory 
cytokines in chicken splenic lymphocytes induced by cad-
mium [58] The antioxidant property of Zn was demonstrated 
by reducing the level of NO in the ovaries of PMD-fed rats. 
Zn exerts its protective role through the formation of met-
allothionein complex thereby protecting against free radi-
cal attack. The exact mechanism by which Se and Zn lower 
NO is not yet fully understood but a study reported that Se 
attenuates an increase in cytokines expression by inhibit-
ing the binding of nuclear factor kappa B (NF-κB) and thus 
decrease NO production [59]. Likewise, Zn has been shown 
to downregulate mRNA and protein expressions of induc-
ible nitric oxide synthase (iNOS) and decreased cytokine-
mediated activation of the iNOS promoter which has been 
attributed to inhibit NF-κB transactivation activity [60].

Additionally, data from the present study show reduc-
tions in the activities of SOD, CAT, GPx, and GST in the 
testicular tissue of PMD-fed rats. A similar observation had 
earlier been reported for the cortex and cerebellum of PMD-
fed rats [7]. Studies have shown that the balance between 
ROS and antioxidants greatly influences reproductive activi-
ties in male and female animals [61, 62]. Supplementation 
with Se and Zn increased the activities of SOD, GPx, and 
GST in both tissues of APD- and PMD-fed rats. Zn is a 
cofactor for SOD activity and it might exert its antioxidant 
property through the formation of metallothionein which 
protects against free radical attack. Moreover, Se is incor-
porated into selenocysteine (SeCys) and then forms part 
of selenoenzymes which includes glutathione peroxidase 
(GPx). The protection of GPx against free radical attack 
is due to the induction of its selenoproteins property and 
thereby increasing its total catalytic activity [63, 64]. Se and 
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Zn supplementation increased the level of CAT in the testes 
in both diets but maintained its high activity in the ovaries 
only in the PMD-fed rats, as observed in the study, protect-
ing the ovaries against free radical attack. PMD reduced 
the level of GSH in both the testes and the ovaries. The 
level of cellular GSH is a function of several factors includ-
ing consumption through the formation of conjugates via 
glutathione-S-transferase, which may be contributing to the 
reduction in GST level as observed in this study: de novo 
synthesis, the extent of oxidation, and reduction of oxidized 
GSH by glutathione reductase [65]. Se and Zn increased 
the level of GSH and GST in both the testes and ovaries 
of APD- and PMD-fed rats. The antioxidant role of Zn has 
been associated with its competitive effect on iron and cop-
per thereby preventing them from producing toxic hydroxyl 
radicals. Zn also prevents protein oxidation by binding to the 
thiol (–SH) group of some proteins [66].

Vitamin C is an essential nutrient with antioxidant prop-
erties to protect tissues from oxidative damage [67]. Also, 
vitamin E acts as an antioxidant and a free radical scavenger 
by protecting fatty acids mainly phospholipids in the plasma 
membrane from oxidation by ROS and is considered the core 
of the antioxidant system [68]. The level of vitamins C and 
E was reduced in the testes and ovaries of PMD-fed rats. 
Similar reduction and or deficiency in the level of vitamin 
C has been reported in critically ill patients despite recom-
mended enteral and parenteral intakes [69]. Supplementa-
tion with Se and Zn increased the level of vitamins C and E 
in both testes and ovaries of APD- and PMD-fed rats. The 
efficacy of vitamin E, for example, has been reported to be 
strongly dependent on the action of ascorbic acid and other 
dietary components such as Se and carotenoids [68, 70, 71]. 
We may say that a positive correlation exists between Se and 
Zn supplementation and enhancement of vitamins C and E 
levels which might be contributing to improving reproduc-
tive organ functions by protecting them against free radical 
attacks.

Se and Zn Supplementation on Na+‑K+‑ATPase 
Activity in the Testes and Ovaries of Protein 
Malnourished and Adequate‑Protein‑Diet‑Fed Rats

Na+/K+-ATPase is an enzyme that regulates ROS and intra-
cellular calcium signaling among several other functions. 
The present study showed that PMD does not have any sig-
nificant effect on the activity of Na+/K+-ATPase either in 
the testes or in the ovaries. A previous report by Calderon 
Guzman et al. [72] showed that PMD causes alteration in 
the activity of Na+/K+-ATPase in the brain of rats. The dis-
crepancy might be due to differences in the tissues, animal 
species, and duration of administration. However, Se and Zn 
supplementation increases ovarian Na+/K+-ATPase activity. 

The reason why Se and Zn are not influencing testicular Na+/
K+-ATPase activity awaits further investigation.

Se and Zn Supplementation on the Hormonal 
Level of Protein Malnourished 
and Adequate‑Protein‑Diet‑Fed Rats

The finding from this study shows that PMD lowers the levels 
of testosterone and progesterone. Testosterone is an integral 
component of the hypothalami-pituitary gonadal axis which 
functions to modulate the release of gonadotropins by the 
anterior pituitary gland. The reduction in testosterone level 
observed in this study correlates with the finding of Oliveira 
and co-workers. They observed that testosterone production 
was lower in rats subjected to a low-protein diet. Similarly, 
maternal protein malnutrition has been implicated in lower 
progesterone levels in rats [73]. Supplementation with Se 
and Zn increased testosterone and progesterone levels in 
PMD-fed rats. Several reports have shown the influence of 
Se on testosterone and progesterone levels. For example, Se 
supplementation to goat kids and rams showed a marked 
increase in the level of testosterone and this was attributed 
to increasing responsiveness of Leydig cells to gonadotropins 
which are stimulated by luteinizing hormone (LH) receptor 
mechanisms controlling the storage and release of testoster-
one [21, 74]. Moreover, Dkhil et al. [75] corroborated that Se 
nanoparticles elevated testosterone levels in streptozotocin-
diabetic rats which have been associated with stimulation of 
LH and thus positively affects the biosynthesis of testoster-
one. Furthermore, reports have shown that Se supplementa-
tion increased plasma progesterone in pregnant heifers [76] 
as well as in postpartum dairy cows [77]. In addition, Saccha-
romyces cerevisiae enriched with Se enhanced progesterone 
levels in local Iraqi female goats [20]. Zn supplementation 
modulated and increased the level of testosterone in the blood 
serum [20, 29]. As reported for Se, Saccharomyces cerevisiae 
enriched with Zn also enhanced progesterone levels in local 
Iraqi female goats [20]. Increased progesterone level was also 
shown in ovariectomized rats supplemented with Zn as com-
pared to its ovariectomized control rats [78].

Se and Zn Supplementation on Lipid Profile 
in the Testes and Ovaries of Protein Malnourished 
and Adequate‑Protein‑Diet‑Fed Rats

Malnutrition causes lipid metabolism disorder [79] in both 
males and females. The increase in TG, as observed in male 
PMD-fed rats, might be associated with the increase in 
VLDL and reduction in HDL. Also, the reductions in TG and 
HDL in female PMD rats were accompanied by increased 
LDL. The major carrier of triglycerides in the plasma is 
VLDL. The increase in VLDL may be a major factor in 
increasing the TG level observed. In addition, the increase 
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in triglyceride levels may also be due to the decrease in the 
activity of lipoprotein lipase; an enzyme that hydrolyzes tri-
glycerides in chylomicrons. Xue et al. [79] have shown that 
undernutrition triggered severe lipid metabolism disorder 
and causes enhanced fatty acid oxidation, ketogenesis, and 
TG synthesis. Supplementation with Se reduced the levels 
of CHOL, VLDL, LDL, and TG with an increase in HDL 
levels in the plasma of female PMD-fed rats. Reductions in 
these parameters have been reported by Hasani et al. [80] 
and they concluded that Se supplementation could decrease 
TG and VLDL levels. A reduction in LDL, as well as an 
increase in the level of HDL after Se supplementation, was 
also reported [80, 81]. Conversely, supplementation with Zn 
increases CHOL in the plasma of male and female PMD-fed 
rats as well as an increase in VLDL, LDL, and TG in the 
plasma of female rats only. The reason for the increase can-
not be presently explained. However, Zn increased HDL lev-
els in both male and female PMD-fed rats and reduced TG, 
LDL, and VLDL levels in male PMD-fed rats. An increase 
in HDL and reduction in TG levels were reported in type 2 
diabetes mellitus after Zn supplementation [82]. Moreover, 
dietary supplementation of Zn oxide and Zn methionine was 
reported to reduce triglyceride and LDL cholesterol levels 
in the blood of laying hens [83].

One of the main limitations of the study is that we did not 
study the combined effects of Se and Zn. It can be speculated 
that there could be synergy between the action of Se and Zn 
and the mechanism could involve the antioxidant action of 
both trace elements. Studies have reported the possibility of 
potential interaction and mutual influence between Se and 
Zn and that Zn intake alone may increase Se levels [49, 84]. 
This study provides further insight into the role of Se and 
Zn supplementation in the reproductive organs of postna-
tal protein-malnourished rats. However, an explanation of 
the synergistic effects of Se and Zn on the male and female 
reproductive organs of rats exposed to protein-depleted diets 
awaits further study. Given the antioxidant capacity of Se 
and Zn, and given that most of the problems derived from 
protein malnutrition are associated with oxidative stress, it 
is suggested to promote the use of these trace elements in 
protein-malnourished populations; since they mediate vital 
biochemical reactions, acting as cofactors of many enzymes, 
in addition to acting as centers to stabilize enzymatic and 
protein structures, related not only to their nutritional status 
but also to their reproductive potential.

Conclusion

The results of this present study indicate that postnatal 
protein malnutrition alters the lipid profile, increases the 
level of oxidants, and reduces the antioxidant status, as well 
as hormonal levels in the testicles and ovaries. Se and Zn 

supplementation, however, reversed almost all the alterations 
observed in the parameters analyzed suggesting that Se and 
Zn supplementation might protect the reproductive organs 
of rats against postnatal protein malnutrition.
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