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Abstract
Aluminum contamination is a growing environmental and public health concern, and aluminum testicular toxicity has been 
reported in male rats; however, the underlying mechanisms of this toxicity are unclear. The objective of this study was to 
investigate the effects of exposure to aluminum chloride (AlCl3) on alterations in the levels of sex hormones (testosterone 
[T], luteinizing hormone [LH], and follicle-stimulating hormone [FSH]) and testicular damage. Additionally, the mechanisms 
of toxicity in the testes of AlCl3-exposed rats were analyzed by proteomics. Three different concentrations of AlCl3 were 
administered to rats. The results demonstrated a decrease in T, LH, and FSH levels with increasing concentrations of AlCl3 
exposure. HE staining results revealed that the spermatogenic cells in the AlCl3-exposed rats were widened, disorganized, 
or absent, with increased severe tissue destruction at higher concentrations of AlCl3 exposure. Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses revealed that differentially expressed proteins (DEPs) 
after AlCl3 exposure were primarily associated with various metabolic processes, sperm fibrous sheath, calcium-dependent 
protein binding, oxidative phosphorylation, and ribosomes. Subsequently, DEPs from each group were subjected to protein-
protein interaction (PPI) analysis followed by the screening of interactional key DEPs. Western blot experiments validated 
the proteomics data, revealing the downregulation of sperm-related DEPs (AKAP4, ODF1, and OAZ3) and upregulation of 
regulatory ribosome-associated protein (UBA52) and mitochondrial ribosomal protein (MRPL32). These findings provide 
a basis for studying the mechanism of testicular toxicity due to AlCl3 exposure.
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Introduction

The total aluminum ore resource in the world amounts to 
40−50 billion tons. Aluminum is used in various aspects 
of our daily life, including construction, household appli-
ances, automobiles, and shop windows [1]. Moreover, the 

use of aluminum-containing AI products is on the rise. Fur-
thermore, due to the low production cost, lightweight, and 
malleability of aluminum, the use of aluminum products in 
daily life is increasing. Due to the extensive use of aluminum 
products, these products are discarded into the environment, 
including the land, sea, and forest ecosystems [2, 3]. In addi-
tion, once aluminum enters the land ecosystem, it can cause 
acidification, yield reduction, and nutrient imbalance in 
the soil [4]. A study conducted on the rivers around Xi’an, 
China, reported a 2000-fold increase in aluminum concen-
tration compared to the levels present six years ago. This 
undoubtedly jeopardizes the health of people who consume 
water from these rivers [5]. Biotoxicity due to aluminum 
exposure has raised global concern.

Numerous results have confirmed that aluminum exposure 
is toxic to the nervous, nephrology, myocardial toxicity, and 
reproductive systems [6–8]. However, the mechanisms of 
reproductive toxicity remain unclear. The toxicity mechanism 
of aluminum to humans is challenging to investigate directly. 
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However, since rats have biological characteristics similar to 
humans, we conducted an experiment exposing rats to AlCl3 to 
explore its reproductive toxicity. We have previously reported 
that AlCl3 exposure decreases sperm quality and viability in rats 
[9]. In another study of aluminum-exposed voles, sperm quality 
decreased significantly [10]. Some researchers have hypoth-
esized that reproductive toxicity due to aluminum exposure may 
be related to oxidative stress and hormonal disorders [11, 12]. 
mRNA undergoes multiple regulatory processes during transla-
tion into protein; hence, mRNA levels alone do not accurately 
reflect body changes during a stress response. Proteomics is a 
research methodology based on high-throughput analytical and 
detection techniques. It is used to probe novel molecular mark-
ers and the effects of pollutants on organisms since it is the most 
widely used histological platform that allows in-depth studies 
on complex organisms and tissue proteins assessment qualita-
tively and quantitatively [13, 14]. Bioinformatics is a field that 
utilizes artificial intelligence to analyze and interpret biological 
data through computer technology. Therefore, as rats have bio-
logical characteristics similar to humans, this study exposed rats 
to AlCl3 to explore its reproductive toxicity. Moreover, regard-
ing AlCl3 exposure to rat testicular tissue, proteomic sequenc-
ing and bioinformatics were employed to gain insights into the 
alterations in proteins. Studies have evaluated the toxic effects 
of pollutants on organisms by proteomics and bioinformatics, 
including the toxicity of nano plastics on algal proliferation, 
chromium-induced kidney toxicity, toxicity of fluoride to the 
mouse liver, and the biological toxicity of humic acid on fish 
[15–18]. Neurotoxicity due to aluminum exposure has been 
studied by incorporating proteomics aluminum-exposed rat 
models; however, to the best of our knowledge, no proteomic 
studies of testicular toxicity due to AlCl3 exposure have been 
conducted. Therefore, evaluating testicular toxicity due to AlCl3 
exposure by proteomics is of great importance.

Aluminum chloride (AlCl3), a widely used aluminum com-
pound in daily human life, was used in this study to reveal the 
molecular mechanisms of testicular toxicity in AlCl3-exposed 
rats. Proteomic analysis was performed for four groups with 
different exposures: control, low dose, medium dose, and high 
dose. Furthermore, bioinformatics analysis was performed to 
validate some DEPs that are closely related to reproduction 
using western blot. Our study of testicular toxicity due to AlCl3 
exposure contributes to a better understanding of the potential 
effects of AlCl3 exposure on male reproduction and provides 
new molecular targets for AlCl3 exposure reproductive toxicity.

Materials and Methods

Reagents and Materials

Aluminum trichloride hexahydrate (AlCl3·6H2O) (Shanghai 
Aladdin Biochemical Technology Company (L1706080)); 

AKAP4 (PA5-109377) and ODF1 (PA5-69988) (Thermo 
Fisher); and NDUFAB1 (53896-1), MRPL32 (53101-1), 
LGALS4 (30034-1), and UBA52 (43827-1) were purchased 
from Signalway Antibody (SAB), and OAZ3 (orb215187) 
(Boster) was used in the study. FSH (MM-7086R2), LH 
(MM-0624R2), and T (MM-0577R2) were purchased from 
MEIMIAN.

Animal Experimental Design

Twenty-four 8-week-old male rats weighing 180–200 g that 
underwent five weeks of adaptive growth were randomly 
assigned to four groups, each group containing six rats. 
AlCl3 was dissolved in distilled water. Based on the study by 
Xu et al. [19], the median lethal dose (LD50) of AlCl3 to rats, 
the daily body weight and water intake were considered to 
determine the amount of AlCl3 that should be exposed to rats 
using the drinking water method. Four groups were formed 
based on these criteria: a high-dose group [1/5 LD50, 256.72 
mg/(kg·d)], a medium-dose group [1/10 LD50, 128.36 mg/
(kg·d)], a low-dose group [1/20 LD50, 64.18 mg/(kg·d)], and 
control group [0 mg/(kg·d)]. The rats were kept under con-
trolled environmental conditions with a temperature of 25±2 
°C, relative humidity between 50% and 70%, and a 12 h 
light/dark cycle. The rats were fed standard rat feed (Table 1) 
and were provided with water containing AlCl3 for a period 
of 16 weeks, which is equivalent to two rat spermatogenic 
cycles of rats. Subsequently, euthanasia with an injection 
of 200 mg/kg pentobarbital sodium was performed, follow-
ing which intracardiac blood samples and bilateral testicular 
tissues were obtained and centrifuged to acquire the serum 
for sex hormone detection. Additionally, one part of the tes-
ticular tissue was fixed with 4% paraformaldehyde tissue 
fixative solution for histopathological evaluation, while the 
other part was stored in a −80 °C refrigerator for subsequent 
quantitative proteomic analysis and western blot detection. 
All animal procedures were approved by the Experimental 
Animal Use Ethics Committee of You jiang Medical College 
for Nationalities.

Quantitative Proteomics Analysis

The tissues were ground in liquid nitrogen to perform quan-
titative proteomics, and the supernatant was collected for 
protein extraction. The protein concentration was measured 
using the BCA protein kit. Subsequently, proteolytic diges-
tion was performed. Impurities in the 200 μg protein were 
removed using an ultrafiltration tube, followed by the addi-
tion of iodoacetamide to block the reduction process. After 
washing, the trypsin digestion agent was added and centri-
fuged at 12,000 rpm for 20 min to collect the peptides. Each 
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sample peptide was labeled using TMT, equilibrated using 
TMT reagent, and lysed using isopropanol. Furthermore, 
100 μg of sample peptide was added to the solubilized TMT 
reagent, and the reaction was terminated by adding 100 μl 
of pure water after 2 h, followed by centrifugation of the 
sample to dry the bottom of the tube. The dried sample pep-
tides were subjected to the AKTA Purifier100 system. The 
labeled peptides were separated using SCX chromatography, 
where peptide samples were subjected to acidification and 
loaded onto the sample column. After elution and desalting, 
samples were collected after centrifugation. Finally, LC-MS/
MS analysis was performed. Sample peptides were redis-
solved in formic acid and attached to the analytical column 
for separation, followed by mass spectrometry analysis.

Bioinformatics Analysis

The identified proteins were classified using UniProt (https://​
www.​unipr​ot.​org/) database, and GO is an international set 
of classification systems for the functional description of 
genes. The different proteins coordinate with each other to 
perform their functions, and thus, classified DEPs were sub-
jected to GO analysis. Subsequently, pathway enrichment 
analysis of differentially expressed genes was performed 
using the KEGG analysis (http://​www.​genome.​jp/​kegg/). 
Proteins consist of structural domains, and characterizing 
these domains is important to help understand their func-
tion. The structural domains of DEPs were annotated using 
Interproscan. Proteins are sorted into individual organelles 
after ribosome synthesis using protein sorting signals, and 
understanding the subcellular localization of proteins is cru-
cial for the functional understanding of the organism. The 
subcellular localization of DEPs was obtained through the 
Cell-mPLOC 2.0 website. The PPI network was obtained 
by the STRING online analysis system (https://​cn.​string-​db.​
org/​cgi/​input?​sessi​onId). The PPI networks on the STRING 
system were analyzed using Cytoscape analysis software to 
obtain PPI network maps. Finally, the protein-protein inter-
action network (PPI) was used to analyze the interactions 
between DEPs.

Serum T, LH, and FSH Concentrations Were 
Measured Using ELISA

The rat serum was collected, and follicle-stimulating hor-
mone (FSH), luteinizing hormone (LH), and testosterone (T) 
were determined using an ELISA reagent kit. Briefly, 10 μL 
of the sample was added to a 96-well plate along with 40 μL 
of sample diluent in each well. Additionally, 100 μL of HRP-
labeled antibody was added to each well and incubated at 37 
°C for 60 min. Following this, the liquid was discarded and 
the plate was washed five times using a wash solution. Sub-
sequently, the substrate was added to each well, and the plate 
was incubated in the dark for 15 min at 37 °C. Finally, the 
stop solution was added, and a multifunctional microplate 
reader was used to detect the optical density (OD) value at 
450 nm.

HE Staining

The fixed testicular tissue was dehydrated using a tissue 
dehydrator. Following dehydration, the tissue was embedded 
in a paraffin block and sectioned into 4–5-micron sections. 
Paraffin sections were dewaxed in xylene (I) and xylene (II) 
for 15 min, respectively. Subsequently, the sections were 
hydrated in 100%, 95%, 85%, and 75% ethanol solutions for 
3 min each, followed by immersion in distilled water for 10 
min. Finally, the sections were stained with hematoxylin for 
5 min to visualize the nuclei. The excess staining solution 
was removed by gentle rinsing with tap water. The sections 
were then subjected to 1% hydrochloric acid alcohol frac-
tionation for 5 s, followed by ammonia-alcohol bluing for 
about 10 s. After wiping the excess water off the slides, the 
samples were stained in eosin stain for 5 min. The slides 
were again rinsed with tap water, and the excess water was 
wiped off. The samples were observed under a microscope, 
adjusting the staining as required. Finally, the stained tissue 
sections were placed in an oven at 37 °C for 30 min to ensure 
evaporation of the water. The sections were then succes-
sively incubated with xylene (I) and xylene (II) for 3 min 
each and then sealed with neutral resin. Micrographs were 

Table 1   Product ingredient 
(content per kilogram of feed) Moisture ≤100 g Histidine ≥4.0 g Iron ≥100 mg Vitamin B1 ≥8 mg

Crude protein ≥180 g Tryptophan ≥1.9 g Manganese ≥75 g Vitamin B2 ≥10 mg
Crude fat ≥40 g Phenylpropyl + 

tyrosine ≥11.0 g
Copper ≥10 mg Vitamin B6 ≥6 mg

Crude fiber ≤50 g Threonine ≥6.5 g Zinc ≥30 mg Niacin ≥45 mg
Crude ash content ≤80 g Leucine ≥14.4 g iodine≥0.5 mg Pantothenic acid ≥17 mg
Calcium 10–18 g Isoleucine ≥7.0 g Selenium ≥01–0.2 mg Folic acid ≥4 mg
Total phosphorus 6–12 g Valine ≥8.4 g Vitamin A ≥7000IU Biotin ≥0.10 mg
Lysine ≥8.2 g Magnesium ≥2.0 g Vitamin D ≥800 IU Vitamin B12 ≥0.02 mg
Methionine + cystine ≥ 5.3 g Potassium ≥5.0 g Vitamin E≥60 IU Choline ≥1250 mg

https://www.uniprot.org/
https://www.uniprot.org/
http://www.genome.jp/kegg/
https://cn.string-db.org/cgi/input?sessionId
https://cn.string-db.org/cgi/input?sessionId
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captured using an optical microscope to assess pathological 
features. The evaluation process involved randomly selecting 
10 fields at 20× magnification to assess four pathological 
criteria, namely basement membrane separation, immature 
cell presence in the spermatogenic tubule lumen, spermato-
genic tubule degeneration, and atrophy. The severity of 
each criterion was scored from 0 to 3, with 0 indicating the 
absence of the phenomenon, 1 indicating a mild occurrence, 
2 indicating a more pronounced occurrence, and 3 indicating 
an obvious phenomenon. To evaluate the results, Johnsen 
scoring (JS) was performed on 40 randomly selected semi-
niferous tubules in each group using an optical microscope, 
following the criteria outlined in Table 2 [20].

Determination of Testis Morphology

Germinal epithelial thickness (GET) was determined by 
measuring the longest and shortest distances of epithelial 
thickness in cross-sections of the spermatogenic tubule, 
which was followed by mean value calculation. The mean 
distance of the length and width of the spermatogenic tubule 
was measured to determine the diameter of the tubule (STD). 
Germinal cell degeneration was evaluated based on the sta-
tistical values of GET and STD [21].

Western Blot

Protein lysate (containing PMSF) was added according to 
the weight of the rat testis tissue. Then, the protein was 
extracted, and its concentration was detected according 
to the BCA Protein Quantitation Kit. Next, appropriate 
gels matched to the different molecular weight sizes were 
selected. The sample was then added, which was followed 
by electrophoresis, transmembrane, and blocking. Finally, 
the first antibody was added and incubated overnight before 
adding the second antibody. The bands were developed on 

a chemiluminescent developer and analyzed for grayscale 
values using ImageJ v 1.8.0.

Statistical Analysis

SPSS 25 was utilized to analyze the collected data, which 
was observed to follow a normal distribution and exhibit 
homogeneity of variance. One-way analysis of variance and 
post hoc Tukey’s tests were employed to assess the data. The 
results are presented as mean ± standard deviation. For data 
that did not follow a normal distribution or exhibited uneven 
variance, Kruskal–Wallis and Mann–Whitney U tests were 
used, and the results were reported as median (min-max). 
GraphPad Prism (version 9.0) was used for data visualiza-
tion. Furthermore, a P value of <0.05 was considered sta-
tistically significant.

Results

Data Quality Control of Proteins

Based on the proteomic analysis, 7860 proteins were 
detected in rat testicular tissues. Three biological replicates 
were detected, and further quantitative analysis was per-
formed. A total of 7859 proteins were detected in the control 
group, and 7859, 7852, and 7852 proteins were detected in 
the low-, medium-, and high-dose groups, respectively. As 
seen in Fig. 1A,B, 90.59% of proteins weighed more than 
10 kDa, and more than 91.64 of the proteins had at least 
two peptides. This indicated that the quality of our data set 
was excellent. Additionally, the results of the PCA (Fig. 1C) 
show that the difference between the control and low-dose 
groups was not significant; however, a significant difference 
was present between the control and medium-dose group.

Identification of Deferentially Expressed Proteins 
after AlCl3 Exposure to Testicular Tissue

Using volcano plots, we expressed the DEPs that were 
at the intersection of the control group versus the low-
mid-high, the control group versus the mid-high, and the 
control group versus the low-mid-high group, respectively, 
after AlCl3 exposure. There were 59 DEPs in the control 
group compared with the low-dose group, 31 of which 
were upregulated and 28 were downregulated (Fig. 2A). 
There were 121 DEPs in the control group compared with 
the medium-dose group; 39 were upregulated, and 82 were 
downregulated (Fig. 2B). Sixty-nine DEPs were present in 
the control group compared with the high-dose group; 26 
were upregulated, and 43 were downregulated (Fig. 2C). 
Sixty-six DEPs were present in the conjoint analysis 
between the control group and low- and medium-dose 

Table 2   Johnsen’s score used to evaluate testicular biopsies (JS)

Score description

1 No cells
2 Sertoli cells without germ cells
3 Only spermatogonia
4 Only a few spermatocytes
5 Many spermatocytes
6 Only a few early spermatids
7 Many early spermatids without 

differentiation
8 Few late spermatids
9 Many late spermatids
10 Full spermatogenesis
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groups; 31 of them were upregulated, and 35 were down-
regulated (Fig. 2D). Ninety-six DEPs were present in the 
conjoint analysis between the control group and medium- 
and high-dose groups; 40 were upregulated, and 56 were 
downregulated (Fig. 2E). Sixty-eight DEPs were in the 
conjoint analysis between control and low-mid-high-dose 
groups; 34 were upregulated, and 34 were downregulated 
(Fig. 2F; Fig. 3).

Gene Ontology (GO) Functional Annotation of DEP

DEPs were subjected to GO functional annotation (Fig. 4). 
The biological processes most enriched by DEPs included 
a variety of metabolic processes such as aspartate family 

amino acid catabolic process (GO:0009068), retinol met-
abolic process (GO:0042572), nucleotide-sugar meta-
bolic process (GO:0009225), and melanin metabolic pro-
cess (GO:0006582), as well as regulation of cytoplasmic 
translation (GO:2000765) and protein hexamerization 
(GO:0034214). The affected cellular components included 
ribosome (GO:0005840), rough endoplasmic reticulum 
(GO:0005791), sperm fibrous sheath (GO:0035686), 
sperm connecting piece (GO:0097224), and sperm flagel-
lum (GO:0036126). Additionally, the molecular functions 
of intramolecular oxidoreductase activity, transposing 
C=C bonds (GO:0016863), calcium-dependent protein 
binding (GO:0048306), structural constituent of ribosome 
(GO:0003735), and nucleoside triphosphate diphosphatase 
activity (GO:0047429) were affected.

KEGG Pathway Enrichment Results of DEPs

The KEGG (Fig. 5A–F) pathway enrichment analysis was 
performed for these DEPs. The results showed that the 
most enriched pathways were glycine, serine, and threonine 
metabolism, oxidative phosphorylation, ribosome signaling 
pathway, etc.

Structural Domain Enrichment of DEPs

Structural domain enrichment analysis enables an under-
standing of proteins functions and identification of proteins 
associated with AlCl3 exposure leading to testicular toxic-
ity. Through (Fig. 6A–F) structural domain enrichment, we 
found that the most affected proteins were acyl carrier pro-
tein (ACP), ribosomal protein L27e, ribosomal protein L31e, 
ribosomal protein L32p, and ribosomal protein L40e. These 
may be some of the key targets of testicular toxicity due to 
AlCl3 exposure.

Subcellular Localization Analysis of the DEPs

Subcellular localization analysis was also performed for each 
group of differential proteins (Fig. 5A–F), and we found that 
the top-ranked proteins affected after AlCl3 exposure were 
cytosolic, cytoplasmic, and mitochondrial proteins.

PPI Analysis of DEPs

To investigate the relationship between DEP interactions 
obtained from the four groups, PPI networks of DEPs were 
established by combining each concentration group with the 
control group, as well as by combining multiple groups with 
the control group. Spermatogenesis-related proteins (Oaz3, 
ODF1, and AKAP4) were found to be tightly linked, and 
their expression was downregulated. Furthermore, molecules 
related to oxidative phosphorylation (NDUFAB1) regulated 

Fig. 1   (A) Protein molecular weight statistics. (B) Number of pep-
tides contained in the identified protein. (C) Protein PCA graph
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the ribosome-associated protein UBA52 and the mitochon-
drial ribosomal protein MRPL32, which interacted directly 
or indirectly in the PPI network of each group. NDUFAB1 
protein expression was downregulated, while the expression 
of UBA52 and MRPL32 was upregulated.

Serum T, LH, and FSH

Exposure to AlCl3 resulted in a decrease in reproductive 
hormones, which was dependent on increasing concentra-
tions of AlCl3 exposure. Statistically significant differences 
were observed in LH and FSH levels between the high-dose 
group exposure and the control group. However, there were 
no significant differences between the low- and medium-
dose groups and the control group in terms of LH and FSH 
levels. Compared with the low-dose group, the high-dose 
group displayed a significant decrease in LH and FSH (P < 
0.05). Additionally, T levels between the low-dose group and 
the control group did not differ significantly. However, sig-
nificant differences were observed between the medium- and 

high-dose groups and the control group (P < 0.05). Notably, 
the high-dose group exhibited a more significant decrease 
than the low-dose and medium-dose groups.

HE Histopathological and Morphological Evaluation 
Results

HE staining revealed (Fig. 9D; Table 3) that the seminiferous 
tubules in the control group were regularly arranged with a 
normal basement membrane and a large number of spermato-
genic cells. However, in the AlCl3 exposure groups, the semi-
niferous tubules were irregularly arranged, with a reduced 
number of spermatogenic cells, and were degenerated and 
atrophic. Additionally, tissue destruction was more severe 
in the high-dose group compared to the low- and medium-
dose groups. Furthermore, the levels of STD, GET, and JS in 
the testicular tissue of the AlCl3 exposure groups were sig-
nificantly lower compared to the control group (P < 0.05) 
(Table 4). Notably, the high-dose group exhibited a more sig-
nificant decrease than the low-dose group (P < 0.05).

Fig. 2   Volcano plots according to the deferentially expressed proteins 
(DEPs): (A) control vs. low-dose group; (B) control vs. medium-
dose group; (C) control vs. high-dose group; (D) control vs. low- and 

medium-dose group; (E) control vs. medium- and high-dose group; 
(F) control vs. low-, medium-, and high-dose group
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Fig. 3   Heat map of the DEPs: 
(A) control vs. low-dose group; 
(B) control vs. medium-dose 
group; (C) control vs. high-dose 
group; (D) control vs. low- and 
medium-dose group; (E) control 
vs. medium- and high-dose 
group; (F) control vs. low-, 
medium-, and high-dose group
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Fig. 4   Histogram of the GO enrichment analysis: (A) the con-
trol group with the low-dose group; (B) the control group with the 
medium-dose group; (C) the control group with the high-dose group; 

(D) the control group with the low- and medium-dose groups; (E) the 
control group with the medium- and high-dose groups; (F) the con-
trol group with the low-, medium-, and high-dose groups
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Fig. 5   The KEGG enrichment results: (A) the control group with the 
low-dose group; (B) the control group with the medium-dose group; 
(C) the control group with the high-dose group; (D) the control group 

with the low- and medium-dose groups; (E) the control group with 
the medium- and high-dose groups; (F) the control group with the 
low-, medium-, and high-dose groups
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Western Blot

To validate the accuracy of the proteomic data, western blot 
experiments were performed for AKAP4, ODF1, OAZ3, 
NDUFAB1, Mrpl32, Lgals4, and UBA52. The proteomic 
data analysis was consistent with the western blot results. 
After AlCl3 exposure, the expression levels of five proteins, 
including AKAP4, ODF1, OAZ3, NDUFAB, and Lgals4, 
were downregulated with increasing concentrations of 
AlCl3 exposure compared to the control group. The genes 
AKAP4, ODF1, and OAZ3 were downregulated in the low-, 
medium- and high-dose groups. Additionally, the low-dose 

group exhibited downregulation of these genes compared to 
the medium- and high-dose groups (P < 0.05). NDUFAB1 
and Lgals4 were downregulated in the control group com-
pared to the low-, middle- and high-dose groups (P < 0.05). 
Compared to the high-dose group, they were downregulated 
in the low-dose group (P < 0.05) but showed no significant 
difference between the low- and middle-dose group. Moreo-
ver, exposure to increasing concentrations of AlCl3 resulted 
in an upregulation of UBA52 protein expression. The con-
trol group exhibited significantly higher levels of UBA52 
expression compared to the middle- and high-dose groups, 
whereas the low-dose group showed significantly higher 

Fig. 6   Differential protein structural domain enrichment analysis: (A) 
control vs. low-dose group; (B) control vs. medium-dose group; (C) 
control vs. high-dose group; (d) control vs. low- and medium-dose 

groups; (E) control vs. medium- and high-dose groups; (F) control 
vs. low-, medium-, and high-dose groups
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expression levels compared to the high-dose group. Addi-
tionally, the medium-dose group demonstrated significantly 
higher expression of Mrpl32 compared to both the control 
and low-dose groups (P < 0.05). These findings validate 
the accuracy of our proteomic data. Furthermore, AlCl3 
exposure resulted in the upregulation or downregulation of 
these proteins, thereby inducing testicular damage and sperm 
quality decline and ultimately leading to reproductive dam-
age in rats.

Discussion

The reproductive toxicity induced by aluminum in humans 
has garnered significant attention. Our findings indicate that 
exposure to AlCl3 resulted in irregularly arranged seminifer-
ous tubules and a decrease in the number of spermatogenic 
cells compared to the control group. Additionally, immature 
cells were observed in the lumen, the seminiferous tubules 
showed signs of degeneration and atrophy, and the basement 
membrane was shed, ultimately leading to a reduction in 
sperm count. Notably, increasing AlCl3 concentration was 
observed to worsen these features. Furthermore, hormones 
related to male reproduction were also downregulated in the 
rat models. To explore the mechanism of testicular toxicity 
caused by AlCl3, we used proteomic tools. Proteomics is a 

powerful tool to assess AlCl3 exposure-related toxicity in 
rat testes and is widely used in toxicological studies. In this 
study, a gradient of toxicity exposure was set up, wherein 
three doses (low, medium, and high) were compared with 
the control. Additionally, a joint comparison was performed 
between multiple groups to obtain credible and accurate 
results. A low-dose exposure was associated with mild dam-
age and a small number of DEPs; therefore, this data was not 
considered when a combined analysis of the medium- and 
high-dose groups was performed. However, comprehen-
sive analysis can reveal the mechanism of the joint effect 
of AlCl3 exposure from low to high doses. The reliability of 
our protein sequencing is validated by the fact that more than 
91.64 proteins had shown at least two peptides (Fig. 1A–C). 
Additionally, PCA indicated differences between the groups 
after AlCl3 exposure, further confirming the reliability of 
our sequencing results. The DEPs detected were expressed 
in the form of a volcano diagram (Fig. 2), which presents 
the up and downregulated proteins. The top-ranked genes 
were displayed in the form of a heat map (Fig. 3). Through 
a comprehensive analysis of our proteomic results data, we 
suggest that further research on AlCl3-induced testicular 
toxicity should focus on the metabolic processes of amino 
acids, oxidative phosphorylation, ribosome signaling path-
ways, and organelle damages, such as mitochondrial and 
ribosomal damages. Furthermore, with an increase in AlCl3 

Table 3   Histopathological evaluation results of testicular tissue after exposure to different AlCl3 (ten fields were randomly selected at 20× mag-
nification)

Data are presented as median (min–max)
a Compared with the control group (p < 0.05)
b Compared with the low-dose group (p < 0.05)
P* Kruskal–Wallis

Control (n = 6) Low-dose group (n = 6) Medium-dose group (n = 6) High-dose group (n = 6) P*

Basement membrane separations 0.00 (0.00–1.00) 2.00 (1.00–3.00) a 2.00 (1.00–3.00) a 2.00 (1.00–3.00)a <0.05
Presence of immature cells in the 

lumen
1.00 (0.00–1.00) 1.00 (1.00–3.00) 2.00 (1.00–3.00)a 2.00 (2.00–3.00)a <0.05

Degeneration of seminiferous 
tubules

0.00 (0.00–2.00) 1.00 (1.00–3.00) 2.00 (1.00–3.00)a 2.50 (2.00–3.00)a <0.05

Atrophy of seminiferous tubules 1.00 (0.00–1.00) 1.00 (0.00–3.00) 2.00 (1.00–3.00)a 3.00 (2.00–3.00)a,b <0.05

Table 4   Histomorphometric 
evaluation of testicular tissue 
after exposure to different 
concentrations of AlCl3

Data are presented as mean ± standard deviation
a Compared with the control group (P < 0.05)
b Compared with the low-dose group (P < 0.05)
STD seminiferous tubule diameter, GET germinal epithelial thickness, JS Johnsen’s score

Control Low-dose group Medium-dose group High-dose group P*

STD 316.05 ± 30.09 302.43 ± 25.30 234.91 ± 17.48a,b 219.85 ± 17.48a,b <0.05
GET 117.68 ± 9.20 111.93 ± 7.14 79.88 ± 8.92a,b 73.41 ± 6.35a,b <0.05
JS 9.68 ± 0.26 9.39 ± 0.35 6.77 ± 0.48a,b 6.46 ± 0.37a,b <0.05
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exposure, the hormone related to male reproduction was also 
downregulated. We will combine the above points to discuss.

Metabolic Processes

After exposure to AlCl3, GO enrichment analysis 
(Fig. 4A–F) revealed that the DEPs were related to the 
catabolic processes of the aspartate family amino acids 
(GO:0009068) and the metabolic processes of retinol 
(GO:0042572) and melanin (GO:0006582). Previous stud-
ies report that retinol is a crucial element in regulating 
testicular function and sperm production. It is particularly 
important for the development of germ cells from mitosis to 
meiosis and the regulation of testicular function. Moreover, 
the absence of retinol can result in Leydig cell differentia-
tion impairment, leading to reproductive function damage 
[20, 21]. Another study revealed a correlation between the 
metabolism of melanin and T [22]. Moreover, recent stud-
ies indicate that D-aspartate, a physiological amino acid 
found mainly in the pituitary gland and testis, can stimulate 
the release of LH and T when it is administered as sodium 
D-aspartate. Endogenous D-aspartate was reported to be pre-
sent in the advanced stages of spermatogenesis, including 
spermatocytes and spermatozoa. It stimulated spermatogen-
esis indirectly through the hypothalamic-pituitary-gonadal 
axis [23, 24]. Notably, AlCl3 exposure induces testicular 
toxicity and significantly affects the metabolic processes. 
Amino acid transport and metabolism play a crucial role in 
the normal functioning of the organism, and amino acids 
are similar to other important molecules, such as hormones 
and growth factors, that are involved in the regulation of 
the organism through specific pathways [25]. Adequate 
amino acids are required for proper growth, development, 
and reproduction. Additionally, the quality of amino acids 
has also been reported to affect reproduction in Drosophila 
[26]. The study found that exposure to AlCl3 resulted in a 
decrease in reproductive-related hormones, with the most 
significant decrease observed at the highest exposure con-
centration. This was accompanied by histological damage 
to the testis (Fig. 9A–D). Similar results were observed in 
mice exposed to arsenic trioxide, where a decrease in testos-
terone was noted [27]. Additionally, a decrease in FSH has 
been linked to a decline in sperm count [28]. Recent studies 
have suggested that L-arginine supplementation may reverse 
reproductive toxicity caused by aluminum exposure. This 
supplementation can restore sex hormone levels to normal, 
improve sperm motility to some extent, and reduce testicular 
tissue edema and interstitial tissue congestion caused by alu-
minum exposure. Thus, normal metabolism of amino acids 
is important for male reproductive function [29]. KEGG 
analysis revealed that DEPs were enriched in glycine, serine, 
and threonine metabolic pathways (Fig. 5A–F). Our findings 
suggest that aluminum exposure may negatively affect amino 

acid metabolism, which could lead to impaired metabolic 
pathways that affect sex hormone levels and testicular func-
tion in rats. These results are consistent with our previous 
study, which showed a decrease in semen quality in rats [9].

Signaling Pathways

The calcium signaling pathway has been demonstrated to 
regulate spermatogenesis and sperm maturation in mam-
mals, amphibians, and other animals [30, 31]. GO enrich-
ment of the DEPs revealed enrichment in calcium-dependent 
protein binding (GO:0048306) (Fig. 4). Additionally, the 
KEGG pathway enrichment of DEPs revealed the presence 
of the calcium signaling pathway (Fig. 5). These findings 
suggest that changes in calcium-dependent protein binding 
can induce cytotoxicity [32, 33]. In the calcium signaling 
pathway, the entry of calcium ions entry into the cell causes 
a sudden increase in intracellular calcium ion concentration 
and activation of downstream response mechanisms (e.g., 
CaMKII, nitric oxide synthase, and calcium-regulated neu-
ronal phosphatase). Butylated hydroxyanisol is capable of 
disrupting calcium homeostasis to induce testicular toxicity 
[34]. Moreover, lysophosphatidic acid can improve sperm 
viability by activating L-type calcium channels [35]. Fur-
thermore, sperm viability levels directly affect fertility [36]. 
These findings show that calcium signaling pathways have 
an important role in testicular toxicity and spermatogen-
esis, wherein calcium signaling pathways modulation can 
potentially improve testicular toxicity due to A1C13-induced 
testicular toxicity.

Oxidative Phosphorylation

Mitochondria have a bilayer membrane structure and carry 
out oxidative phosphorylation in their inner membrane. 
Oxidative phosphorylation is composed of five complexes, 
each working in concert to produce ATP [37]. Sodium fluo-
ride and cadmium cause oxidative damage to the testes of 
silkworms and mice by affecting mitochondrial oxidative 
phosphorylation [38, 39]. When testicle torsion occurs, it 
interferes with oxidative phosphorylation and affects the 
mitochondria’s energy supply [40]. Therefore, we can spec-
ulate that oxidative phosphorylation could be involved in 
AlCl3-induced testicular toxicity. Our study revealed that 
after AlCl3 exposure, a large proportion of DEPs were 
enriched in oxidative phosphorylation and affected mito-
chondrial proteins (Fig. 5). Additionally, the subcellular 
localization of DEPs was identified (Fig. 7). Further anal-
ysis of the protein-protein interaction (PPI) PPI of DEPs 
revealed that NDUFAB1, a molecule related to the oxida-
tive phosphorylation pathway, was involved in the regula-
tion of the PPI interaction network (Fig. 8). NDUFAB1 is a 
mitochondrial ACP essential for maintaining cell viability. 
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Interestingly, the ACP that appears in the structural domain 
enrichment results corresponds to NDUFAB1 (Fig.  6), 
whose functions are primarily involved in assembling mito-
chondrial respiratory chain complexes and mitochondrial 
ribosomes [41]. Moreover, NDUFAB1 can prevent obesity 
and insulin resistance by enhancing mitochondrial metab-
olism [42]. The overexpression of NDUFAB1 effectively 
enhances mitochondrial bioenergy and exerts a cardiopro-
tective effect in the heart subjected to ischemic perfusion 
injury. Therefore, NDUFAB1 is a central target in repro-
ductive toxicity due to AlCl3 exposure [43]. However, the 

specific regulatory mechanism of NDUFAB1 in testicular 
toxicity due to AlCl3 exposure is unclear.

Ribosomes

Ribosomes, composed of RNA and proteins, translate mes-
senger RNA into encoded proteins in all living systems. 
Ribosomes are present in almost all cells and are consid-
ered the “molecular machinery” of the cell. The stability of 
ribosomal machinery is essential for cell proliferation [44]. 
This current study observed that exposure to AlCl3 resulted 

Fig. 7   Pie charts of the DEPs’ subcellular localization: (A) control 
vs. low-dose group; (B) control vs. medium-dose group; (C) control 
vs. high-dose group; (D) control vs. low- and medium-dose groups; 

(E) control vs. medium- and high-dose groups; (F) control vs. low-, 
medium-, and high-dose groups
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Fig. 8   Protein interaction network plots made by six sets of common DEPs in control, low-, medium-, and high-dose groups. Red is upregulated, 
and green is downregulated



1098	 H. Peng et al.

1 3

in enriched DEPs that were specifically related to the ribo-
some (GO:0005840) and ribosome structural composition 
(GO:0003735) among others (Fig. 4). Additionally, KEGG 
enrichment analysis revealed the significant enrichment of 
DEPs in the ribosomal pathway (Fig. 5). The domain enrich-
ment analysis further supported these findings, indicating 
that the most affected proteins were ribosomal proteins. High 
sugar intake has been reported to enhance the destruction 
of bisphenol A, leading to reproductive toxicity through the 
upregulation of ribosome-related genes [45]. Recent studies 
have highlighted the involvement of ribosome-related pro-
teins, such as RPL23, RPS27A, and RPS27L, in regulating 

the cell cycle and apoptotic processes and inducing apop-
tosis [46]. Abnormal expression of mitochondrial riboso-
mal proteins (MRPs) can lead to mitochondrial metabolic 
disorders and cellular dysfunction. Moreover, MRPs can 
play an essential role in the regulation of cell death [47]. 
Recent studies have demonstrated that inhibition of MRPs, 
such as MRPL19 and MRPL32, increased cell viability and 
attenuated OGGR-induced apoptosis [48]. The ubiquitin 
A-52 residue ribosomal protein fusion product 1 (UBA52) 
is a ubiquitin-ribosome fusion gene. Its N-terminus contains 
ubiquitin, and the C-terminus contains 60S and RPL40. 
UBA52 has been shown to activate the RPL40-MDM2-p53 

Fig. 9   FSH, LH, and T concentrations and testicular tissue damage in 
rats exposed to low, medium, and high concentrations of AlCl3. A, 
B, and C denote T, LH, and FSH levels, respectively, and D repre-
sents HE staining observations. C: control group; L: low-concentra-
tion AlCl3 exposure group; M: medium-concentration AlCl3 exposure 

group; H: high-concentration AlCl3 exposure group. ★: presence 
of immature cells in the lumen; black arrow: atrophy of seminifer-
ous tubules; green arrow: degeneration of seminiferous tubules; blue 
arrow: basement membrane separations
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pathway, leading to cell cycle arrest and apoptosis [49]. 
These findings are consistent with our results. In the current 
analysis of DEPs using PPI networks, we observed that the 
ribosome-associated protein UBA52 and the mitochondrial 
ribosomal protein MRPL32 were upregulated and directly 
or indirectly interacted with other proteins in each group 
(Fig. 8). Western blot detection also revealed that the expres-
sion of UBA52 increased in correlation with AlCl3 exposure 
concentration (Fig. 10G). The expression of UBA52 in the 
low-, middle- and high-dose groups showed a significant 

increase compared with the control group. Notably, the 
middle- and high-dose groups exhibited more significant 
changes in UBA52 expression compared to the low-dose 
group. The expression of MRPL32 was also observed to be 
significantly increased in the medium-dose group compared 
to the control group and low-dose group (Fig. 10C). This 
suggests that UBA52 and MRPL32 may cause testicular 
toxicity by affecting the stability of the ribosomal pathway. 
However, further experiments are required to fully under-
stand the specific mechanism involved (Fig. 9).

Fig. 10   (A) Plots of changes in AKAP4, Mrpl32, ODF1, OAZ3, 
Lgals4, UBA52, and NDUFAB1 protein expression after different 
concentrations of AlCl3 exposure. (B–H) Quantification of protein 
expression for AKAP4, Mrpl32, ODF1, OAZ3, Lgals4, UBA52, and 

NDUFAB, respectively. All data are expressed as mean ± standard 
deviation. The asterisk (*) sign indicates statistical difference from 
control (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)
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Key Proteins

In our study, we conducted a multi-group DEPs GO enrich-
ment analysis and discovered that the DEPs were linked 
to cellular components such as sperm fibrous sheath 
(GO:0035686), sperm linker (GO:0097224), and sperm 
flagella (GO:0036126) (Fig. 4). Additionally, we observed 
a strong correlation between the DEPs AKAP4, ODF1, 
and OAZ3, which are known to play a crucial role in male 
reproduction; hence, we focused on these proteins. A-kinase 
anchoring protein 4 (AKAP4) is the main component of the 
sperm’s fibrous sheath and is related to sperm viability [50]. 
Knockdown of the AKAP4 gene in mice using CRISPR-
Cas4 caused abnormal sperm morphology and poor viability 
[51]. The western blot analysis showed a decrease in AKAP4 
expression in the AlCl3 exposed groups compared to the con-
trol group (Fig. 10B). The decrease was most significant at 
the highest concentration of AlCl3, and the downregulation 
was more prominent in the middle- and high-dose groups 
compared to the low-dose group. Thus, the expression of 
AKAP4 is dose-dependent in response to AlCl3 exposure. 
These findings suggest that AKAP4 could potentially be a 
target for testicular toxicity induced by AlCl3 exposure. The 
outer dense fibers 1 (ODF1) of the sperm tail, a filamentous 
structure located in the middle part of the mammalian sperm 
tail and the outer part of the main part of the axoneme, acts 
as a linker; in some males with infertility, abnormal sperm 
morphology occurs due to reduced ODF1 [52, 53]. Our 
study utilized proteomic data and western blot to confirm 
that exposure to AlCl3 resulted in the downregulated expres-
sion of ODF1 in testis tissue (Fig. 10D). Specifically, the 
expression of ODF1 was decreased in the AlCl3 exposure 
group compared to the control group, with the medium- and 
high-dose groups showing a more significant decrease than 
the low-dose group. However, further investigation is neces-
sary to determine whether ODF1 is regulated by upstream 
genes. Ornithine decarboxylase antizyme 3 (OAZ3) is cru-
cial in regulating cell growth and reproduction. OAZ3 is 
testis-specific, and its expression is restricted to haploid 
germ cells in the testis. As presented in Fig. 10E, the expres-
sion of OAZ3 decreased following AlCl3 exposure. Notably, 
this decrease was more pronounced in the middle- and high-
dose groups compared to the low-dose group. Additionally, 
there was a clear correlation between the decrease in OAZ3 
expression and AlCl3 exposure concentration. The knock-
down of OAZ3 leads to sterility in male mice. Interestingly, 
a recent study demonstrated that OAZ3 is also involved in 
the formation of the sperm tail [54, 55]. Hence, it can be 
speculated that the target of reproductive toxicity induced 
by AlCl3 exposure could be the sperm tail. Lipid rafts are 
highly dynamic and structurally heterogeneous regions in 
the cell membrane that facilitate molecular interactions and 
signal transduction between cells. Galectin-4 (Lgals4) has 

been reported to enhance the stability of lipid rafts. Research 
indicates that Lgals4 can also increase the expression of cyc-
lin B1, thereby improving cell cycle progression [55, 56]. 
Our proteomics results indicate a significant downregula-
tion of Lgals4, which was further validated using a western 
blot (Fig. 10F). The expression of Lgals4 was found to be 
inhibited upon exposure to AlCl3, with a more significant 
reduction observed in the high-dose group compared to the 
low-dose group. However, further investigation is required 
to determine whether the downregulation of Lgals4 protein 
expression caused by AlCl3 exposure leads to testicular 
injury. In summary, the mechanism of testicular toxicity 
induced by exposure to AlCl3 is highly complex. Our study 
has only provided a preliminary exploration of the changes 
in protein molecules following exposure, and we intend to 
continue researching the regulatory mechanisms involved.

Conclusion

In summary, AlCl3 exposure significantly disrupted the 
morphology of rat testicular tissue and affected the balance 
of blood hormones in rats, resulting in decreased blood 
levels of reproduction-related sex hormones, attenuated 
sperm viability in rats, and testicular damage. These effects 
may be related to sperm fibrous sheaths, sperm connection 
straps, spermatic flagella, calcium-dependent protein bind-
ing, amino acid metabolic pathways, calcium signaling path-
ways, oxidative phosphorylation, and ribosomal pathways. 
Structural domain enrichment and cellular sub-localization 
analyses of DEPs revealed that the targeted organelles of 
AlCl3 exposure are mitochondria and ribosomes. Moreover, 
our western blot experiments validated the results. These 
results were consistent with the proteomic data. Our prot-
eomic data and western blot experiments demonstrated the 
downregulation of sperm-related DEPs (AKAP4, ODF1, 
and OAZ3) and the upregulation of regulatory ribosome-
associated protein (UBA52) and MPR (MRPL32). These 
findings suggest that these proteins may be molecular targets 
of AlCl3 exposure leading to testicular toxicity.
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